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Abstract 22	
 23	
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across 24	
the life course may be useful for investigating long term effects of risk and resilience 25	
factors for brain development and healthy ageing, and for understanding early life 26	
determinants of adult brain structure. Therefore, there is an increasing need for 27	
automated segmentation tools that can be applied to images acquired at different life 28	
stages. We developed an automatic segmentation method for human brain MRI, 29	
where a sliding window approach and a multi-class random forest classifier were 30	
applied to high-dimensional feature vectors for accurate segmentation. The method 31	
performed well on brain MRI data acquired from 179 individuals, analysed in three 32	
age groups: newborns (38-42 weeks gestational age), children and adolescents (4-17 33	
years) and adults (35-71 years). As the method can learn from partially labelled 34	
datasets, it can be used to segment large-scale datasets efficiently. It could also be 35	
applied to different populations and imaging modalities across the life course. 36	
 37	

1. Introduction 38	
 39	
During early life, the brain undergoes significant morphological and functional 40	
changes, the integrity of which determines long-term neurological, cognitive and 41	
psychiatric functions (Tamnes et al., 2013). For instance, a wide range of problems 42	
including autism spectrum disorder, poor cognitive ageing, stroke and 43	
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neurodegenerative diseases of adulthood may have early life origins (Stoner et al., 44	
2014, McGurn et al., 2008, Shenkin et al., 2009, Wardlaw et al., 2011, Hill et al., 45	
2010). Improved understanding of cerebral structural changes across the life course 46	
may be useful for studying early life determinants and atypical trajectories that 47	
underlie these common problems. 48	
 49	
Quantitative volumes from brain structural magnetic resonance imaging (MRI) 50	
acquired at different stages of life offer the possibility of new insight into cerebral 51	
phenotypes of disease, biomarkers for evaluating treatment protocols, and improved 52	
clinical decision-making and diagnosis. The literature presents a clear distinction 53	
between methods developed for different ages partly because the computational task 54	
is determined by properties of the acquired data and these are age-dependent (Cabezas 55	
et al., 2011, Despotovic et al., 2015, Isgum et al., 2015). For example, the infant brain 56	
presents challenges to automated segmentation algorithms developed for adult brain 57	
due to: wide variations in head size and shape in early life, rapid changes in tissue 58	
contrast associated with myelination, decreases in brain water, changes in tissue 59	
density, and relatively low contrast to noise ratio between grey matter (GM) and 60	
white matter (WM). Therefore, automated segmentation tools for modelling structure 61	
over years are limited, and this hampers research that would benefit from robust 62	
assessment of the newborn to the adult trajectory.  63	

 64	
With regard to methodology, approaches for automatic segmentation of brain MRI 65	
can be classified into unsupervised (Gui et al., 2012, Leroy et al., 2011, Cai et al., 66	
2007, Weglinski and Fabijanska, 2011) or supervised (Weisenfeld and Warfield, 67	
2009, Wang et al., 2015, Cardoso et al., 2013, Cherel et al., 2015, Moeskops et al., 68	
2015, Ashburner and Friston, 2005, Van Leemput et al., 2001, Fischl et al., 2002, 69	
Makropoulos et al., 2012, Serag et al., 2012b), (Kuklisova-Murgasova et al., 2011, 70	
Prastawa et al., 2005, Shi et al., 2010, Song et al., 2007, Altaye et al., 2008, Loh et al., 71	
2015) approaches. Supervised approaches have proven to be very successful in 72	
medical image segmentation (Aljabar et al., 2009, Coupe et al., 2011, Lotjonen et al., 73	
2010, Rousseau et al., 2011, Wang et al., 2013). However, as they rely on labelled 74	
training data (or atlases) to infer the labels of a test scan, most existing supervised 75	
approaches require a large number of training datasets to provide a reasonable level of 76	
accuracy and they usually carry a high computation cost due to their requirement of 77	
non-linear registrations between labelled data and the test scan (Iglesias and Sabuncu, 78	
2015). 79	
 80	
To address these challenges, here we describe a method for automatic brain 81	
segmentation of MR images, called SEGMA (SEGMentation Approach). SEGMA 82	
differs from current supervised approaches in the following ways. First, SEGMA uses 83	
a sparsity-based technique for training data selection by selecting training data 84	
samples that are ‘uniformly’ distributed in the low-dimensional data space, and hence 85	
eliminates the need for target-specific training data (Serag et al., 2016). Second, 86	
SEGMA uses linear registration to provide an accurate segmentation (mainly to 87	
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ensure the same orientation and size for all subjects). This is useful because it reduces 88	
computation time compared with most supervised methods which require non-linear 89	
registrations between the training images and the target image. Finally, SEGMA uses 90	
a machine learning classification based on random forests (Breiman, 2001) where a 91	
class label for a given test voxel is determined based on its high-dimensional feature 92	
representation. In addition to incorporating more information into the feature set 93	
(compared with methods that use voxel intensity information only), we use a sliding 94	
window technique that moves over all positions in the test image and classifies all 95	
voxels inside the window at once, instead of assigning labels on a voxel by voxel 96	
basis. This technique has the advantage of speeding-up the classification process 97	
while minimising misclassifications compared with methods that use a global 98	
classifier (Vovk et al., 2011, Iglesias et al., 2011, Zikic et al., 2014). The feature 99	
extraction framework is illustrated in Fig. 1. 100	
 101	
2. Materials and methods 102	

 103	
2.1 Data and image acquisition 104	

 105	
The study includes brain imaging data from 179 subjects, spanning the ages of 0–71 106	
years, from three MRI datasets.  107	
 108	
Dataset I. The first dataset contained MR images from 66 infants: 56 preterms (mean 109	
post-menstrual age [PMA] at birth 29.23 weeks, range 23.28–34.84 weeks) were 110	
acquired at term equivalent age (mean PMA 39.84 weeks, range 38.00–42.71 weeks), 111	
and 10 healthy infants born at full term (> 37 weeks’ PMA). None of the infants had 112	
focal parenchymal cystic lesions. Participants of the newborns dataset were recruited 113	
to a larger study using MRI to study the effect of preterm birth on brain growth and 114	
long-term outcome. Ethical approval was granted by the National Research Ethics 115	
Service (South East Scotland Research Ethics Committee) and NHS Research and 116	
Development, and informed written parental consent was obtained. 117	
 118	
A Siemens Magnetom Verio 3T MRI clinical scanner (Siemens Healthcare GmbH, 119	
Erlangen, Germany) and 12-channel phased-array head coil were used to acquire: [1] 120	
T1-weighted (T1w) 3D MPRAGE: TR = 1650 ms, TE = 2.43 ms, inversion time = 121	
160 ms, flip angle = 9 degrees, acquisition plane = sagittal, voxel size = 1 × 1 × 1 122	
mm3, FOV = 256 mm, acquired matrix = 256 × 256, acceleration factor (iPAT) = 2; 123	
[2] T2-weighted [T2w] SPACE STIR: TR = 3800 ms, TE = 194 ms, flip angle = 120 124	
degrees, acquisition plane = sagittal, voxel size = 0.9 × 0.9 × 0.9 mm3, FOV = 220 125	
mm, acquired matrix = 256 × 218. The image data used in this manuscript are 126	
available from the BRAINS repository (Job et al., 2016) 127	
(http://www.brainsimagebank.ac.uk). 128	
 129	
Reference tissue segmentations for the dataset were generated using an Expectation-130	
Maximization algorithm with tissue priors provided by the atlas from (Serag et al., 131	
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2012a, Serag et al., 2012c). Ground truth accuracy of reference neonatal 132	
segmentations was evaluated by a radiologist experienced in neonatal brain MRI, who 133	
concluded that they were all plausible representations of anatomical classes. 134	
Quantitative evaluation of the reference segmentations was performed against manual 135	
segmentations from 9 subjects chosen at random. For each subject, three slices (those 136	
numbered as 25th percentile, median and 75th percentile of the slices containing brain 137	
tissue) were segmented. In order to remove bias towards any particular anatomical 138	
plane, three subjects were segmented in the axial plane, three in the coronal plane, and 139	
three in the sagittal plane. The quantitative analyses indicated high agreement for all 140	
tissues (mean Dice coefficient of 92%). 141	
 142	
Dataset II. The second dataset contained T1w MRI scans and corresponding manual 143	
expert segmentation of 32 structures from 103 subjects (mean age 11.24 years, range 144	
4.20-16.90 years) publicly available from the Child and Adolescent 145	
NeuroDevelopment Initiative (CANDI) at University of Massachusetts Medical 146	
School (Kennedy et al., 2012, Frazier et al., 2008) 147	
(http://www.nitrc.org/projects/candi_share). The data originates from four diagnostic 148	
groups: healthy controls (N = 29), schizophrenia spectrum (N = 20), Bipolar Disorder 149	
(N = 35), and Bipolar Disorder with psychosis (N = 19). The T1w images were 150	
acquired using a 1.5T Signa scanner (GE Medical Systems, Milwaukee, USA) with 151	
the following parameters: a three-dimensional inversion recovery-prepared spoiled 152	
gradient recalled echo coronal series, number of slices = 124, prep = 300 ms, TE = 1 153	
min, flip angle = 25 degrees, FOV = 240 mm2, slice thickness = 1.5 mm, acquisition 154	
matrix = 256 × 192, number of excitations=2. 155	
 156	
Dataset III. The third dataset contained brain images and the corresponding manual 157	
expert segmentation of the whole brain into 32 structures from 18 healthy subjects 158	
including both adults and children; for the current study, we used only the adult data 159	
(N = 10, mean age 38, range 35-71 years). The dataset is publicly available from the 160	
Internet Brain Segmentation Repository (http://www.cma.mgh.harvard.edu/ibsr/) as 161	
IBSR v2.0(Rohlfing, 2012). The T1w images were acquired using the following 162	
parameters: scanner/scan parameters unspecified, acquisition plane = sagittal, number 163	
of slices = 128, FOV = 256 × 256 mm, voxel size = 0.8-1.0 × 0.8-1.0 × 1.5 mm3. 164	
 165	
2.2 Preprocessing 166	
 167	
For brain extraction, we used the brain masks which are provided with each dataset; 168	
except dataset I which was brain extracted using ALFA (Serag et al., 2016). All 169	
images from all datasets were corrected for intensity inhomogeneity using the N4 170	
method (Tustison et al., 2010). 171	
 172	
 173	
 174	
 175	
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2.3 Training data 176	
 177	

The number of training examples often must be limited due to the costs associated 178	
with procuring, preparing and storing the training examples, and the computational 179	
costs associated with learning from them (Weiss and Provost, 2003). Therefore, we 180	
use in this work a sparsity-based technique to select a number of representative atlas 181	
images that capture population variability by determining a subset of n-dimensional 182	
samples that are ‘uniformly’ distributed in the low-dimensional data space (Serag et 183	
al., 2016). The technique works by first linearly registering (12 degrees of freedom) 184	
all images from each dataset to an appropriate common coordinate space, and image 185	
intensities are normalised using the method described by (Nyul and Udupa, 2000). 186	
For dataset I, the 40 weeks PMA template from the 4D atlas (Serag et al., 2012a) was 187	
used as the common space, which is the closest age-matched template to the mean age 188	
of the cohort, while datasets II and III were aligned to the common space defined by 189	
the International Consortium for Brain Mapping (ICBM) atlas(Mazziotta et al., 2001). 190	
Then, all 𝑁 aligned images are considered as candidates for the subset of selected 191	
atlases. The closest image to the mean of the dataset is included as the first subset 192	
image. The consecutive images are selected sequentially, based on the distances to the 193	
images already assigned to the subset. Further details can be found in (Serag et al., 194	
2016). 195	

 196	
2.4 Features 197	
 198	
We use machine learning to assign a label to all voxels in the test image, based on 199	
training a local classifier. Most existing methods for tissue classification only utilise 200	
information from voxel intensity, without considering other information. Here, in 201	
addition to voxel intensities, we incorporated various gradient-based features. 202	
Typically for each voxel 𝑣, a ten-dimensional feature vector 𝐟$ is extracted: 203	
 204	

𝐟$ = 𝐼					𝐼(				𝐼)				𝐼*			𝑟				𝜃				𝜙				𝐼((			𝐼))			𝐼**
.																		(1) 205	

 206	
where 𝐼 is the grey scale intensity value, 𝐼(, 𝐼) and 𝐼* are the norms of the first order 207	
derivatives, and  𝐼((, 𝐼)) and 𝐼** are the norms of the second order derivatives. The 208	
image derivatives are calculated through the filters [−1			0			1]. and [−1			2	 − 1].. 209	
The gradient magnitude (𝑟), azimuth angle (𝜃) and zenith angle (ϕ) are defined as 210	
follows: 211	
 212	

𝑟 = 𝐼(8 + 𝐼)8 + 𝐼*8																(2) 213	

𝜃 = 	 tan=>
𝐼)
𝐼(

																			(3) 214	

𝜙 =	 cos=>
𝐼*
𝑟 																			(4) 215	

 216	
where 𝑟 ∈ 0,∞ , 𝜃 ∈ 0, 2𝜋 , and 𝜙 ∈ [0, 𝜋].   217	
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2.5 Random forests 218	
 219	
In the last decade, random forests (RF) (Breiman, 2001) became a popular ensemble 220	
learning algorithm, as they achieve state-of-the-art performance in numerous medical 221	
applications (Chen et al., 2010, Geremia et al., 2011, Mitra et al., 2014, Pereira et al., 222	
2016, Tustison et al., 2015, Zikic et al., 2014, Yi et al., 2009). A RF ensemble 223	
classifier consists of multiple decision trees. In order to grow these ensembles, often 224	
random vectors are generated that govern the growth of each tree in the ensemble. 225	
Typically, each tree is trained by combining “bagging” (Breiman, 1996) (where a 226	
random selection is made from the examples in the training set) and random selection 227	
of a subset of features (Ho, 1998), which construct a collection of decision trees 228	
exhibiting controlled variation. 229	
 230	
A test sample is pushed down to every decision tree of the random forest. When the 231	
sample ends up in one leaf node, the label of the training sample of that node it is 232	
assigned to the test sample as tree decision. Then, the final predicted class for a test 233	
sample is obtained by combining, in a voting procedure, the predictions of all 234	
individual trees. More details on decision forests for computer vision and medical 235	
image analysis can be found in (Criminisi and Shotton, 2013). 236	
 237	
2.6 Sliding-window based classification 238	
 239	
A sliding window is used to move over all possible positions in the test image, and for 240	
each window, the voxels inside the window are classified into different tissues or 241	
structures. The vector in equation (1) represents the test sample for one voxel in a 242	
window, where the number of test samples is equal to the window size w. The training 243	
samples come from the voxels of the aligned atlas images that are located at the same 244	
location as the voxels belonging to the test window. This means that the number of 245	
training samples per window is equal to 𝑘	×	𝑤, where 𝑘 is the number of training 246	
atlases and 𝑤 is the window size, e.g. 5	×	5	×	5, or 7	×	7	×	7, etc.  247	
 248	
A local RF classifier is then used to assign each voxel in the test image to a 249	
segmentation class. Figure 2 shows an example of classifying one test window. The 250	
SEGMA algorithm is summarised in Algorithm 1.  251	
 252	
 253	
 254	
 255	
 256	
 257	
 258	
 259	
 260	
 261	
 262	
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Algorithm 1. SEGMA algorithm 263	
 264	
Set 𝐟$ to represent a feature vector for a voxel 𝑣 265	
Set 𝑐$ to represent a segmentation class for a voxel 𝑣 266	
Set 𝑘 to represent the number of training data 267	
Set 𝑤 to represent the sliding window size 268	
for each window 𝑊 do  269	

Construct the training data matrix 𝒯P.QRST = {𝐟𝒗
𝒋 |𝑗 = 1,… , 𝑘; 𝑣 = 1,… ,𝑤}   270	

     Train the 𝑅𝐹P classifier for window 𝑊 using 𝒯P.QRST 271	
      Construct the test data matrix 𝒯P._`a = {𝐟$|𝑣 = 1,… ,𝑤}   272	
      Determine the labels 𝑐$ for all voxels inside the test window 𝑊 by applying 273	
𝑅𝐹P to 𝒯P._`a 274	
end 275	
 276	
2.6 Evaluation 277	
 278	
A leave-one-out cross-validation procedure was performed for every dataset. Each 279	
subject from a dataset in turn was left out as a test sample and the remaining subjects 280	
were used as the training data where a subset of k atlases is selected. The comparison 281	
between automatic (𝐴) and reference (𝑀) segmentations was performed using the 282	
Dice coefficient (𝐷𝐶 ) which measures the extent of spatial overlap between two 283	
binary images, with range 0 (no overlap) to 1 (perfect agreement). The Dice values 284	
are expressed as a percentage and obtained using the following equation: 285	

 

𝐷𝐶(𝐴,𝑀) =
2 𝐴 ∩𝑀
𝐴 + 𝑀 	×	100								(5) 286	

 287	
 288	
2.7 Comparison against other methods 289	
 290	
We compared SEGMA against commonly used segmentation methods: Majority Vote 291	
(MV) (Heckemann et al., 2006, Rohlfing et al., 2004), Simultaneous Truth And 292	
Performance Level Estimation (STAPLE) (Warfield et al., 2004). The registration 293	
scheme for these methods is based on non-linear image deformation (Rueckert et al., 294	
1999, Modat et al., 2010). 295	
 296	
To compare SEGMA against other RF segmentation methods, we implemented a 297	
global RF classifier, similar to (Iglesias et al., 2011, Zikic et al., 2014), and 298	
experimented training it using intensity and gradient-based features, and intensity 299	
feature only. Non-linear registration was used as above to map the training images to 300	
the test image coordinate space, and a RF classifier was trained using 100,000 301	
randomly sampled voxels from each training image. 302	
 303	
 304	
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2.8 Statistical analyses  305	

To test for differences between segmentation results, t-tests were used for normally 306	
distributed data, and Mann Whitney U was used to compare non-normal distributions 307	
(Shapiro-Wilk normality test was used). P-values < 0.05 were considered significant 308	
after controlling for Type I error using false discovery rate (FDR). 309	
 310	
3 Results 311	
 312	
To evaluate segmentation performance across the life course, SEGMA was applied to 313	
three publicly available datasets that provide MR brain images at different stages of 314	
the life course: neonatal period (38-42 weeks gestational age), childhood and 315	
adolescence (4-17 years), and adulthood (35-71 years). Figure 3 shows examples of 316	
brain segmentation results across the life course, and Fig. 4 shows the resulting Dice 317	
coefficient (i.e. the agreement between the automatic and reference segmentations).  318	
 319	
3.1 Brain segmentation in neonatal period 320	
 321	
We first applied the proposed segmentation method to a neonatal cohort (dataset I) 322	
consisting of 66 MR images and associated segmentation of the following tissues / 323	
structures: brainstem, cerebellum, cortex or GM, cerebrospinal fluid (CSF), deep GM 324	
and WM. Quantitative analyses (Fig. 4) indicated high accuracy for all tissues and 325	
structures with a mean Dice coefficient of 91%.  326	
 327	
The highest accuracies obtained for brainstem, cerebellum, deep GM, and WM with 328	
mean Dice coefficient of 90–94%, while cortex and CSF had average Dice 329	
coefficients of 89% and 85%, respectively. 330	
 331	
3.2 Brain segmentation in childhood and adolescence  332	
 333	
To examine the performance of SEGMA in childhood and adolescence, we used 103 334	
MR images from subjects aged 4-17 years (dataset II) with associated anatomical 335	
segmentation of 32 structures. Quantitative analyses (Fig. 4) indicated high accuracy 336	
for all tissues and structures with a mean Dice coefficient of 86%. Nine structures had 337	
an average Dice coefficient higher than 90%, 7 structures had an average Dice 338	
coefficient of 79–89%, and 2 structures had an average Dice coefficient of 51–67%.  339	
 340	
3.3 Brains segmentation in adulthood 341	
 342	
A dataset (dataset III) consisting of MR images and corresponding anatomical 343	
segmentation of 32 structures from 10 subjects (aged 38–71 years) was used to 344	
examine the performance of the segmentation algorithm in adulthood. Quantitative 345	
analyses (Fig. 4) indicated high accuracy of 83%. Seven structures had an average 346	
Dice coefficient higher than 90%, 9 structures had an average Dice coefficient of 75–347	
89%, and 2 structures had an average Dice coefficient of 49–57%. 348	
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3.4 Comparison against other methods 349	
 350	
SEGMA was compared with two commonly used segmentation methods [Majority 351	
Vote (MV) (Heckemann et al., 2006, Rohlfing et al., 2004), Simultaneous Truth And 352	
Performance Level Estimation (STAPLE) (Warfield et al., 2004)], and other RF-353	
based segmentation methods. SEGMA improved overall segmentation accuracy 354	
compared with MV, STAPLE, global-RF-1 (trained using intensity and gradient 355	
features), and global- RF- 2 (trained using intensity feature only); Table 1 shows Dice 356	
coefficients averaged over all structures, generated by each segmentation method and 357	
applied to datasets I, II and III. (P<0.001; after FDR correction). 358	

 359	
3.5 Reproducibility 360	
 361	
As dataset I (neonatal period) included T1-weighted (T1w) and T2-weighetd (T2w) 362	
MR imaging, we used it to test the reproducibility of SEGMA across different MR 363	
modalities by segmenting the newborn brain using information from T1w and T2w 364	
data separately (Fig. 5). SEGMA provided consistent segmentation results across 365	
different structural MRI modalities of the newborn brain. There was no statistically 366	
significant difference between mean Dice scores estimated from the two groups (P = 367	
0.8977). 368	
 369	
3.6 Influence of parameters 370	
 371	
We evaluated the influence of size of training data on segmentation accuracy, and 372	
found that increasing the size of the training data improves segmentation accuracy, 373	
evidenced by the increase in average Dice coefficient from 88% (7% training data) to 374	
91% (30% training data) for neonates, and from 83% (5% training data) to 86% (20% 375	
training data) for children and adolescents. From our experiments, 5-10 training 376	
images were sufficient to yield accurate results. 377	
 378	
Forest parameters such as tree depth and number of samples per leaf node were set 379	
according to pervious work (Wang et al., 2015, Zikic et al., 2014, Geremia et al., 380	
2011), and in this work, we only evaluated the influence of number of trees on 381	
segmentation accuracy. The number of trees in the forest characterizes the 382	
generalization power. As the number of trees becomes large, segmentation accuracy 383	
increases, but training time increases and a threshold value is reached after which 384	
further improvement is not achieved. In this work, number of trees was set to 10. 385	
 386	
With regard to window size, the smaller the window, the longer the classification 387	
time. Hence, window size needs to be chosen carefully as it provides a balance 388	
between accuracy and speed. Therefore, in this paper, we select the window size as 389	
5	×	5	×	5. 390	
 391	
 392	
 393	
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3.7 Relative importance of features 394	
 395	
As partial volume effects in neonatal brain MRI present challenges for automatic 396	
segmentation methods, we evaluated the influence of each of the features on 397	
segmentation accuracy of the neonatal brain (dataset I). This was done by dropping 398	
one or a group of the ten features and running segmentation with the remaining 399	
features (features of the same type were dropped together). Therefore, an 400	
approximation of relative importance of each feature was obtained. Our experiments 401	
show that dropping the intensity feature significantly hinders the segmentation 402	
accuracy (Fig. 6a), whilst the accuracy is improved by incorporating gradient-based 403	
features. When all of the features are used, SEGMA yielded higher accuracy than 404	
each individual category (P<0.001; after FDR correction). Figure 6b also shows an 405	
example of the automatic neonatal cortical GM segmentation and how the dropping of 406	
each of the ten features affects the segmentation accuracy. 407	
 408	
We then	analysed the edge detection for various regions based on using all features 409	
(intensity combined with gradients) and grey scale intensity only. Figure 7 shows that 410	
gradient-based features improved edge detection for various regions of the adult and 411	
neonatal brain. 412	
 413	
3.8 Computation time 414	
 415	
One classification task on a 64-bit iMac® (Intel® Core i7 @ 3.5GHz x 4, 32 GB 416	
RAM) takes 5-7 minutes. The classification has benefited much from the sliding 417	
window strategy used. This is because instead of performing the classification in a 418	
voxel-wise manner, this is done for a batch of voxels at once. Assuming a window 419	
size of 5	×	5	×	5, the classification time is decreased by 125 folds. In addition, multi-420	
core processing or computer clusters could greatly enhance the speed; and then one 421	
brain classification could be performed in about (or less than) 1min. 422	
 423	
4. Discussion 424	
 425	
In this article, we present a new method for MRI brain segmentation (SEGMentation 426	
Approach, SEGMA). SEGMA was evaluated on three different datasets (span the 427	
ages 0–71 years) that provide different challenges to the brain segmentation task, and 428	
accurate results were obtained at all stages of development.  429	
 430	
The method is trained using partially labelled datasets where a relatively small 431	
number of manually labelled images from the population under study are sufficient to 432	
provide accurate results. It is possible that training the method with a larger dataset 433	
might increase the segmentation accuracy. However, our goal was to design a 434	
methodology that can provide an acceptable, yet high accuracy result using a small 435	
number of training images (and thence a low computation cost). 436	
 437	
 438	
 439	

In review



	 11 

The relatively lower performance for CSF could be caused by its bordering with GM 440	
(which is a complex shape). The boundary between GM and CSF is especially 441	
difficult to identify inside the sulci, where it is often poorly visible. In addition, the 442	
relatively lower performance for the children and adolescence, and adult datasets 443	
compared with the neonatal dataset could be attributable to scanner strength. Yet, the 444	
results obtained are comparable with those obtained using other methods tested on the 445	
same datasets (Rousseau et al., 2011, Zikic et al., 2014). 446	
 447	
SEGMA uses a local RF classifier (trained by information from neighbouring voxels 448	
in the same window) to assign a label to each voxel, which makes it less susceptible 449	
to classification errors such as the partial volume misclassification on the CSF-GM 450	
and CSF-background boundaries (Cardoso et al., 2013, Isgum et al., 2015, Kuklisova-451	
Murgasova et al., 2011, Moeskops et al., 2015). We chose to use random forests as 452	
the classification technique since they naturally handle multi-class classification 453	
problems and are accurate and fast (Chen et al., 2010, Criminisi and Shotton, 2013, 454	
Geremia et al., 2011). Also, the sliding window plays an important role in 455	
significantly speeding up the classification task (compared to voxel-wise approaches).  456	
 457	
The method provides an accurate segmentation using only linear registration, which 458	
ensures the same orientation and size for all subjects. This is an advantage compared 459	
with most supervised methods, which require non-linear registrations between the 460	
training images and the test image which increases segmentation time to several hours 461	
thereby compromising clinical utility (Iglesias and Sabuncu, 2015). SEGMA also has 462	
the advantage of providing an accurate segmentation using a single modality (which 463	
is important as the available data might be limited to one modality), and features that 464	
characterise object appearance and shape (intensity and gradients). However, the 465	
method is flexible and new features can easily be added to the high-dimensional 466	
feature vector.  467	
 468	
To conclude, we present a method for segmentation of human brain MRI that is 469	
robust and provides accurate and consistent results across different age groups and 470	
modalities. As SEGMA can learn from partially labelled datasets, it can be used to 471	
segment large-scale datasets efficiently. The idea of SEGMA is generic and could be 472	
applied to different populations and imaging modalities across the life course. 473	
SEGMA is available to the research community at http://brainsquare.org.  474	
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 741	
 742	
10. Figures 743	
 744	
Figure 1. Overview of the SEGMA feature extraction framework. The input test 745	
image is preprocessed for brain extraction and bias field correction, before computing 746	
gradients. Then, a sliding window is scanned across the input image at all positions 747	
where a feature vector for each voxel over the window is extracted using intensity and 748	
gradient information. The feature vectors are fed into a random forest classifier 749	
trained for structure / tissue classification.  750	
 751	
Figure 2.	An example of classifying one test window. The green square in the test 752	
image represents the test window. The green rectangle represents the extracted 753	
features from the test window (i.e. test samples). The red rectangle represents the 754	
extracted features from training data (i.e. training samples). The random forest 755	
classifier is trained using the training samples and the voxels inside the test window 756	
are classified into different classes based on test samples. 757	
 758	
Figure 3. Examples of brain segmentation results across the life course (axial view) 759	
using SEGMA. The automated segmentation is based on T2-weighted scans for the 760	
neonatal period and T1-weighted scans for the rest of growth stages. The images are 761	
taken from single subjects at the shown ages, where neonatal period images come 762	
from dataset I; childhood and adolescence images come from dataset II; and 763	
adulthood images come from dataset III. 764	
 765	
Figure 4. Bar plots of the Dice coefficient (with standard deviation as error bar) 766	
comparing segmentations derived from SEGMA with reference segmentations using 767	
(a) dataset I [neonatal period], (b) dataset II [childhood and adolescence], and (c) 768	
dataset III [adulthood]. 769	
 770	
Figure 5. Examples of SEGMA’s output segmentation results (sagittal view) using 771	
T1-weighted (T1w) and T2-weighted (T2w) MR individually. 772	
 773	
 774	
 775	
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Figure 6. (a) Relative importance of each of the ten features, expressed as the 776	
segmentation accuracy, on removing the feature from the feature vector. The leftmost 777	
bar shows a baseline value – Dice coefficient, when all features are used. (b) An 778	
example of the automatic segmentation of cortical GM (coronal view), which shows 779	
how the dropping of each of the ten features affects the segmentation accuracy. The 780	
baseline segmentation is obtained by using all features. 781	
 782	
Figure 7. Examples of edge detection for various regions (cortical grey matter, sub-783	
cortical structures, brainstem and cerebellum) based on using all features (intensity 784	
combined with gradients) and intensity grey scale only, for a neonatal (dataset I) and 785	
an adult brain (dataset III). 786	
 787	
11. Tables 788	
 789	
Table 1. Dice coefficients averaged over all structures for datasets I, II and III. 790	
SEGMA is compared with MV, STAPLE, global-RF-1, and global-RF-2. 791	
 792	
Dataset SEGMA global-RF-1 global-RF-2 MV STAPLE 
I 90.68 % 85.29 %   84.22 %     86.97 %  87.01 % 

II 86.05 %  78.98 %  74.90 %     81.75 %  79.17 % 

III 82.56 %  78.75 %  76.02 %     77.13 %  77.54 % 
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