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Abstract 

A key feature of human thought and language is compositionality, the ability to 

bind pre-existing concepts and word meanings together in order to express 

new ideas. Here we ask how newly composed complex concepts are mentally 

represented and matched to the outside world, by testing whether it is harder 

to verify if a picture matches the meaning of a phrase, like big pink tree, than 

the meaning of a single word, like tree. Five sentence-picture verification 

experiments provide evidence that, in fact, the meaning of a phrase can often 

be checked just as fast as the meaning of one single word (and sometimes 

faster), indicating that the phrase’s constituent concepts can be represented 

and checked in parallel. However, verification times were increased when 

matched phrases had more complex modification structures, indicating that it 

is costly to represent structural relations between constituent concepts. This 

pattern of data can be well-explained if concepts are composed together 

using two different mechanisms, binding by synchrony and binding by 

asynchrony, which have been suggested as solutions to the “binding problem” 

faced in both vision science and higher-level cognition. Our results suggest 

that they can also explain aspects of compositional language processing. 

 

197 words. 
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Compositionality is a key feature of human thought and language: We can 

effortlessly combine older, more basic concepts and word meanings in order 

to express an unbounded number of new ideas. For instance, even though 

the words Spotted, Pink, and Tree are rarely juxtaposed, they can be quickly 

composed together to create a coherent semantic interpretation. 

 

Work in linguistic semantics, philosophy, and psychology has considerably 

advanced our understanding of how complex concepts, such as the meanings 

of phrases, might be built from their component parts (Heim & Kratzer, 1998; 

Pylkkänen & McElree, 2006; Werning, Hinzen, & Machery, 2012). This has 

included discoveries about the role of broader world knowledge in interpreting 

the meanings of phrases (Barner & Snedeker, 2008; Springer & Murphy, 

1992), and about the neural implementation of combinatorial operations 

(Bemis & Pylkkänen, 2011; Frankland & Greene, 2015; Pylkkänen & McElree, 

2007). 

 

However, amongst this research there is a surprising gap in our knowledge: 

we know little about how composed representations are held in mind in order 

to be matched against the world. While we know a great deal about how 

individual words (like spotted, pink or tree) are stored in working memory 

(Baddeley, 2003), and about how complex concepts can, with experience, be 

“chunked” into simple units (Cowan, Chen, & Rouder, 2004), we know much 

less about how newly encountered combinations of concepts are mentally 

represented. For example, how does the representation of a complex 
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concept, such as big pink tree, differ from the representation of a singleton 

concept, such as tree, or from the representation of a list of word meanings, 

such as big, pink, tree? Do complex representations, built by stacking ever 

more concepts, also demand ever more working memory? Can some 

complex concepts be stored in very efficient ways? 

 

Some of the most relevant work has been on the idea of gist representations, 

the proposal that, as we read or listen to text, we discard our precise 

memories of the exact linguistic input and replace them with less precise 

summaries of that input’s meaning. Theories of gist can explain how and why 

we discard less-relevant information about a sentence, but their accounts of 

meaning (in which, for example, sentences are recoded as sets of 

propositions Carpenter & Just, 1975; H. H. Clark & Chase, 1972; Kintsch, 

1998) are more suited for explaining the representation of large chunks of text 

rather than characterizing the representations of simple concepts such as big 

pink tree. For example, it is unclear how the gists of tree and pink tree might 

differ. Potter (1993) has argued that gist representations are built by binding 

together token representations of concepts in a short term conceptual 

memory store. This idea seems plausible, but without a precise account of 

what these bindings might be like, it is hard to evaluate the implications of the 

claim for the questions posed at the start of this paper. 
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Potential insight into these bindings can be found in the literature on 

compositional connectionist models. In these models, individual concepts (i.e., 

word meanings) are stored as separate nodes in a large neural network. The 

concepts can be composed together (i.e., bound) through their simultaneous 

co-activation (so-called temporal binding). The key idea, which has its roots in 

the “binding by synchrony” hypothesis from visual attention (Singer & Gray, 

1995; Von Der Malsburg, 1984), is that composed concepts like pink tree 

might be represented in a neural network by simultaneously activating nodes 

for the constituent concepts, i.e., pink and tree (Hummel & Holyoak, 1997). 

This idea has been implemented in a number of neural network models, such 

as Hummel and Holyoak’s (1997) model of analogy formation. Importantly, it 

has also recently received support as a neurophysiologically plausible 

account of how combinatorial linguistic structure might be represented (Ding, 

Melloni, Tian, Zhang, & Poeppel, 2015). 

 

One reason that binding by synchrony is a plausible candidate mechanism for 

compositional binding is that it provides an efficient way of compressing 

information, just like a gist. Because neural networks operate in parallel, the 

complexity of a network in which only tree is active is not importantly different 

from the complexity of a network in which both pink and tree are activated. 

That is to say, the network pays essentially no additional cost (e.g., at least in 

terms of storage) in order to represent pink tree as opposed to tree. 
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Binding by synchrony is therefore a clever and efficient default mode of 

representation. However, it displays an important difficulty accounting for 

certain types of more complex compositional representations. In particular, 

when using binding by synchrony it is not possible to represent the precise 

structure with which concepts should be bound (Doumas, Hummel, & 

Sandhofer, 2008). While the simultaneous activation of a set of concepts does 

indicate which of them should be bound together, it does not indicate which 

concepts should serve as arguments and which should serve as predicates. 

This makes it difficult to represent any sort of well-structured concepts. To 

illustrate, consider how synchrony might be used to represent the concepts 

pink tree and dark pink tree. Pink tree can be easily represented through 

synchrony: the simultaneous activation of pink and tree will activate the 

features associated with pinkness and with treeness, features that are best 

matched by a pink coloured tree. However, if we try to represent dark pink 

tree through synchrony, we will produce an extremely inaccurate 

representation. In this case, we would activate features associated with 

darkness, with pinkness, and with treeness. These features would be best 

matched by something that is simultaneously a dark tree (e.g., a tree in 

darkness), a dark pink colour, a pink tree, a tree with a dark pink colour, and 

so on. This is clearly not a typically intended meaning of dark pink tree. 

 

To represent the structure of a composed concept in a neural network, it is 

necessary to somehow “screen off” individual component concepts from each 

other, to create the constituent relationships of the structure (e.g., ensuring 
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that dark modifies pink but not tree). This is not simple to do. One suggestion 

has been to use so-called conjunctive codes, in which each component 

concept is given a separate representation for each possible role that it might 

play (e.g., we would store two representations of dark, one for when it 

modifies another adjective [dark pink] and one for when it modifies a noun 

[dark tree]). But this solution has a theoretically unsatisfying consequence, as 

it assumes that every concept must have a different instantiation for each 

potential role that it might play. This sort of ambiguity of representation is 

inconsistent with a fundamental principle of compositionality, that the meaning 

of an expression should be a function of the meaning of its parts; in this case, 

the meaning of a part would be determined by its function in an expression. 

 

An alternative approach, and the one that we focus on here, is that concepts 

may be screened off from each other by using binding via asynchrony, in 

which the pattern of activation of concepts over time distinguishes different 

thoughts and creates constituent structure. For example, a phrase like dark 

pink tree can be represented with a constituent structure of the form [[dark & 

pink] tree] by initially co-activating dark and pink (to indicate a dark pink 

colour), and then subsequently activating tree in isolation (to indicate that the 

bound concept “dark pink” should modify tree) (Doumas et al., 2008; Hummel 

& Holyoak, 2003). In this case, the initial period of activation would first 

activate features associated with darkness and pinkness (which would be well 

matched by a dark pink colour), and then features associated with treeness 

(which would be well matched by a tree). That is to say, given this pattern of 



TEMPORAL	  BINDING	  IN	  SEMANTIC	  COMPOSITION	  

	   8	  

activation, dark pink tree would be well matched by a tree with a dark pink 

colour.1  

 

The ideas of binding by synchrony and asynchrony suggest answers to the 

questions posed at the start of the paper about the nature of compositional 

representations. Because simple compositional concepts with minimal 

structure, such as pink tree, can be represented through simultaneous 

activation, then their representation does not importantly differ from the 

representation of a single word (i.e., it is the pattern of activity in a neural 

network at one single point in time). More complex and structured concepts, 

however, must be represented by activating the different components of a 

concept across time. That is to say, the system pays a cost for precisely 

representing structure (e.g., some models limit the number of timesteps 

available (Doumas et al, 2008); this provides an upper bound on working 

memory capacity). 

 

A potential challenge 

The ideas behind synchronous and asynchronous binding can easily map on 

to the processes involved in completing an experimental task such as 

sentence-picture verification, in which participants read a phrase and then 

verify if it matches a subsequent picture (H. H. Clark & Chase, 1972). If two 

concepts are bound through synchrony, such as pink tree in Figure 1 (left 

side), then the perceivable (e.g., visual) features associated with those 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  And	  an	  alternative	  activation	  pattern	  could	  represent	  pink	  tree	  in	  darkness.	  
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concepts will be activated in parallel. Each of these features can then be 

simultaneously checked against the input. This means that it should be as 

easy for participants to verify the meaning of a phrase (pink tree) as to verify 

the meaning of a single word (tree), assuming that the key features (here, 

colour and shape) can be extracted from the picture at similar speeds. When 

concepts are bound asynchronously (Figure 1, right side), then the predictions 

are different. For a phrase like dark pink tree, each key component must be 

activated at a different timepoint. First, dark and pink are co-activated, along 

with their visual features, and these are checked against the input in parallel. 

Meanwhile, tree is activated, and its features are checked against the input. 

This mixed parallel-serial process would cause participants to be slower to 

verify the meaning of asynchronously bound phrases than synchronously 

bound phrases. 

 

 

Figure 1. Illustration of synchronous and asynchronous binding, and how they 

relate to sentence-picture verification tasks. 
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However, one recent result suggests that both of these predictions – parallel 

checking and mixed parallel-serial checking – are incorrect, and that the 

meanings of some composed concepts can be verified faster than the 

meanings of single words. In a sentence-picture verification task (conducted 

as part of a magnetoencephalography study), Bemis and Pylkkanen (2011) 

found that participants were faster to verify whether pictures matched the 

meanings of previously-presented phrases (pink tree) than the meanings of 

previously-presented single words (tree). By contrast (and consistent with a 

long literature on verbal memory, Sternberg, 1969), participants were slower 

to verify that a picture matched one of two words presented in a list (cup, tree) 

than to verify if the picture matched a single word presented alone.  

 

Although little-commented on at the time, this “composition advantage” is, 

intuitively, extremely surprising, as it seems so unlikely that a multiword 

phrase should be easier to represent and to check than a single word. It also 

runs entirely counter to the theories discussed above. If concepts are bound 

through synchrony then a composed concept should be no harder to verify 

than a single word. If a concept is bound through asynchrony then it should be 

harder to verify than a single word (as each additional constituent requires its 

own timestep). Under neither account should a phrase be easier to verify than 

a single word.  
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Given these considerations, the composition advantage, if robust, could 

provide important insights into the nature of compositional representations. To 

our knowledge, Bemis and Pylkkänen’s result is the only clear demonstration 

of this effect, although Potter and Faulconer (1979) found a similar effect 

using more complex stimuli.  

 

Here, we characterize both the nature of this compositional advantage and its 

consequences for models of concept composition. To preview, Experiments 

1a-c confirm that composed, multiword expressions can – in certain situations 

– be checked faster than a single word. However, this advantage is driven by 

predictability – the extension of the phrase pink tree is smaller than tree – and 

when phrase and word are matched on predictability we find that they are 

processed with the same speed. Importantly, this suggests that the 

representation of a two-word phrase’s meaning is not importantly different 

from the representation of a single word’s meaning, which is consistent with 

the idea of synchronous binding.  

 

Experiments 2 and 3, however, suggest that not all compositional concepts 

are represented in this fashion. In particular, we provide evidence that it is 

harder to perform sentence-picture verification for phrase meanings that 

cannot be accurately represented through synchronous binding (i.e., where 

one concept needs to be screened off from another), and which demand 

asynchronous binding instead. We therefore suggest that both synchronous 

and asynchronous binding are used to represent complex concepts.  
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Experiment 1 

 

Experiment 1a attempted to replicate the composition advantage found in 

Bemis and Pylkkänen (2011). We subsequently tested two potential 

explanations for this advantage, one based on the particular syntactic 

characteristics of Adjective-Noun phrases (Experiment 1b) and one based on 

the increased semantic specificity of a phrase like pink tree compared to tree 

alone (Experiment 1c). 

 

In all the experiments reported here, we used words whose meaning 

referenced easily-depicted visual features, in particular shape, size, color, and 

texture, which can be detected with minimal effort by participants. As such, 

the critical reaction time differences in our experiments are difficult to explain 

based on the visual stimuli and instead, we would argue, are a consequence 

of how combined concepts are stored and verified. 

 

Experiment 1a 

Participants 

20 participants with American I.P. addresses recruited from Amazon 

Mechanical Turk and paid $2.10 for participation. Sample size was set based 

on our intuition about the effectiveness of the manipulation. 
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Figure 2. Procedure and conditions for Experiment 1a. 

 

Materials and Procedure 

Our procedure (Figure 2) followed Bemis and Pylkkänen (2011). In the 

composition task, participants read either single words (tree) or two word 

phrases presented word-by-word (pink tree). Single words were preceded by 

a nonsense string to equate the length of the trial. Participants then saw a 

coloured shape and decided whether it matched the preceding word(s). The 

same colored shapes were used in each condition, and were displayed at one 

of three random orientations to make the task more difficult. Shapes 

mismatched the word(s) on half of the trials. In two-word trials, pictures could 

mismatch through either colour or shape; in one-word trials pictures could 

only mismatch through shape. 

 

In the list task, participants read either single words (tree, as in the 

composition condition) or a list of two nouns (boat, tree). Again, single words 

were preceded by a nonsense string. Participants then saw a coloured shape 

and indicated if it matched the preceding words. On two-word list trials, 
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participants simply had to decide if the shape matched either of the two 

previous words. 

 

Each trial began with a fixation cross, followed by an initial word (or nonsense 

string) and then a second word. Words were displayed in 18-point font and 

presented on screen for 300ms followed by a 200ms inter-stimulus interval. 

Pictures were displayed until the participant responded. 

 

In the composition task, trials were created by randomly combining one of 

twenty-five nouns [boat, house, lamp, star, disc, plane, bag, lock, cane, hand, 

key, shoe, bone, square, bell, bow, car, cross, cup, flag, fork, heart, leaf, note, 

tree] with one of six adjectives [red, blue, pink, black, green, brown] or with 

length-matched non-words [xkq, qxsw, mtpv, rjdnw, wvcnz, zbxlv]2. In the 

one-word condition, the colour and orientation of the subsequent picture were 

randomly chosen. In the two-word condition, only the orientation of the picture 

was randomly chosen. 

 

In the list task, trials were created by randomly combining one of the twenty-

five nouns with either another noun or a non-word (which always preceded 

the noun). In both the one-word condition and the two-word condition, the 

colour and orientation of the subsequent picture were randomly chosen. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  We	  removed	  the	  non-‐‑words	  in	  a	  replication	  of	  Experiment	  2,	  such	  that	  trials	  
differed	  in	  length,	  but	  found	  the	  same	  pattern	  of	  results,	  suggesting	  their	  use	  
does	  not	  affect	  the	  experimental	  outcome.	  
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Participants viewed 100 trials in each of the four conditions (50 match and 50 

mismatch). The order of the tasks (composition or list) was blocked between 

participants. The experiment was created using JSPsych (de Leeuw, 2014)  

and administered using PsiTurk  (Gureckis et al., in press). Before beginning 

each block, participants completed 16 practice trials with feedback. 

 

This research was approved by the Psychology Research Ethics Committee 

of the School of Philosophy, Psychology, and Language Sciences, University 

of Edinburgh. Data and analysis scripts for all reported experiments can be 

found at https://github.com/hughrabagliati/CompositionalityPaper1/. 

 

Analysis and Results 

We excluded trials with reaction times lower than 300ms or greater than 

1500ms (criteria used throughout the paper). This removed 921 trials out of 

7616 (12% of the total, median 17.5 per subject (SD=85, with the high 

standard deviation driven by two subjects)). We analyzed reaction times (on 

correctly answered match trials) using a linear mixed effects model (which 

accounts for imbalanced data) of the form (in lmer syntax) RT ~ Length * Task 

Type + (1+Length*Task Type |Subject) + (1+Length*Task Type|Item). This 

model predicts reaction time based on effects of Phrase Length (One or Two 

words), Task Type (Composition or List) and their interaction, and includes 

random intercepts for subjects and items, and the maximal random effects 

structure that permitted convergence. We calculated p values via model 

comparison. Since accuracy data were proportional, they were analyzed using 
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a similar mixed-effects logistic regression of the form (in glmer syntax) 

Accuracy ~ Length * Task Type + (1+Length +Task Type |Subject). In this 

regression, the by-items random effects structure, and the by-subjects 

interaction slope between Length and Task Type had to be dropped to aid 

convergence (there was little variability in either of these terms in the more 

maximal regression that did not converge). In all regressions reported in this 

paper, we use the maximal random effects structure that permits 

convergence. 
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Figure 3. Top: Mean accuracy at identifying pictures in Experiment 1a. 

Bottom: Mean reaction time to correctly identify matching pictures in 

Experiment 1a.  Error bars show +/- 1 within-subject standard error (all 

conditions are within subjects). 

 

As seen in Figure 3, we replicated the critical reaction time result from Bemis 

and Pylkkänen (2011), an interaction between length and task type (b=25.0 

(5.5), χ2(1)=13.6, p<.001): In the composition task, participants were faster to 

verify two-word phrases than single words (b=-19.3 (8.8), χ2(1)=4.4, p=.04), 

but in the list task they were slower to verify two-word lists than single word 

lists (b=31.7 (7.1), χ2(1)=13.1, p<.001). 

 

Importantly, this interaction in reaction times was not well explained by a 

speed accuracy trade-off. In our accuracy analysis the interaction was not 

reliable (see Figure 3, top panel, b=0.06 (0.07), χ2(1)=0.78, p=.38). 

Experiment 1 therefore confirms Bemis and Pylkkänen’s (2011) evidence for a 

“composition advantage” in checking complex concepts. 

 

 One Word Two Words 

Phrase 849 [772,923] 801 [737,875] 

List  860 [774,934] 929 [851,1009] 

   

Table 1. Mean reaction times [and 95% confidence intervals] in milliseconds 

for Experiment 1a. 
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Experiment 1b 

 

Experiment 1a clearly replicated the composition advantage: Participants 

verified composed phrases (pink tree) faster than either single words (tree) or 

lists of words (boat, tree). However, a potential objection to these 

comparisons is that pink tree, unlike the other stimuli, contains an adjective. 

That is to say, our participants were not only performing a different task 

between the list and the composition condition, but were performing that task 

on different stimuli. In Experiment 1b we tested whether the advantage still 

holds when phrases and lists are more precisely matched, by using adjective-

noun pairs in both the composition and list conditions. For example, 

participants in the list condition might now have to verify whether a picture 

was pink or a tree. 

 

Methods 

Participants 

12 participants with American I.P. addresses recruited from Amazon 

Mechanical Turk and paid $4.50 for participation. We had intended to test 20 

participants, but stopped early after participants complained that the 

Adjective-Noun list task was too hard. We additionally excluded one 

participant who contacted us to say that they did not follow the instructions 
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(due to the difficulty), and one participant whose accuracy was 0 in the list 

task. 

 

Materials and Procedure 

We followed the same experimental parameters as Experiment 1a unless 

otherwise noted. The list condition was the same as the composition condition 

(e.g., adjectives preceded nouns) except that participants subsequently saw 

pictures that either matched only one of the words (e.g., reading pink tree and 

seeing a pink disc) or neither. 

 

Results 

Reaction times were submitted to a mixed effects model that predicted 

reaction times based on fixed effects of Phrase Length (One or Two words), 

Task Type (Composition or List), and their interaction, as well as the maximal 

random effects structure that permitted convergence: random intercepts for 

subjects and items, random by-subject slopes for phrase length and task, and 

a random by-item slope for phrase length. In lme4 syntax, this model had the 

form RT ~ Length * Task Type + (1+Length + Task Type|Subject) + 

(1+Length|Item). Accuracy was analyzed using a similar logistic regression 

with the form Accuracy ~ Length * Task Type + (1+Length|Subject) + 

(1+Length|Item), i.e., the random by-subject slope for task was removed to 

ease convergence. We excluded 161 trials out of 4800 (3% of the total, 

median 11 per subject (SD=12)) based on the criteria laid out in Experiment 

1a. 
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Figure 4. Top: Mean accuracy at identifying pictures in Experiment 1b. 

Bottom: Mean reaction time to correctly identify matching pictures in 

Experiment 1b.  Error bars show +/- 1 within-subject standard error (all 

conditions are within subjects). 

 

Our data, seen in Figure 4 and Table 2, replicate the findings of Experiment 

1a while controlling for lexical features. We found a reliable two-way 

interaction between length and task (b=37.2(3.7), χ2(1)=97.7, p<.001): 

Participants were faster to verify two-word adjective-noun combinations than 
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single nouns in the composition condition (b=-16.2(5.0), χ2(1)=8.1, p=.004) 

but they were slower to verify the exact same two-word stimuli when 

presented in the list task (b=58.6 (6.7), χ2(1)=24.2, p<.001). Participants’ 

accuracy was also greatly affected by this manipulation, indicated by a further 

Length by Task interaction (b=-0.25(0.09), χ2(1)=7.3, p=.007): Compared to 

single words, accuracy was lower in the two word condition in the list task (b=-

0.69(0.1), χ2(1)=54.7, p<.001), but not the phrase task (b=-0.13(0.14), 

χ2(1)=0.8, p=.37). 3 

 

These major effects on both reaction time and accuracy, found even though 

the words and phrases were held constant between the composition and list 

tasks, lead us to conclude that the composition advantage is not due to any 

special properties of adjectives, but is instead a property of composed 

representations compared to non-composed representations. 

 

 One Word Two Words 

Phrase 750 [697,812] 718 [664,779] 

List 739 [678,801] 847 [778,911] 

Table 2. Mean reaction times [and 95% confidence intervals] in milliseconds 

for Experiment 1b. 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Note	  that	  reaction	  times	  in	  this	  experiment	  were	  somewhat	  faster	  than	  in	  
Experiment	  1a.	  It	  is	  not	  clear	  why	  reaction	  times	  were	  faster	  but,	  given	  that	  noise	  
between-‐‑participants	  is	  high	  in	  online	  experiments,	  and	  given	  that	  our	  sample	  
size	  for	  this	  study	  was	  quite	  small,	  we	  suspect	  that	  it	  is	  a	  statistical	  artifact,	  and	  
indeed	  the	  difference	  was	  not	  statistically	  significant.	  
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Experiment 1c 

 

The set of things referred to by pink tree, called its extension, is smaller than 

the set of things referred to by tree (which includes trees of all colors). This 

difference could perhaps explain the composition advantage: Participants 

could more easily predict the correct picture for pink tree (pink trees at one of 

three orientations) than for tree (trees of six colours at one of three 

orientations). This explanation is given some prima facie plausibility by recent 

demonstrations that participants can rapidly translate linguistic information 

into predictions about the likely visual form of a referent (Rommers, Meyer, 

Praamstra, & Huettig, 2013; Zwaan, Stanfield, & Yaxley, 2002). However 

there is also an important reason for doubting it: there was no need for 

participants in our one-word condition to even attend to the color of the 

subsequent picture, and it is known that the shape of an object can be 

processed separately from its color (Garner & Felfoldy, 1970). 

 

To test this predictability-based explanation of the composition advantage, in 

Experiment 1c we equated how easy it was for participants to predict what 

they would see after reading either a word or a phrase. In particular, we 

ensured that, on correct trials, participants could always predict the color of 

the picture that they would see.  
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Note that if this prediction-based explanation were to be correct, it would still 

leave open two possibilities for how composed phrases might be represented. 

Under binding by synchrony, pink tree and tree would take up the same 

amount of working memory resources and so should be verified with the same 

speed when their extensions are matched. Under binding by asynchrony, pink 

tree would take up more working memory than tree and should be verified 

more slowly when their extensions are matched. 

 

Participants 

24 participants with American I.P. addresses recruited from Amazon 

Mechanical Turk and paid $2.10 for participation. Our manipulation of 

predictability was between-subjects; we used the same size sample for each 

condition as Experiment 1b. We excluded one additional participant who failed 

to complete the task, and one who had very low accuracy. 

 

Materials and Procedure 

We followed the same experimental parameters as the composition condition 

from Experiment 1 unless otherwise noted. In the Mismatched Predictability 

condition, two-word phrases had smaller extensions than single words, as in 

Experiment 1a. In the Matched Predictability condition, phrases and single 

words had matched extensions: the same colour was always used for all 

matching pictures on single-word trials, with that colour varying across 

participants (e.g., one participant might only see red pictures on single-word 

trials). 



TEMPORAL	  BINDING	  IN	  SEMANTIC	  COMPOSITION	  

	   24	  

 

Results 

Reaction times were analyzed with a mixed effects model that predicted 

reaction time based on Phrase Length (One or Two words), Predictability 

(Mismatched or Matched), random by-subject and by-item intercepts, a 

random by-subject slope for phrase length, and random by-item slopes for 

phrase length and predictability.4 In lme4 syntax, this had the form RT ~ 

Length * Predictability + (1+Length|Subject) + (1+Length + Predictability|Item). 

Accuracy was analyzed using a similar logistic regression of the form 

Accuracy ~ Length * Predictability + (1+Length|Subject) + 

(1+Predictability|Item), i.e., we dropped the by-item slope for phrase length to 

aid convergence. We excluded 329 trials out of 4800 (7% of the total, median 

5.5 per subject (SD=19)) based on the criteria laid out in Experiment 1a. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  There was no by-subject slope for predictability, because this factor was 
between subjects.	  
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Figure 5. Top: Mean accuracy at identifying pictures in Experiment 1c. 

Bottom: Mean reaction time to correctly identify matching pictures in 

Experiment 1c.  Error bars show +/- 1 within-subject standard error (Phrase 

Length is within subjects and Predictability is between subjects). 

 

As seen in Figure 5 and Table 3, reaction times varied based on a length by 

predictability interaction (b=16.7(4.9), χ2(1)=11.7, p<.001). Just as in 

Experiments 1a and 1b, two-word phrases that were more predictive than 

single words were verified faster (b=28.8 (8.0), χ2(1)=10.2, p=.001). However, 
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when the predictability of phrases and single words were matched, they were 

checked with the same speed (b=-6.8(6.0), χ2(1)=1.2, p=.26), a finding that is 

notable because the predictability manipulation was implicit (i.e., participants 

were not told that there was only one possible match for single words). 

 

We found no reliable effects on accuracy. 

 

 

 One Word Two Words 

Mismatched Predictability 864 [758,973] 806 [709,906] 

Matched Predictability 778 [692,853]  790 [711,860] 

Table 3. Mean reaction times [and 95% confidence intervals] in milliseconds 

for Experiment 1c. 

 

Experiment 2 

 

Experiment 1c establishes two results. First, prediction strength can explain 

the composition advantage for multi-word phrases. Participants were as fast 

to verify that a picture matched a word as they were to verify that a picture 

matched a phrase, if they could predict the visual features of that picture with 

commensurable accuracy.  

 

Second, and perhaps more important, Experiment 1c shows that, when 

matched for predictability, it takes participants the same amount of time to 
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verify the meaning of a two-word phrase as it does to verify the meaning of a 

single word. While this result is perhaps less surprising than the finding that 

phrases are processed faster than words, it is still important, and suggests 

that combinations of concepts can be mentally represented and checked in 

parallel, consistent with the idea that they are bound through synchronous 

activation (Hummel & Holyoak, 1997). 

 

However, as discussed in the introduction, synchronous binding has difficulty 

representing concepts that have been composed together with any sort of 

complex structure. For example, if multiple concepts are activated 

simultaneously, then none of the concepts can be screened off from one 

another (i.e., all the concepts must compose directly). This means that 

synchronous binding cannot be used to accurately represent a concept such 

as dark pink tree, in which dark directly modifies pink but is screened off from 

tree (i.e., dark pink serves as a compound adjective). Under a model such as 

Doumas et al. (2008), representing this sort of structure would have to be 

done using asynchronous binding (e.g., dark and pink would need to be 

activated at one timestep, followed by tree at a second timestep [Figure 6]) 

meaning that the resulting representation would have twice the complexity. 

 

One possibility is that we flexibly bring each binding scheme to bear 

depending on the representational demands of the task (Doumas et al., 

2008). Asynchronous binding could be used when certain elements must be 

screened off, e.g., representing dark pink tree as (dark pink) tree. 
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Synchronous binding, which makes fewer demands on working memory, will 

be deployed otherwise (e.g., to represent big pink tree, in which the tree is 

both large in size and contains a large amount of pink). 

 

If so, then participants should behave quite differently depending on the 

required coding scheme. Experiment 2 tests this. We examined how 

participants process single words (tree), two word phrases (pink tree) and 

three word phrases (big pink tree), all of which have a simple structure, and 

compared this to how participants process three word phrases that have a 

complex structure (dark pink tree), and so would need to be bound through 

asynchrony. Three word phrases with a simple structure that only require 

synchronous binding (big pink tree) should be checked as fast as two word 

phrases (pink tree). By contrast, three word phrases with a complex structure 

that demand asynchronous binding (dark pink tree) should take longer to 

retrieve than two word phrases. 

 

Figure 6. Illustration of synchronous binding (left) and asynchronous binding 

(right). 
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Methods 

Participants 

56 participants with American I.P. addresses recruited from Amazon 

Mechanical Turk and paid between $3.00 and $3.75 for participation. This 

sample size gave us approximately the same number of observations per 

condition as Experiment 1a. We excluded one additional participant who failed 

to complete the task. 

 

Materials and Procedure 

We followed the same experimental parameters as the composition condition 

of Experiment 1a unless otherwise noted. Participants read phrases of 

between one and three words and then judged if they matched a subsequent 

picture. Our binding type manipulation (Simple vs. Complex structure) was 

between subjects. Phrases were built by combining a noun with a colour 

adjective, as in Experiment 1, and then, for the simple structure condition, a 

size adjective [big/small] or, for the complex structure condition, a lightness 

adjective [dark/light]. Participants in the simple structure condition saw 

pictures that varied in shape, colour and size, while participants in the 

complex structure condition saw pictures that varied in shape, colour and 

saturation. Note that pictures in the simple condition were sometimes small 

(small pink tree) which may have made them slightly harder to identify. 

Participants completed 18 practice trials (with feedback) and 210 test trials.  
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Results 

Reaction times were analyzed using a mixed effects regression that included 

fixed effects of Length (one, two, or three words), Structure (simple or 

complex) and their interaction, along with by-subject and by-item random 

intercepts, a by-subject random slope for Length, and by-item random slpes 

for Length and Structure. In lme4 syntax, this had the form RT ~ Length * 

Structure (simple or complex) + (1+Length|Subject) + 

(1+Length+Structure|Item). Length was coded as a numeric variable centred 

on zero (one word = -1, two words = 0, three words = 1). Accuracy was 

analyzed with a logistic regression with a roughly similar structure, but 

excluding by-item random effects because they did not converge (with the 

form Accuracy ~ Length * Structure + (1+Length+Structure|Subject)). Note 

that there was little variability in the Item term in the more maximal regression 

that did not converge. We excluded 635 trials out of 11760 (9% of the total, 

median 3 per subject (SD=20)) based on the criteria laid out in Experiment 1a. 
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Figure 7. Top: Mean accuracy at identifying pictures in Experiment 2. Bottom: 

Mean reaction time to correctly identify matching pictures in Experiment 2.  

Error bars show +/- 1 within-subject standard error (Phrase Length is within 

subjects, and Structure is between subjects). 

 

Consistent with our predictions, participants’ reaction times displayed an 

importantly different profile across the two structure conditions, reflected in a 

Phrase Length by Structure type interaction (b=-13.4(5.0), χ2(1)=7.1, p=.007). 

In particular, as shown in Figure 7 and Table 4, we found a difference in how 
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three-word phrases were verified compared to two-word phrases across the 

two conditions (b=-22.3(9.0), χ2(1)=6.1, p=.01). In the simple structure 

condition (where we expected synchronous binding), we did not find any 

difference in the time participants took to verify three-word phrases (big pink 

tree) compared to two-word phrases (pink tree, b=-10.8(10.8), χ2(1)=1.0, 

p=.32). However in the complex structure condition (where we expected 

asynchronous binding), we found that participants took longer to verify three 

word phrases (dark pink tree) than to verify two-word phrases (pink tree, 

b=36.0(15.3), χ2(1)=5.2, p=.02). 

 

Reaction times for one compared to two word phrases (neither of which 

needed asynchronous binding) did not interact with composition type (b=-

4.6(8.1), χ2(1)=0.3, p=.57). However, there were two slightly surprising results 

here. First, we did not find a composition advantage in this study. Instead, 

one-word phrases were verified just as fast as two-word phrases (b=6.3(9.0), 

χ2(1)=0.5, p=.48) . We suggest that this is due to the decreased predictability 

of these more complex stimuli. Second, participants in the simple structure 

condition were numerically slower to process one and two word phrases 

compared to participants in the complex structure condition, although this 

difference was not statistically reliable (b=16.4(20.4), χ2(1)=0.66, p=.42). We 

suggest that this was due to difficulty identifying the smaller images on trials 

such as small pink tree. We return to both issues in the discussion section. 

 



TEMPORAL	  BINDING	  IN	  SEMANTIC	  COMPOSITION	  

	   33	  

As in our other experiments, the critical reaction time differences cannot be 

explained by a speed-accuracy trade-off. Accuracy was unaffected by 

structure type and, critically, there was no interaction between phrase length 

and structure type: Participants were just as accurate at judging phrases of 

each length for both conditions (all p > .25). However, participants were 

overall less accurate when judging longer phrases (b=-0.6(0.08), χ2(1)=44.8, 

p<.001).  

 

 

 One Word Two Words Three Words 

Simple Structure 741 [677,816] 742 [680,812] 731 [672,795] 

Complex Structure  703 [661,749] 713 [674,757] 749 [698,802] 

Table 4. Mean reaction times [and 95% confidence intervals] in milliseconds 

for Experiment 2. 

 

Experiment 3 

 

Experiment 2’s reaction time profiles suggest that participants were indeed 

using different types of representational format for the different composed 

concepts that we tested. The three word phrases that, we argued, did not 

require “screening off” and so could be represented using only synchronous 

binding (e.g., parallel activation of big, pink and tree), were checked as rapidly 

as single words or two word-phrases. In contrast, the phrases that, we 

argued, did require screening off and so required asynchronous binding (e.g., 
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dark pink tree) were slower to be checked than either single words or two-

word phrases, suggesting that the concepts could not be checked in parallel, 

which is consistent with asynchronous binding. This result therefore lends 

plausibility to our proposals about how combined concepts are held in mind. 

 

Nevertheless, a potential confound in Experiment 2 is that the key adjectives 

in the critical three-word phrases were different: dark and light are less 

frequent than big and small, which may have led to different retrieval times in 

the three-word conditions.5 We do not think that this confound explains our 

results: Although word frequency often affects reaction times, this dissipates 

with repeated presentation, and the key adjectives (dark, light, big and small) 

were repeated thirty-five times each. Still, it was a confound that we tried to 

overcome in Experiment 3. 

 

In this experiment, participants saw identical one- to three-word phrases, but 

under conditions designed to push them to interpret the three-word phrases 

using either complex or simple modification structures. Phrases were always 

of the form: big spotted tree, small striped disc, etc (see Figure 8). In the 

Complex Adjective condition, participants were told that adjectives like big 

should modify the noun: phrases like big spotted tree were followed by 

pictures of big trees, but with spots that could be either big or small (i.e., 

participants had to screen off big from spotted). In the Complex Compound 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  The	  dark/light	  condition	  also	  used	  a	  different	  set	  of	  pictures,	  but	  this	  cannot	  
explain	  the	  result,	  as	  we	  did	  not	  find	  any	  effects	  in	  the	  one-‐‑	  and	  two-‐‑word	  
conditions.	  
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Adjective condition, participants were told that adjectives like big should 

modify adjectives like spotted: big spotted tree was followed by trees that had 

big spots but which were themselves of variable size (participants had to 

screen off big from tree). However, in the Simple condition, big spotted tree 

was followed by pictures of big trees with big spots, i.e., screening off was 

unnecessary, and participants could use synchronous binding. We predicted 

that, in the simple condition alone, three word phrases would be as easy to 

verify as two word phrases, while otherwise three word phrases should be 

harder to verify. 

 

 

Figure 8. Examples of the three word conditions in Experiment 3. 

 

Methods 

Participants 

60 participants with American I.P. addresses recruited from Amazon 

Mechanical Turk and paid $3.75 for participation. This sample size gave us 

approximately the same number of observations per condition as Experiment 

1a. The 20 participants in the Complex Compound Adjective condition were 
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tested approximately two months later, inspired by comments about the work 

in a seminar. We excluded two participants who failed to complete the task. 

 

Materials and Procedure 

We followed the same experimental parameters as Experiment 2 unless 

otherwise noted. Phrases were built by combining a size adjective [big/small], 

followed by a texture adjective [spotted/striped] followed by one of twenty-

three nouns [tree, house, etc]. Participants then saw a picture that varied in 

size, texture, shape, orientation, and colour (either red or blue). 

 

Participants in the complex adjective condition were instructed that adjectives 

like big should modify the noun: they were told that if they read the phrase big 

striped tree and then saw a picture of a small tree with stripes, then they 

should reject the image, as the tree was small, not big. They then saw 

pictures in which the size of an object’s stripes or spots was independent of its 

overall size (e.g., big spotted trees could have big or small spots). Participants 

in the complex compound adjective condition were instructed that adjectives 

like big should be interpreted as modifying the subsequent adjective: they 

were told that if they read the phrase big striped tree and then saw a picture of 

a tree with small stripes, then they should reject the image, as the tree’s 

stripes were small, not big. They then saw pictures in which the overall size of 

the image was independent of the size of the image’s spots or stripes. 

Participants in the simple structure condition were not given precise 

instructions as to what big should modify, but always saw pictures in which 
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the object’s size and the size of its stripes/spots matched. As in Experiment 2, 

Structure type (simple/complex adjective/complex compound adjective) was 

varied between participants.  

 

Participants completed 18 practice trials (with feedback) and 300 test trials, 

with a break halfway through. 

 

Results 

Reaction times were analyzed used a mixed effects model containing fixed 

effects of Phrase Length (one, two or three words), Composition type (C 

Complex Adjective, Complex Compound Adjective or Simple), their 

interaction, by-subject and by-item random intercepts, by-subject random 

slopes for Length, and by Item random slopes for Length. This had the form, 

in lme4 syntax, RT ~ Phrase Length * Composition type + (1+Length|Subject) 

+ (1+Length|Item). Length was again coded as a centred numeric variable. 

The factor Composition type had three-level (that were sum coded); its main 

effect was thus represented by two predictors in the regression, as was its 

interaction with Length. We report Beta scores for both of the resulting 

predictors, but only one p value, as those were obtained via model 

comparison. Accuracy was assessed using a similar logistic regression, but 

excluding random by-subject and by-item slopes for Length to aid 

convergence (with the form Accuracy ~ Length * Composition type + 

(1|Subject) + (1|Item)). We excluded 1611 out of 18000 trials (9% of the total, 
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median 15 per subject (SD=34)) based on the criteria laid out in Experiment 

1a. 

 

 

Figure 9. Top: Mean accuracy at identifying pictures in Experiment 3. Bottom: 

Mean reaction time to correctly identify matching pictures in Experiment 3.  

Error bars show +/- 1 within-subject standard error (Phrase Length is within 

subjects, and Structure is between subjects). 
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Just as in Experiment 2, participants’ reaction times displayed an importantly 

different profile across the composition types, reflected in a Phrase Length by 

Composition type interaction (b1=15.8(5.7), b2=-12.7 (5.7), χ2(2)=11.5, 

p=.003). As shown in Figure 9 and Table 5, we found important differences 

between how two- and three-word phrases were verified across the three 

conditions, reflected in a further Phrase Length by Composition type 

interaction when analysis was restricted to this subset (b1=24.8 (11.1), b2=-

38.2(11.1), χ2(2)=7.3, p=.015). In the Simple condition, where participants 

were expected to use synchronous binding, we did not find any difference in 

the time taken to verify three-word phrases compared to two-word phrases 

(b=18.6(14.0), χ2(1)=1.8, p=.18). However, in both the Complex Adjective 

condition and the Complex Compound Adjective condition, we found that 

participants took longer to verify three word phrases than to verify two-word 

phrases (Complex Adjective: b=81.7(13.1), χ2(1)=21.8, p<.001; Complex 

Compound Adjective: b=71.28(13.6), χ2(1)=17.8, p<.001), as was expected if 

asynchronous binding was used in these conditions. 

 

Importantly, the Composition manipulation had no further effects. When our 

analysis was restricted to the two- and one-word conditions, there was no 

reliable interaction between Composition type and Phrase Length (although 

the effect was marginal b1=7.7 (8.4), b2=12.0(8.5), χ2(1)=5.5, p=.06) and no 

overall effect of Composition type (b1=15.3(29.5), b2=14.3(29.5), χ2(2)=1.1, 

p=.59), although as can be seen in Figure 9, the Complex Compound 

Adjective participants were numerically faster. These null effects are 
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important, as they show that the critical three-word effect is unlikely to be 

explained by the small difference in predictability of our pictures, as 

predictability would have also caused a strong effect for shorter phrases. 

  

However, and in contrast to all our previous results, two-word phrases took 

longer to verify than one-word phrases in this experiment (b=49.9(6.2), 

χ2(1)=44.3, p<.001). This difference may be due to the increased length, 

frequency or morphological complexity of our two texture adjectives (spotted 

and striped) compared to the colour adjectives used in previous experiments 

(e.g., pink), or to participants requiring a longer amount of time to verify the 

visual texture of the picture (there is some evidence that shape and texture 

are not “separable” features, and cannot be processed in parallel in the same 

way as shape and color (Garner & Felfoldy, 1970; Kimchi & Palmer, 1985)) 

 

As in our other experiments, the critical reaction time differences could not be 

explained by a speed-accuracy trade-off. There was no interaction between 

Phrase Length and Composition type: Participants were just as accurate at 

judging phrases of each length across the composition conditions (b1=-

0.12(0.08), b2=-0.00008(0.08), χ2(2)=3.93, p=.14).  As in Experiment 2, 

participants were less accurate when judging longer phrases (b=-1.02(0.05), 

χ2(1)=468, p<.001). 
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 One Word Two Words Three Words 

Simple Structure 818 [744,907] 878 [808,961] 896 [830,976] 

Complex Adjective  818 [751,888] 876 [810,944] 956 [887,1021] 

Complex Compound 

Adjective 
786 [722,845] 816 [747,883] 886 [811,957] 

Table 5. Mean reaction times [and 95% confidence intervals] in milliseconds 

for Experiment 3. 

 

 

General Discussion 

 

Compositionality allows us to create new ideas by combining basic thoughts. 

Here, we investigated how composed concepts, and the structural 

relationships between them, are held in mind. We used a series of sentence-

picture verification experiments, in which participants judged whether pictures 

matched noun phrases, to test how the complexity of a phrase’s meaning (its 

number of words, and the relations between those words) affects how it is 

held in memory and checked against the world. Experiments 1 through 3 

found that when the meaning of a phrase had a simple structure, participants 

were as fast to verify that phrase’s meaning as to verify the meaning of a word 

(and were sometimes faster). Experiments 2 and 3 demonstrated that adding 

additional complexity to the structure of a phrase also added an additional 

burden: participants showed increased reaction times when they needed to 

check meanings with complex structures.  
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These results are consistent with the idea that we use two different mental 

schemes to link ideas together. In one scheme, binding by synchrony, 

composed concepts are activated and checked in parallel. This simultaneous 

activation binds concepts together without regard to structure. In the second 

scheme, binding by asynchrony, concepts are activated and checked in a 

mixed parallel-serial fashion, which maintains important structural relations 

between concepts (e.g., allowing the creation of constituent structure) at a 

cost to working memory. These schemes are both naturally implemented in 

compositional connectionist models such as DORA (Doumas et al., 2008) and 

LISA (Hummel & Holyoak, 2003).  

 

However, while these models do a good job of accounting for the key 

phenomena uncovered here, they cannot account for all of the data 

presented. For example, they do not naturally explain the “composition 

advantage” found in both Bemis & Pylkkänen (2011) and also our own 

Experiment 1: Participants were faster to verify the meanings of two word 

phrases than single words when not matched on predictability. Indeed, these 

models predict only that participants should be as fast to verify a two-word 

phrase as a single word. To explain this discrepancy, Experiment 1c suggests 

that the composition advantage is due to predictive processes that are outside 

the purview of models such as DORA and LISA. In particular, participants 

appear able to rapidly transform entirely novel compositional concepts into 

accurate predictions about visual stimuli (see also Rommers et al., 2013; 
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Zwaan et al., 2002): When predictive strength is matched between one-word 

and two-word stimuli, participants perform in a manner consistent with the 

predictions of models such as DORA and LISA.  

 

Our data leave open how these predictions might be generated; but our 

findings dovetail with other recent work suggesting that the meanings of 

words can be rapidly translated into predictions about related visual features. 

For example, participants are more likely to see a picture that is masked using 

continuous flash suppression (a form of binocular rivalry) when they can hear 

its name (Lupyan & Ward, 2013); since continuous flash suppression impedes 

access to the semantics of a masked image (Moors, Boelens, van Overwalle, 

& Wagemans, 2016), this result suggests that linguistic meanings are 

translated into low level visual features (see also Ostarek & Huettig, in press), 

a finding that aligns with predictive coding accounts of cognition, in which 

high-level knowledge is constantly used to generate lower-level predictions 

about the world, to facilitate perception and interaction (A. Clark, 2013).  

 

Experiment 1’s results thus indicate that compositional processes are quite 

powerful in how they quickly facilitate interactions with the world. Participants 

seem able to generate accurate predictions about both the colour and shape 

of named referents, and can check these predictions quickly. Future work 

should be concerned with the factors that might limit predictive compositional 

processes, in particular the degree to which multiple types of visual feature 

can be predicted simultaneously. 
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That said, one unexpected finding from Experiments 2 and 3 was the absence 

of a composition advantage. While the participants in Experiment 1a-c were 

repeatedly faster to verify two-word phrases than single words, the same was 

not true once three-word phrases were added into the study design in 

Experiments 2 and 3. One possibility, suggested in the results section, is that 

the increase in complexity of the visual stimuli (e.g., the addition of variation in 

size or shade) reduced participants’ reliance on prediction. This could be 

because prediction was harder in the three-word condition (reducing 

participants’ overall reliance on this strategy), because participants found it 

harder to generate accurate predictions in the one-word and two-word 

conditions (e.g., due to Experiment 2’s unspecified variability in shape or 

shade), or for both reasons. Relatedly, in Experiment 3 we were surprised to 

find that participants were in fact slower to verify two word phrases than single 

words. As suggested in the results section, this could potentially be caused by 

slow processing of texture words in phrases like spotted tree or, perhaps, 

slow processing of visual texture information (e.g., participants may have to 

partially process both shape and colour before they are able to classify the 

picture’s texture). A corollary of this is that multiple different factors, beyond 

prediction and binding type, are likely to affect verification times, including 

factors that may be specific to the type of stimulus being verified (e.g., the 

color of a stimulus may be easier to verify than its texture). 
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Beyond these less-expected data points, the ideas of binding by synchrony 

and asynchony made a number of interesting and unique predictions about 

verification times for phrases with similar surface features but importantly 

different internal complexity. These predictions were typically met. Still, 

because this work only examined the representation of simple phrases (and 

simple noun phrases at that) it leaves open a number of questions. In 

particular, it is important to study whether the synchronous and asynchronous 

binding schemes are sufficient to represent more complex modification 

structures, such as those involving long distance dependencies, that are often 

found in natural language (Martin, 2016). In addition, it would be interesting to 

understand how a system like this implements context-dependent meanings. 

In the current experiments we have assumed that words like big, red and dark 

make a constant contribution to the meaning of an expression, but in actuality 

the meanings of these words depend on the nouns that they modify (a big 

mouse is big for a mouse, a red fox is red for a fox, see Partee, 1995 for an 

introduction). One possibility is that words like big and red always make a 

relative contribution to the meaning of a phrase (i.e., big does not specify a 

particular size, but only specifies that the object it modifies is larger than its 

typical size); this would be easily implemented in a model such as DORA 

(Doumas et al, 2008). 

 

Another important question concerns how the language processing system 

decides whether to use synchronous or asynchronous binding to represent 

the meaning of a phrase. The answer to this question is not currently clear. 
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One possibility is that the system has a default mode of representation, but it 

switches to the second mode when the task demands it. Synchronous binding 

is a good candidate for this default: Representing a meaning through 

simultaneous activation of all its components will be less costly, in terms of 

both energy and time, than representing a meaning through asynchronous 

activation of its components over time. The system may then automatically 

switch to using asynchronous binding when the task itself demands that more 

complex meanings be represented (e.g., when the reader realizes that they 

need to screen off dark from boat). In our experiments, participants may have 

realized that they needed to use asynchronous binding during the practice 

trials that preceded each task. 6  Future work will need to explain this 

mechanism more precisely. 

 

The final issue that we will discuss – a critical one – concerns whether 

representational schemes other than synchronous/asynchronous binding 

might be able to explain the results reported here. Our experiments were 

designed to test specific ideas about how temporal binding may be used to 

create structured or structure-less representations of meaning, rather than 

being designed to rule out other formalisms, and so leave open the possibility 

that other schemes could also explain our key behavioral findings. For 

example, Natural Language Processing algorithms have recently achieved 

some considerable success parsing and representing the meanings of 

sentences by using Long Short Term Memory networks (LSTM networks, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  Trial order in the test trial blocks did not further interact with our core 
interactions	  
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Hochreiter & Schmidhuber, 1997), which are variations on simple recurrent 

networks (Elman, 1990). LSTM networks are strikingly good at learning the 

statistics of their input, particularly at learning statistics over non-adjacent 

elements (e.g., allowing them to accurately model the dependencies in a 

sentence). If an LSTM network were to be trained on our task (using a 

sequence of words to predict a picture, and measuring prediction error as a 

proxy for reaction time), might the results be analogous to the behavior of our 

participants? While this question is beyond the scope of the present paper, we 

suspect that the answer could well be no. In particular, it is not clear how an 

LSTM network should (or even could) differentially represent a complex 

structure like [(Big-Spotted) & Tree] from a flat structure like [Big & Spotted & 

Tree], yet it is this representational distinction that drove the results of 

Experiments 2 and 3, above-and-beyond any effects of predictability. Indeed, 

there is some evidence that LSTM networks trained on unstructured input, as 

well as other approaches to semantic composition based on distributed 

representations of word meaning (Mitchell & Lapata, 2010), have difficulty 

representing certain basic linguistic relationships, such as scope or the 

similarity of meanings across sentences, which appear to demand more 

complex structured semantic representations (Bowman et al., 2016; 

Gershman & Tenenbaum, 2015). An important future goal should therefore be 

to develop architectures that can take advantage of both structured 

representations and also the statistical learning capabilities of LSTM 

networks; the current paradigm could potentially serve as a benchmark for 

evaluating this kind of model. 
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A second potential way of modeling our findings is in terms of the procedures 

used for verifying whether a meaning is matched in the world. Under the 

account that we tested, participants’ verification times were affected by how 

they represent the meanings of phrases (synchronously versus 

asynchronously), and these representations affected how verification 

proceeded (e.g., when concepts were asynchronously bound, access to the 

component concepts took longer, and so verification took longer). But 

verification processes could also potentially affect reaction times under 

models that do not use synchronous versus asynchronous binding. For 

example, consider a model that is able to represent the two meanings of the 

ambiguous phrase dark pink tree (i.e., [(Dark-Pink) & Tree] and [Dark & (Pink-

Tree)]). This could be done by combining a set of functions in accord with the 

phrase’s syntactic structure, such as is done in modern formal semantic 

theories (although it is unclear how such trees themselves would be 

represented). If this system is able to represent both of the structured 

meanings, but can only check one meaning at a time, then it may be able to 

explain some of our results; in particular, the system should be slower to 

recognize a dark pink tree than a pink tree. This is because pink tree is 

unambiguous, and so only one representation can be verified, but dark pink 

tree is ambiguous, and so the system will have to choose which of the 

meanings should be verified first. If it picks the wrong representation (e.g., 

[Dark & (Pink-Tree)] in our experiments) then verification should be a slower 

process. This verification-based theory is an interesting possibility, but we do 
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not think that it is a particularly compelling explanation of our results, because 

we do not see a rational reason why participants should represent both 

meanings of the ambiguous phrases during our task (e.g., recall that 

participants never saw pink trees in darkness in Experiment 2). But it is still an 

interesting alternative interpretation, that deserves further investigation. 

 

In concluding, we suggest that these findings provide insights that are distinct 

and complementary to a surge of recent interest in compositionality (Werning 

et al., 2012), including studies on the neural bases of compositional 

processes (Bemis & Pylkkänen, 2011; Ding et al., 2015; Frankland & Greene, 

2015), and Bayesian models that approach the problem using Marr’s so-

called computational level of analysis (Goodman, Tenenbaum, Feldman, & 

Griffiths, 2008; Piantadosi, Goodman, Ellis, & Tenenbaum, 2008). Our 

findings can help bridge these perspectives: The binding schemes suggested 

by this data reside at Marr’s algorithmic level, i.e., mechanisms for 

implementing computational analyses in a way that might be neurally 

achievable. These mechanisms are plausible: binding through time has its 

roots in the attention and working memory literature (Singer & Gray, 1995) 

and, while controversial, has resulted in rich progress (Treisman, 1996). While 

the claim that these mechanisms are used in semantic composition clearly 

requires further investigation, our experiments so far suggest that they may 

have similar explanatory value for language and high-level cognition. 

 

Word count: 
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