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Abstract

This article is concerned with the vibration of a stiff linear string in the

presence of a rigid obstacle. A numerical method for unilateral and arbitrary-

shaped obstacles is developed, based on a modal approach in order to take into

account the frequency dependence of losses in strings. The contact force of the

barrier interaction is treated using a penalty approach, while a conservative

scheme is derived for time integration, in order to ensure long-term numerical

stability. In this way, the linear behaviour of the string when not in contact with

the barrier can be controlled via a mode by mode fitting, so that the model is

particularly well suited for comparisons with experiments. An experimental

configuration is used with a point obstacle either centered or near an extremity

of the string. In this latter case, such a pointwise obstruction approximates the

end condition found in the tanpura, an Indian stringed instrument. The second

polarisation of the string is also analysed and included in the model. Numerical

results are compared against experiments, showing good accuracy over a long

time scale.
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unilateral contact, sound synthesis, tanpura

1. Introduction

The problem of vibrating media constrained by a unilateral obstacle is a

longstanding problem which has been under study for more than a century

[1, 2]. Indeed, the first important developments can be attributed to Hertz

with his formulation of a general law for the contact between elastic solids in5

1881 [3]. Since then, applications of contact mechanics can be found in such

diverse fields as e.g. computer graphics [4], for instance for simulating the mo-

tion of hair [5]; to human joints in biomechanics [6] or component interactions

in turbines [7, 8]. A particular set of applications is found in musical acous-

tics, where collisions are of prime importance in order to fully understand and10

analyse the timbre of musical instruments [9, 10, 11]. Within this framework,

the problem of a vibrating string with a unilateral constraint, as a key feature

of numerous instruments, is central and is particularly important to the sound

of Indian instruments [12, 13, 14], and also in the string/fret contact in fretted

instruments [15, 16].15

The first studies on a vibrating string with a unilateral constraint were re-

stricted to the case of an ideal string with a rigid obstacle in order to derive

analytical and existence results [17, 18, 19, 20, 21]. In particular, solutions to

the cases of a centered point obstacle, a plane obstacle and a few continuous

obstacles have been obtained explicitly. Existence and uniqueness of the so-20

lution to the non-regularised problem has been shown in the case of a string

vibrating against point obstacles [22] and of a concave obstacle if conservation

of energy is imposed [20]. There are no general results when the obstacle is

convex. Moreover, Schatzman proved that the penalised problem with a point

obstacle converges to the non-regularised problem [22]. The pointwise case is25

thus well-understood theoretically, and various interesting properties have been

demonstrated as mentioned above.

In addition, numerical studies have been undertaken to simulate collisions
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for more realistic string models by including various effects, such as dispersion.

Existing numerical methods include digital waveguides [23, 24, 25], sometimes30

coupled with finite differences [26] in the case of an ideal string, and for a stiff

damped string interacting with an obstacle located at one end of the string [14].

Other models are based on a modal description of the string motion, as in [27]

where an ideal string vibrating against a parabolic obstacle at one boundary is

considered, under the assumption of perfect wrapping of the string on the bridge35

as in [28]. However, the existence of multiple contacts as a necessary condition

for simulating the sound of sitar has been established in [27, 29]. Contacts be-

tween a string and point obstacles are modelled with a modal approach in [30]

for a dispersive lossy string against a tanpura-like bridge. The functional trans-

formation method (FTM) is used in [15] for a string interacting with frets. In40

the latter study, damping model is controlled by a few parameters only. In-

teraction between a continuous system and a point obstacle is also modelled

in [29], using a modal coefficient of restitution (CoR) method [31, 32], assuming

infinitesimal contact times.

More recently, energy-based methods have been developed, allowing the sim-45

ulation of stiff lossy strings against an arbitrarily shaped obstacle. Hamilton’s

equations of motion are discretised in [33], and the case of the tanpura bridge is

derived in [34]. Finite difference methods are used in [11] and the special case of

the interaction between a string and a fretboard is detailed in [16]. In these lat-

ter models, eigenfrequencies and damping parameters cannot be arbitrary, but50

follow a distribution tuned through a small number of parameters. In addition,

these studies consider only one transverse motion of the string, and numerical

dispersion effects appear due to the use of finite difference approximations.

The inclusion of the two transverse polarisations in the modeling of vibrating

strings with contact is also seldom seen in the literature. A first attempt has55

been proposed in [35] for the case of the violin, where finite differences are

employed to model a linear bowed string motion, including interactions between

the string and fingers as well as the fingerboard. Early developments are also

shown in [36], extending the study presented in [33]. However, numerical results

3



are not compared to experimental measurements of the string motion.60

Whereas an abundant literature exists on numerical simulations of a string

vibrating against an obstacle, only a few experimental studies have been carried

out. Research on isolated strings is detailed in [37, 30], and measurements on

complete instruments are presented in [38, 39, 14], highlighting the influence of

the obstacle shape and position on the timbral richness of sounds. However65

a detailed comparison of experiments with numerical results in order to un-

derstand the relative importance of modeling features such as e.g. dispersion,

nonlinearity and damping due to contact has not been carried out.

The aim of this paper is twofold. First, an accurate and flexible numeri-

cal method is developed in Section 2. The distinctive feature of the approach70

is that it relies on a modal description, in order to take into account any fre-

quency dependence of the losses, and also in order to eliminate any effect of

numerical dispersion. The contact law is formulated in terms of a penalty po-

tential and an energy-conserving scheme is derived, adapted to the modal-based

approach. The convergence of the outcomes of the models is then thoroughly75

studied in Section 3 for a pointwise obstacle, with a comparison to an analytical

solution. The second main objective of the study is to compare simulations

with experiments. For that purpose, the experimental protocol is presented in

Section 4. The versatility of the numerical method is illustrated with a mode by

mode fitting of the measured linear characteristics (eigenfrequencies and modal80

damping factors). Comparisons with experiments are conducted in Section 5

for two different point obstacles, located either at the string centre or near one

extremity of the string. The second polarisation is also measured and compared

to the outcomes of a simple model incorporating the horizontal vibration in

Section 5.2.3.85
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2. Theoretical model and numerical implementation

2.1. Continuous model system

The vibrating structure considered here is a stiff string of length L (m),

tension T (N· m−1), and with linear mass density µ (kg· m−1). The stiffness

is described by the Young’s modulus E (Pa) of the material, and the moment90

of inertia associated with a circular cross-section is I = πr4/4, where r is the

string radius (m). The string is assumed to vibrate in the presence of an obstacle

described by a fixed profile g(x), x ∈ [0, L], located under the string at rest (see

Fig. 1). The obstacle is assumed to be of constant height along (Oy). In the

remainder of the paper, it is said to be a point obstacle when it is a point along95

(Ox), however it still has a constant height along (Oy).

In this section we restrict ourselves to the vertical (Oz)-polarisation. The

second, horizontal polarisation is taken into account in Section 2.7.

The transverse displacement u(x, t) of the string along (Oz) is governed by

the following equation, under the assumption of small displacements:

µutt − Tuxx + EIuxxxx = f, (1)

where the subscript t (respectively x) refers to a partial derivative with respect

to time (respectively space). The right-hand side term f(x, t) refers to the100

external contact force per unit length exerted by the barrier on the string.

Simply supported boundary conditions are assumed, which are commonly used

for musical strings having a weak stiffness [30, 40]:

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0, ∀t ∈ R+. (2)

No damping is included so far; a detailed model of loss will be introduced once

modal analysis has been performed, see Section 2.3.1.105

The contact force f(x, t) vanishes as long as the string does not collide

with the barrier. The model to be employed here relies on a penalty approach

where a small amount of interpenetration is modeled. Penalisation methods are

to be viewed in contrast with nonsmooth methods for which no penetration is
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Figure 1: A string of length L vibrating against an obstacle g(x).

allowed [41, 42]. In order to derive a general framework, a two-parameter family

of power-law expression for the contact force is used:

f(x, t) = f(η(x, t)) = K [η(x, t)]
α
+ , (3)

where η(x, t) = g(x)− u(x, t) is a measure of interpenetration of the string into

the barrier, and [η]+ = 1
2 (η + |η|) is the positive part of η. This formulation

allows the representation of a Hertz-like contact force, where the coefficients K

and α can be tuned depending on the material in contact [43, 44, 45]. This

interaction model has already been used in the realm of musical acoustics for110

various interactions—see e.g. [11, 46, 47, 10, 33]. In [47] for example, it is

used to model the hammer-string interaction in the piano, where the contact

model describes the compression of the hammer felt. In the present case of the

string colliding with a rigid body, the force expression represents a penalisation

of the interpenetration that should remain small; as such, large values of K as115

compared to the tension and shear restoring forces has to be selected. In the

literature, current values used in numerical simulations for this problem are in

the range of 107 to 1015, see e.g. [33, 16, 11].

2.1.1. Energy balance

The continuous total energy of the system is detailed here. Energy con-120

siderations will be useful in the remainder of the study in order to derive an

energy-conserving and stable numerical scheme.
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The contact force density (3) derives from a potential ψ:

f =
dψ

dη
, with ψ(η) =

K

α+ 1
[η]

α+1
+ . (4)

The total energy of the system may be obtained by multiplying the equation

of motion (1) by the velocity ut. Employing integration by parts, one obtains

the expression of the continuous energy:

H =

∫ L

0

[
µ

2
(ut)

2 +
T

2
(ux)2 +

EI

2
(uxx)2 + ψ

]
dx. (5)

It satisfies H ≥ 0 and the following equality:

dH

dt
= 0, (6)

implying that energy is conserved. The first three terms in (5) correspond

respectively to the stored energy due to inertia, tension and stiffness. The final

term denotes the energy stored in the contact mechanism under compression.125

2.2. Modal approach

The eigenproblem related to Eq. (1) without contact force f consists of

finding the functions φj(x) which are the solutions of:

−Tφ′′j + EIφ′′′′j − µω2
jφj = 0, (7)

where ′ designate the spatial derivative, together with the boundary conditions

given in Eq. 2. The normal modes are thus

φj(x) =

√
2

L
sin

(
jπx

L

)
for j ≥ 1, (8)

and are orthogonal and normalised such that
∫ L

0
φj(x)φk(x)dx = δjk.

The unknown displacement u(x, t), when truncated to Nm modes, may be

written as û(x, t), defined as

û(x, t) =

Nm∑
j=1

qj(t)φj(x), (9)

where qj(t) is the modal amplitude. For simplicity, the hat notation is dropped

in the remainder of the paper.
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Writing u as its expansion in (1) and using the orthogonality, one obtains:

µ(q̈ + Ω2q) = F, (10)

where the vector q = [q1, ...,qNm ]T contains modal coefficients, q̈ is its second130

time derivative and Ω is a diagonal matrix such that Ωj,j = ωj = 2πνj .

Eigenfrequencies are given by νj = j c02L

√
1 +Bj2, where c0 =

√
T
µ is the wave

velocity and B = π2EI
TL2 describes the inharmonicity created by taking into ac-

count the stiffness of the string. Finally the right-hand side vector F represents

the modal projection of the contact force, with Fj =
∫ L

0
f(x, t)φj(x)dx.135

2.3. Losses

In this section, a standard model of string damping mechanisms is reviewed.

Damping due to air friction and internal losses are first presented, then losses

due to contact phenomena are modeled.

2.3.1. Air friction and internal losses140

One advantage of using a modal approach is that damping parameters can be

tuned at ease, as recently used in [48] for the nonlinear vibrations of plates with

the purpose of synthesiing the sound of gongs. A lossless string is described in

equation (10), where the linear part corresponds to the description of a lossless

oscillator for each mode. Damping can therefore be introduced by generalising

each mode to a lossy oscillator. Eq. (10) thus becomes:

µ(q̈ + Ω2q + 2Υq̇) = F, (11)

where Υ is a diagonal matrix such that Υj, j = σj ≥ 0. A damping parameter

σj is thus associated to each modal equation.

In this contribution, the frequency dependence of losses are taken into ac-

count using the theoretical model proposed by Valette and Cuesta [30]. This

model is especially designed for strings, and shows a strong frequency depen-

dence that cannot be expressed easily in the time domain. It describes the three

main effects accounting for dissipation mechanisms in strings, namely friction
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with the surrounding acoustic field, viscoelasticity and thermoelasticity of the

material. The following expression of the quality factor Qj = πνj/σj is intro-

duced as:

Q−1
j = Q−1

j,air +Q−1
j,ve +Q−1

te , (12)

where subscripts air, ve and te refer, respectively, to frictional, viscoelastic and

thermoelastic losses.

The first two terms are defined as [30]:

Q−1
j,air =

R

2πµνj
, R = 2πηair + 2πd

√
πηairρairνj ,

Q−1
j,ve =

4π2µEIδve
T 2

ν2
j .

In these expressions, ηair and ρair are, respectively, the air dynamic viscosity145

coefficient and density. In the rest of the paper, usual values are chosen [49]:

ηair = 1.8 × 10−5 kg m−1s−1 and ρair = 1.2 kg m−3. To complete the model,

two parameters remain to be defined: the viscoelastic loss angle δve, and the

constant value Q−1
te characterising the thermoelastic behaviour. As shown later

in Section 4.2 (see also [30, 49]), these values can be fitted from experiments in150

order to finely model the frequency dependence of a real isolated string.

2.3.2. Damping in the contact

The model presented here may be complemented by nonlinear losses due to

the contact, as described e.g. in [50, 44, 11, 45]. To this end, the contact force

given by (3) may be augmented according to the Hunt and Crossley model [50]:

f =
dψ

dη
− ∂u

∂t
Kβ[η]α+, (13)

with β ≥ 0.

2.4. Spatial discretisation

To circumvent the difficulty associated with the expression of the contact

force with modal coordinates, a spatial grid is introduced, together with a linear

relationship between modal coordinates and points in the grid. The grid is

9



defined as xi = i∆x, where ∆x = L
N is the spatial step and i ∈ {0, ..., N}. Since

u(x0, t) = 0 and u(xN , t) = 0 ∀t ∈ R+, only the values of u on the grid with

i ∈ {1, 2, ..., N − 1} are examined in the following.

In the remainder of the paper we select Nm = N − 1 such that the number of

interior grid points will match the number of modes in the truncation. Then

the modal expansion of u(x, t) can be written at each point i ∈ {1, 2, ..., N − 1}

of the selected grid as

u(xi, t) = ui(t) =

N−1∑
j=1

qj(t)φj(xi) =

N−1∑
j=1

qj(t)

√
2

L
sin

(
jπi

N

)
. (14)

In matrix form, these relationships may be written as u = Sq, where the vectors155

u = [u1, ..., uN−1]T and q = [q1, ..., qN−1]T have been introduced. The matrix

S has entries Si,j = φj(xi), ∀(i, j) ∈ {1, ..., N − 1}2, and its inverse satisfies the

following relationship: S−1 = L
N ST .

2.5. Time discretisation

Let un represent an approximation to u(t) at t = n∆t, for integer n, and160

where ∆t is a time step, assumed constant.

Difference operators may be defined as follows:

δt−un =
un − un−1

∆t
, δt+un =

un+1 − un

∆t
, δt.u

n =
un+1 − un−1

2∆t

δttu
n =

un+1 − 2un + un−1

∆t2
.

The temporal scheme for discretising the equations of motion considers sep-

arately the modal linear part and the nonlinear contact force. For the linear

part (the left-hand side of Eq. (11)), an exact scheme is proposed in [46] for

a single oscillator equation. This scheme is here generalised to an arbitrary165

number N − 1 of oscillator equations. This choice is justified by the accurate

description of the frequency content and the stability property of this exact

scheme, which perfectly recovers the oscillation frequencies irrespective of the

time step. For the contact force, in order to circumvent the difficulty linked to

the modal couplings in the right-hand side of Eq. (11), the relationship between170
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u and q given in the previous section is used in order to treat the contact in the

space domain.

The temporal scheme for the oscillatory part of Eq. (11) may be written as:

µ

∆t2
(qn+1 −Cqn + C̃qn−1) = 0, (15)

where the right-hand side has been neglected for the moment. C and C̃ are

diagonal matrices with entries

Ci,i = e−σi∆t
(
e
√
σ2
i−ω2

i ∆t + e−
√
σ2
i−ω2

i ∆t
)
,

C̃i,i = e−2σi∆t.

If there is no collision, and thus no contact force, so that the right-hand side

equals zero, then the scheme is known to be exact [46], thus ensuring the most

accurate discrete evaluation of the linear part. To determine the contact force,

Eq. (11) is rewritten for the vector u thanks to the relationship u = Sq:

µ

∆t2
(un+1 −Dun + D̃un−1) = fn, (16)

with D = SCS−1 and D̃ = SC̃S−1.

Following [11], the discrete approximation of the contact force is chosen as:

fn = δt−ψ
n+1

2

δt.ηn , where ψn+ 1
2 = 1

2 (ψn+1 + ψn) and ψn = ψ(ηn). The resulting175

scheme is conservative if there is no loss, and dissipative otherwise [11].

The nonlinear equation to be solved at each time step is thus:

r + b +m
ψ(r + a)− ψ(a)

r
= 0, (17)

where r = ηn+1−ηn−1 is the unknown (with ηn = g−un), a = ηn−1, m = ∆t2

µ

and b = −Dun+ D̃un−1 +un−1. The Newton-Raphson algorithm may be used

to this end. This equation has a unique solution [11], note however that the

convergence of the Newton-Raphson algorithm is not guaranteed and depends180

on the initial guess. Note also that in the specific case of a linear restoring force

(i.e. α = 1), an analytical solution is available as detailed in [51].

The additional damping term du
dtKβ[η]α+ due to collisions (see Section 2.3.2)

may be discretised as follows [11]: δt.unKβ[ηn]α+. Instead of (17), the equation

11



to be solved at each time step is then [11]:

(IN−1 + L)r + b +m
ψ(r + a)− ψ(a)

r
= 0, (18)

where L is a diagonal matrix such that Li,i = ∆t
2µKβ[ηi

n]α+.

2.6. Stability analysis

This section is devoted to the stability analysis of the numerical scheme. To185

this end, it is more convenient to rewrite (16) with an explicit use of temporal

discrete operators.

The equivalent representation may be written as:

µ
[
Č1δttq

n + Č2qn + Č3δt.q
n
]

= Fn, (19)

with diagonal matrices Č1, Č2 and Č3 with the following entries:

Č1ii
=

1 + (1− γi)ω
2
i ∆t2

2

1 + (1− γi)
ω2

i ∆t2

2 + σ∗i ∆t
,

Č2ii
=

ω2
i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗i ∆t
,

Č3ii
=

2σ∗i

1 + (1− γi)
ω2

i ∆t2

2 + σ∗i ∆t
.

The coefficients γi and σ∗i may be written as:

γi =
2

ω2
i∆t2

− Ai
1 + ei −Ai

,

σ∗i =

(
1

∆t
+
ω2
i∆t

2
− γi

ω2
i∆t

2

)
1− ei
1 + ei

,

where

Ai = e−σi∆t
(
e
√
σ2
i−ω2

i ∆t + e−
√
σ2
i−ω2

i ∆t
)

and ei = e−2σi∆t. (20)

The equivalent scheme for the displacement u may thus be written as:

µ
[
Ď1δttu

n + Ď2un + Ď3δt.u
n
]

= fn, (21)

where Ď1 = SČ1S−1, Ď2 = SČ2S−1 and Ď3 = SČ3S−1 are symmetric matri-

ces. The force term is expressed as in Section 2.5.
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Let us introduce the inner product as:

〈u,v〉 = ∆x

N−1∑
j=1

ujvj ,

where ∆x is the spatial step.190

Taking the inner product between equation (21) and δt.u
n, the following

discrete energy balance is obtained:

δt−H
n+ 1

2 = −µ
〈
δt.u

n, Ď3δt.u
n
〉
, (22)

where

Hn+ 1
2 =

µ

2

〈
δt+un, Ď1δt+un

〉
+
µ

2

〈
un+1, Ď2un

〉
+
〈
ψn+ 1

2 , 1
〉
. (23)

Because Ď3 is positive semi-definite (see the proof in AppendixA, Property

3), the scheme is thus strictly dissipative. Therefore it is stable if the energy is

positive.

The force potential being positive, and given Properties 1 and 3 demon-

strated in AppendixA, the stability condition can be rewritten as:〈
δt+un, (Ď1 −

∆t2

4
Ď2)δt+un

〉
≥ 0. (24)

It is therefore sufficient to show that (Ď1 − ∆t2

4 Ď2) is positive semi-definite to

obtain stability, which is true if (Č1 − ∆t2

4 Č2) is positive semi-definite. Conse-

quently, the sufficient condition reads, ∀i = 1, ..., , N − 1:

γi ≤
1

2
+

2

ω2
i∆t2

. (25)

After a straightforward manipulation, the condition is easily expressed as:

1 + ei +Ai
1 + ei −Ai

≥ 0,∀i = 1, ..., , N − 1. (26)

Eq. (26) is satisfied if 1 + ei ± Ai > 0, which is always true (see Property 2 in

AppendixA for the proof), and hence the scheme is unconditionally stable. The

limiting case σi = 0 corresponds to the lossless string. Then γi reduces to:

γi =
2

ω2
i∆t2

− cos(ωi∆t)

1− cos(ωi∆t)
,

13



and unconditional stability is obtained, as in the lossy case.

Considering contact losses (see Eq. (18)) leads to the following discrete

energy balance:

δt−H
n+ 1

2 = −µ
〈
δt.u

n, Ď3δt.u
n
〉
−
〈
δt.u

n, δt.u
nKβ[ηn]α+

〉
. (27)

Since
〈
δt.u

n, δt.u
nKβ[ηn]α+

〉
≥ 0, the dissipation in the system is then increased,195

and the stability condition is not affected.

2.7. Second polarisation

-s s

A

-A

ff

vt

Figure 2: Friction force

In this section, the model is extended to include motion in the second po-

larisation of the string. The two unknown displacements along (Oz) and (Oy)

are respectively denoted as u(x, t) and v(x, t). Assuming small displacements,

the equations of motion for u and v are assumed uncoupled as long as no con-

tact arises. In particular, no coupling is included at boundaries. As soon as

a contact point is detected for the vertical displacement u, it is assumed that

the horizontal displacement v undergoes a friction force ff . The continuous

equation for the displacement v may be written as:

µvtt − Tvxx + EIvxxxx = ff (vt). (28)

Since the obstacle is assumed to be located at a point along (Oz) in this study,

contact is assumed to arise at the location of the point obstacle xc only; it could,

however, be extended to a larger contact surface. ff is a simple regularised

14



Coulomb friction law defined as (see Fig. 2):

ff (vt) = A



1 if vt < −s and u < g

vt/s if |vt| ≤ s and u < g

−1 if vt > s and u < g

0 if u ≥ g,

(29)

where vt is the velocity of the string, and A (N.m−1), s > 0 (m.s−1) are the

two constant parameters that define the friction law. In particular, as shown in

Section 5.2.3, these values can be fitted from experiments.200

The expression for the stored energy associated with (28) is given by:

H̃ =
µ

2

∫ L

0

(vt)
2dx+

T

2

∫ L

0

(vx)2dx+
EI

2

∫ L

0

(vxx)2dx ≥ 0, (30)

and satisfies
dH̃

dt
= −Q̃, where Q̃ = vt(xc)ff (vt(xc)). (31)

Applying the same method as for the contact between a string and a bow de-

scribed in [46] and using a first order interpolation operator, one obtains:

vn+1 −Dvn + D̃vn−1 = −∆t2

µ
J(xc)f(ξn+1), (32)

where J(xc) is a vector consisting of zeros except at the obstacle position xc

where its value is 1/∆x. ξn+1 = δt.v
n+1
c is the velocity of the string point

interacting with the obstacle, which is the solution of the following equation:

(−Dvn + D̃vn−1 + vn−1)c + 2∆tξn+1 +
∆t2

µ∆x
ff (ξn+1) = 0,

where the subscript c designates the element corresponding to the obstacle po-

sition. This equation depends on un through the force term ff , see Eq. (29).

The discrete energy may be written as:

H̃n+ 1
2 =

µ

2

〈
δt+vn, Ď1δt+vn

〉
+
µ

2

〈
vn+1, Ď2vn

〉
. (33)

It satisfies:

δt−H̃
n+ 1

2 = −µ
〈
δt.v

n, Ď3δt.v
n
〉
− δt.vnc ff (δt.v

n
c ), (34)

Since δt.vnc and ff (δt.v
n
c ) have the same sign, the scheme is again strictly dissi-

pative.
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3. Validation test

3.1. Convergence study

The necessity of oversampling to avoid aliasing and obtain trustworthy re-205

sults is mentioned in [33], due to the nonlinear contact which generates high

frequencies. In this part, a detailed study of convergence is presented in order

to fix the sampling rate that will be used for simulations.

L d T µ B

1.002 m 0.43 mm 180.5 N 1.17× 10−3 kg.m−1 1.78× 10−5

Table 1: Physical properties of the string

The particular string under study here is an electric guitar string manufac-

tured by D’Addario, the properties of which are detailed in Table 1. Under a210

tension of 180.5 N, it has a fundamental frequency of approximately 196 Hz

(G3). The initial condition is set to a symmetric triangular shape of height

u0,max = 1.8 mm with a smooth corner obtained by considering the 50 first

modes, without initial velocity. The observed signal is taken at 10 mm from

the extremity x = L. Simulations are conducted with Fs from 1960 Hz to215

211 × 1960 Hz ≈ 4 MHz.

Convergence curves are presented in Fig. 3 for 1 and 1001 interior points

(i.e. N = 2 and N = 1002 respectively), in the case of a centered point obstacle.

The lossless and lossy string cases are presented for N = 2, but only the latter

is considered for N = 1002. Computations are conducted over 3 seconds, corre-

sponding to the duration used to compare experimental and numerical results

in the following section. Convergence tests are thus more strict than for short

durations. The relative L2 error is defined as:
∑
t∈τ

(sref (t)− scur(t))2∑
t∈τ

(sref (t))2


1
2

, (35)

where scur is the current signal with Fs < 4 MHz and sref the reference signal

with Fs ≈ 4 MHz. Both are drawn from the string displacement at 10 mm from

16
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Figure 3: Relative L2 error versus Fs, over 3 seconds. Left: α = 1, centre: α = 1.5, right:

α = 2. K = 107 (blue), K = 109 (red), K = 1011 (black) and K = 1013 (magenta). (a)

N = 2, lossless (solid lines) and lossy (dashed lines) stiff string, B = 1.78×10−5 (b) N = 1002,

centered point obstacle, lossy stiff string, B = 1.78× 10−5.

the boundary x = L. Sums are computed over the set τ of discrete times at

which the signal having the lowest sampling rate (about 2 kHz) is evaluated. As220

is to be expected, the addition of losses leads to faster convergence. Also as is

to be expected, the smoother the contact is (which corresponds to larger values

of α and / or smaller values of K), the faster the convergence is, since less high
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N = 2

α / K 107 109 1011 1013

1 2.4× 10−5 2.4× 10−6 3.0× 10−7 3.4× 10−8

1.5 2.2× 10−4 3.5× 10−5 5.5× 10−6 9.2× 10−7

2 8.7× 10−4 2.0× 10−4 4.4× 10−5 9.5× 10−6

N = 1002, centered point obstacle

α / K 107 109 1011 1013

1 2.1× 10−4 2.3× 10−6 1.9× 10−7 1.8× 10−8

1.5 1.4× 10−3 1.5× 10−4 7.6× 10−6 6.7× 10−7

2 1.8× 10−3 1.1× 10−3 1.3× 10−4 1.4× 10−5

Table 2: Maximal penetration (m), Fs = 2 MHz, B = 1.78× 10−5.

frequency content is generated due to the contact.

0 0.002 0.004 0.006 0.008 0.01
time (s)

0

5

10

15

u 
(m

)

× 10-4

Figure 4: Displacement with N − 1 = 1, K = 1013, α = 1.5. Fs ≈ 8 kHz (dark dash-dot line),

64 kHz (red dashed line) and 4 MHz (blue line).

The slope 2 corresponding to the order of the scheme is visible after a thresh-225

old sampling rate is reached. For the first sampling rates, in most of the cases

presented here, a plateau can be observed. This may be due to the fact that for

lower sampling rates, all the physical spectral content of the signal is not yet

fully represented, so that the expected convergence speed cannot appear. This

would explain that the stiffer the contact is, the larger the threshold sampling230

rate is, since higher frequencies are generated. In the case N − 1 = 1, the first

18



signals differ from the 4 MHz signal mostly because of a phase difference which

increases at each contact, as illustrated in Fig. 4. Table 2 details maximum

penetration of the string in the obstacle for Fs = 2 MHz. The smoother the

contact is, the larger the penetration is. A correlation can be made between235

convergence behaviour and maximum penetration, since penetration is directly

linked to stiffness of the contact and therefore to the amount of generated high

frequencies. When penetration is greater than the string diameter, the relative

error for Fs = 2 MHz is smaller than 1×10−2. For smaller penetration however,

convergence is significantly slower.240

In the context of our study, rigid contact is intended so that values α = 1.5

and K = 1013 are selected by empirical comparisons to experiments. In the

case of a point obstacle, it appears that smoothing the contact makes numerical

signals differ more from experimental ones, whereas making it stiffer does not

significantly improve results. In order to conduct simulations, in the sequel,245

the sampling rate is chosen as corresponding to a relative L2 error smaller than

about 1× 10−1. Then a sampling rate of at least Fs = 1 MHz is necessary. For

an extra degree of safety, Fs = 2 MHz is selected in the following.

Fs N α K β

2 MHz 1002 1.5 1013 0

Table 3: Numerical parameters

3.2. Comparison to the analytical solution

The outcomes of the numerical scheme (16) are first compared to an analyt-250

ical solution presented by H. Cabannes [18, 52], for the case of an ideal string,

with a centered point obstacle in contact with the string at rest. The analytical

solution assumes contact with no interpenetration, corresponding to a perfectly

rigid point obstacle. Consequently the numerical parameters for the contact law

are selected as α = 1.5 and K = 1013. The initial condition in displacement has255

the shape of a triangle, with an initial velocity of zero everywhere. In order to
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facilitate comparisons with the analytical solution, results are dimensionless in

the present section. To this end, dimensionless values are used in simulations.

N − 1 = 1001 interior points and a dimensionless sampling rate Fs,d = 5000

(corresponding to a sampling rate of about 2 MHz, see Section 3.1) are selected.260

Subscript d stands for "dimensionless". Stiffness and damping parameters are

chosen as Bd = 2× 10−5 and σd,j = j × 5× 10−3, ∀j ∈ {1, ..., N − 1}.

For a qualitative comparison, Fig. 5 shows successive snapshots of the profile

of the ideal string during its vibration. As already noted in [18], the contact is

persistent and occurs as long as the string is under its rest position. With this265

view the numerical solution perfectly coincides with the analytical one.
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Figure 5: Snapshots of the motion of a dimensionless ideal string colliding with a point obstacle

at centre (in black). Comparison at six different times of the first period between the analytical

solution (blue circles) and the numerical one (modal approach, red line). Simulation conducted

with Fs,d = 5000, K = 1013, α = 1.5 and β = 0. Presented variables are dimensionless.

A more quantitative comparison is shown in Fig. 6, by focusing on the very
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Figure 6: Time signal of the dimensionless string at xm = 9L/100, comparison of analytical

solution for an ideal string (red dashed line), and numerical results (blue line). N = 1002,

Fs,d = 5000. Variables are dimensionless. (a) ideal string without losses or dispersion, and

without obstacle. (b) ideal string with obstacle. (c) losses added in the numerical simulation,

with obstacle. (d) dispersive lossless numerical string with obstacle, Bd = 2× 10−5.

beginning of the motion. Also, in order to get a better understanding of the

individual effects of damping and stiffness terms in the model, they are incor-

porated step by step to investigate how the solution departs from that of the270

ideal string. The time series shown in Fig. 6 represents the output u(xm, t),

where the point xm is located at 9L/100. Fig. 6(a) and (b), for an ideal string,

respectively without and with obstacle, show that the numerical solution closely

matches the analytical one. In particular, one can observe that the fundamental

frequency in the case with obstacle is equal to the one without obstacle multi-275

plied by the ratio 4/3, as theoretically predicted [52]. Fig. 6(c) shows the effect

of damping on the numerical simulation. Small unevennesses appears, specified

by arrows in Fig. 6(c). They are most probably due to the rounding of traveling

corners. Finally, adding a small stiffness value in the string creates dispersive

waves, which in turn produces precursors since high frequencies arrive before280

lower ones at the measurement point. Previously mentioned unevennesses also

appear in this case because stiffness causes rounding of corners.
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Figure 7: Energetic behaviour of the numerical ideal lossless vibrating string, Fs,d = 5000.

Variables are dimensionless. Top: energy of the numerical signal; kinetic energy (red dashed

line and circles); potential energy (dark line and diamonds); total energy (blue dashed line).

Bottom: relative energy variation Hn+1/2−H1/2

H1/2 (a) No obstacle. (b) Centered point obstacle.

The contact energy (magenta line) is also presented. Bold blue lines indicate the time interval

during which contact is persistent, resulting in an oscillatory pattern for the contact energy,

shown in the upper inset.

Finally, energy variations of the numerical stiff string are presented in Fig. 7,

with and without obstacle. As no damping is included in this numerical simu-

lation, the energy is conserved: the normalised energy variations from one time285

step to the next are small, and of the order of 10−10. One can also observe that

during the time interval where the contact occurs (indicated with a bold blue

line in Fig. 7b), small oscillations in the contact energy appear which are due to

very small oscillations of the string at the contact point. The behaviour of the

string at this point will be further addressed in Section 5.2.2. Consistency of290

numerical results compared to the analytical solution has thus been highlighted,

as well as effects of the string damping and stiffness. Energy considerations have

also been presented. In the following, an experimental set up is presented, which
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will be exploited to compare numerical results against experiments.

4. Experimental study295

4.1. Experimental set up

4.1.1. Measurement frame

The string to be considered here is described in Section 3.1. The vibration of

this string, isolated from any surrounding structure, is studied on a measurement

frame designed to this end [53, 49] (see Fig. 8, where two configurations are300

presented: the first with a centered obstacle, the second with an obstacle near

a boundary). The string is plucked with a 0.05 mm diameter copper wire that

breaks at the initial time [49] at the middle of the string. The maximal initial

displacement is about u0,max = 1.5 mm in the rest of the paper. The vertical

and horizontal displacements are measured with optical sensors described in [54].305

They are located near the string end at x = L, respectively at 1 cm (vertical)

and 2 cm (horizontal). In the present study, the obstacle touches the string at

rest. The point obstacle is realised with a metal cuboid edge. It is mounted on

a vertical displacement system with a micron-scale sensitivity.

I-beam plunged into sand 

string
optical
sensors

x
y

z

obstacle
case 1

obstacle
case 2 

Figure 8: Schematic representation of the measurement frame.

4.1.2. Contact detection310

In order to detect contact between the string and the obstacle, an electrical

circuit is installed on the measurement frame (see Fig. 9). The switch links
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Figure 9: Electric scheme for contact detection.

the string and the obstacle, which are both conductive. Voltage at its terminals

is measured as an indicator of contact, being null when the string touches the

obstacle. In order to avoid electric arcs for small distances between the string315

and the obstacle, components inside the acquisition card (RNI = 300 kΩ and

CNI = 10.4 pF) must be taken into account. A 10 kHz alternative current has

been employed and R = 100 kΩ has been chosen.

4.2. Identification of linear characteristics

In order to identify linear parameters of the string, i.e. eigenfrequencies320

and modal damping ratios, free vibrations of the string in the absence of the

obstacle are measured and analysed with the ESPRIT method [55]. This method

is applied to 4 seconds of the signal, starting 0.2 seconds after the string is

plucked in order to avoid the transitory regime. Modes are treated one by

one, according to the procedure described in [56, 49]. The linear characteristics325

of 36 modes have been recovered with the method, which covers a frequency

range up to 7200 Hz. Beyond this frequency, modes are not excited strongly in

the measured signals and the signal to noise ratio becomes too large to enable

identification. In order to determine the remaining values, theoretical models

are employed. The eigenfrequencies are then given by νj = j c
2L

√
1 +Bj2 (see330

Section 2.2), where the inharmonicity factor B (see Table 1) is determined by

fitting the model to measurements. Damping parameters are obtained from
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the damping model presented in Section 2. This representation depends on

two parameters, δve and Q−1
te , which are determined from experimental fitting.

Selected values are δve = 4.5× 10−3 and Q−1
te = 2.03× 10−4. These parameters335

will be used in the rest of the paper.

Measured values together with uncertainties (obtained over nine measure-

ments, covering repeatability measurement errors and ESPRIT method uncer-

tainties), theoretical model results and errors between them are shown in Fig. 10

and 11. One can observe that the inharmonicity of the string (and thus its stiff-340

ness) is very small. The damping model gives a very accurate representation

of the measured losses. Uncertainties on frequencies are around 0.1 %, there-

fore not visible in Fig. 10. Errors in the frequencies and quality factors are

respectively smaller than 0.2 % and 25 %.
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Figure 10: Experimental (red crosses) and theoretical (blue circles) eigenfrequencies, νm and

νth respectively, expanded uncertainty (gray lines) and error indicator (orange diamonds)

εν =
|νth−νm|

νm
, with B = 1.78× 10−5.

Finally, a highly controlled set up has been presented and linear parame-345

ters of the string have been accurately determined. Obtained parameters can

therefore be employed in the numerical model described in Section 2 and a
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Figure 11: Experimental (red crosses) and theoretical (blue line) quality factors, Qm and Qth

respectively, expanded uncertainty at 95 % (gray lines) and error indicator (orange diamonds)

εQ =
|Qth−Qm|

Qm
, with δve = 4.5× 10−3 and Q−1

te = 2.03× 10−4.

comparison between numerical and experimental results is possible.

5. Numerical vs experimental results

In this section, numerical and experimental signals are compared over long350

durations, in the time and frequency domains. Three cases are considered: the

vibrating string without obstacle, or with a point obstacle either centered or

near a boundary, the latter constituting a two point bridge.

Selected string and numerical parameters are presented in Tables 1 and 3.

In all experimental results presented here except in Section 5.2.3, the ini-355

tial condition is located in the (xOz) plane, so that almost no initial energy

is communicated to the horizontal polarisation. It has indeed been observed

in all measurements that with this type of initial condition the horizontal os-

cillations were negligible. We thus focus on the vertical motion only in these

cases. Associated sounds are available on the companion web-page of the paper360
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1. They correspond to the displacement along (Oz) at x = 992 mm, resampled

at 44.1 kHz.

5.1. No obstacle
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Figure 12: Displacement of the string when vibrating without obstacle, B = 1.78 × 10−5.

Comparison between measurement (blue line) and numerical simulation (red line), vertical

displacement at 1 cm near the edge x = L. Expanded uncertainty at 95 % (gray). Bottom

shows the temporal decrease of the energy numerically computed.

Fig. 12 shows the comparison between experimental and numerical results,

when there is no obstacle, and at the location of the optical sensor, i.e. at 1 cm365

1Sounds are available in the companion web-page of the paper hosted by Elsevier as well as

on http://www.lam.jussieu.fr/Membres/Issanchou/Sounds_vibrating_string_point_obstacle.html.
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from the edge x = L. The parameters of the numerical simulation are specified

in Tables 1 and 3. Dispersion effects are clearly visible in the first periods where

the waveform is close to a rectangular function, then losses make the waveform

evolve with the same progression numerically and experimentally. A minor error

in the amplitude of the response is noticeable.
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Figure 13: Vibrating string without obstacle, B = 1.78× 10−5. Spectrograms of the displace-

ment: (a) experimental, (b) numerical.

370

The spectrograms of experimental and numerical signals are compared in

Fig. 13, underlining the similarity of the frequency content of both time series.

Due to the nature of the initial condition (even function with respect to the

centre point), odd modes should not be excited. However one can observe the

trace of these modes in the experimental spectrogram, even though their ampli-375

tudes are more than 60 dB below the amplitude of the first mode. This should

be attributed to small imperfections in the string or boundary conditions, or

to a small deviation of the experimental initial condition from the perfect sym-

metric triangle. In simulation, the odd modes are completely absent. Finally,

one can also observe that the damping of the upper modes seems to be slightly380

underestimated in the numerical simulation since their energy remains visible

approximately 0.1 s longer on the spectrograms.
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5.2. Centered point obstacle

In this section, the vibration of a string against a centered point obstacle

is examined. First, the string is excited in the (xOz) plane. The contact is385

investigated in detail and the second polarisation is observed.

5.2.1. Temporal and spectral description
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Figure 14: Displacement of the string when vibrating with a centered point obstacle, B =

1.78 × 10−5. Comparison between measurement (blue line) and numerical simulation (red

line), vertical displacement at 1 cm near the edge x = L. Expanded uncertainty at 95 %

(gray). Bottom shows the temporal decrease of the energy numerically computed.

Fig. 14 presents numerical and experimental signals in the case of a centered

point obstacle and initial excitation along (Oz). As in Section 5.1, similarities
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can be observed, in the global shape of the signal as well as in its detailed390

behaviour. The ratio between numerical frequencies without obstacle f1 and

with the centered obstacle f2 satisfy f1
f2
≈ 195.7

261.3 ≈
3
4 , as expected from the

theory (see Section 3.2). Fine features of the experimental signal are reproduced

numerically, as can be seen in enlarged views of the results. The dynamics

including the contact is well-reproduced, and the numerical waveform evolves395

similarly to the experimental. However, a significant error in amplitude appears,

which may be due to uncertainty in the obstacle position and height, non-ideal

experimental boundaries and initial conditions or dissipation as contact occurs.

It could also be due to an imperfect rigid obstacle. Note that adding losses

in the contact as described in Section 2.3.2 reduces the amplitude, so that the400

global shape better fits the experimental one. Nevertheless, this is at the cost

of the local waveform shape, as illustrated in Fig. 15. Therefore no contact

damping is included in the following (i.e. β = 0).
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Figure 15: Numerical (red line) and experimental (blue line) displacement signals with a

centered point obstacle, with B = 1.78 × 10−5, including contact losses with β = 500 (top)

and β = 1000 (bottom).

Spectrograms of experimental and numerical signals are presented in Fig. 16,

they once again show strong similarities. Since modes are coupled through the405

contact, there is no missing mode, contrarily to the case without obstacle. A
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Figure 16: Centered obstacle, B = 1.78× 10−5. Spectrograms: (a) experimental, (b) numer-

ical.

peculiar feature is a spectral resurgence zone around 8 kHz, underlined by a

brace in Fig. 16b, which clearly appears on both numerical and experimental

spectrograms, showing that energy can be transfered thanks to the contact up

to these high frequencies. It is also a signature of the dispersion since cancelling410

the stiffness term makes this zone disappear. A second distinctive feature of the

spectrograms is the appearance of spectral peaks with larger amplitudes, around

1306 Hz, 2090 Hz, 2874 Hz, 3658 Hz, ..., see Fig. 16b where arrows indicate their

presence. The difference between two of each of these successive peaks is equal to

784 Hz, indicating that a rule governs their appearance. This value of 784 Hz is415

related to the ratio 3/4 observed previously between the fundamental frequency

of the string (196 Hz) and the fundamental frequency of the oscillations in

the case with contact (261 Hz), since one has : 784 = 196 × 4 ≈ 261 × 3.

Moreover, the dimensionless value of the period associated to 784 Hz is equal

to 0.5. Returning back to Fig. 6, one can observe that in Fig. 6(c) and 6(d), an420

event appears each 0.5 time unit, the event could be either a change of sign or

the appearance of the unevenness marked by an arrow. This could explain why
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this frequency is important in the spectrograms. Finally, one can also observe

that the fundamental frequency of the discussed behaviour is equal to 522 Hz

(1306− 784), which corresponds to the second partial of the signal.425

5.2.2. Contact times

In the centered obstacle configuration and according to the theoretical so-

lution (see Section 3.2), persistent contact arises as the string is under its rest

position. This section aims at confronting this result to experimental and nu-

merical ones. To this end, the set up described in Section 4.1.2 is employed.430

Fig. 17 shows experimental and numerical results. During the first periods, the

contact is clear and persistent experimentally. However as time progresses, it

becomes more confused, certainly because of dispersion which makes the wave-

form more complex.

0 0.01 0.02
-5

0

5

u 
(m

)

× 10-5

0 0.01 0.02
 time (s)

-0.5

0

0.5

co
nt

ac
t i

nd
ic

at
or

0.54 0.55
-5

0

5
× 10-5

0.54 0.55
 time (s)

-0.5

0

0.5

Figure 17: Top: experimental (blue line) and numerical (red dashed line) string displacement

with a centered point obstacle, B = 1.78× 10−5. Bottom: experimental tension between the

string and the obstacle (blue line) and numerical contact indicator function (red dashed line).

Numerical results have been obtained with the same string parameters as435

previously, K = 1013, α = 1.5 and Fs = 2 MHz. According to values of the
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contact indicator function, which equals 0.5 if contact arises and 0 otherwise, the

contact is persistent. In fact, at the contact point, the string oscillates, however

it does not make the contact indicator function switch since oscillations have

an amplitude around 10−8 m, which remains smaller than the penetration of440

the string in the obstacle, around 10−7 m. The string thus oscillates under the

rest position and contact detection remains positive. This behaviour is strongly

related to the choice of α and K. Higher stiffness parameters affect the contact

persistence by decreasing the allowed penetration. For instance with α = 1.3

and K = 1013, the penetration is about 10−8 m and first oscillations arise in the445

neighborhood of 0, such that the indicator function oscillates at the beginning

of each crenel.

5.2.3. 3D string motion

So far, the initial condition is given in the (Oz) direction only. An initial

condition combining (Oz) and (Oy) polarisations is now considered in the case450

of a centered point obstacle. Numerical and experimental results are compared

in Fig. 18, where numerical friction force parameters (see Section 2.7) are em-

pirically determined as s = 10−5 m.s−1 and A = 0.12 N.m−1. Other parameters

are unchanged.

The initial condition is similar to that used in the previous section except455

that approximately the same amplitude (about 1 mm) is imposed along (Oz)

and (Oy). The oscillation plane resulting from this initial condition is thus at

45 degrees in (yOz).

Since the observation points are slightly displaced from one polarisation to

the other, the displayed displacement v has a larger amplitude. The main ob-460

servation reported from Fig. 18 is the very fast decay of oscillations along (Oy),

since the motion cancels out after 0.025 s while the motion along (Oz) continues

during several seconds. The second comment is that the numerical scheme well

reproduces details of the decay of the displacement along (Oy), excepted small

disturbances (of a few µm) when the string touches the obstacle, which also465

slightly affect the displacement along (Oz) and may be due to asperities on the
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Figure 18: Top and centre: experimental (blue line) and numerical (red line) string displace-

ment along (Oz) (at 1 cm near the edge x = L) and (Oy) (at 2 cm near the edge x = L) with

a centered point obstacle and B = 1.78 × 10−5. Bottom: numerical energy of u (blue line)

and v (dark dashed line).

obstacle which are not included in the model.

As expected from displacement signals, the energy along (Oy) decreases

rapidly. The largest amount of energy decrease arises when u is negative, which

corresponds to contact times, so that friction is applied on v.470

5.3. Two point bridge

In this part, the bridge of a tanpura is modelled using a two point bridge

constituted by a point obstacle near a boundary, as explained in [30, 13]. The

distance between the point obstacle and the string boundary x = 0 is chosen as

xb = 6 mm according to the range of values given in [30] (5 to 7 mm for a string475

of length 1 m).

Fig. 19 presents numerical and experimental signals in the case of a two point
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Figure 19: Displacement of the string when vibrating with a two point bridge, B = 1.78×10−5.

Comparison between measurement (blue line) and numerical simulation (red line), vertical

displacement at 1 cm near the edge x = L. Expanded uncertainty at 95 % (gray). Bottom

shows the temporal decrease of the energy numerically computed.

bridge. Again, the global shape of the signal as well as detailed oscillations are

finely reproduced numerically. Effect of dispersion is faithfully described as can

be seen on extended views at 0 and 0.2 s in particular. A slight amplitude error480

appears, smaller than in the centered obstacle case, as well as a slight delay

(20 degrees after 1.5 s). Possible reasons are the same as in the previous case

(see Section 5.2). Besides, the total energy decreases faster than in the centered

point obstacle case, itself decreasing faster than when there is no obstacle. This

could be explained by an improved transfer of energy to the high-frequency485
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range in the case of the two point bridge, where damping factors are larger.
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Figure 20: Two point bridge, B = 1.78×10−5. Spectrograms: (a) experimental, (b) numerical.
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Figure 21: Two point bridge. Numerical spectrogram, without dispersion.

Let us now focus on spectrograms (see Fig. 20). Note that only frequencies

up to 4.8 kHz are shown, contrarily to the case of the centered point obstacle. In

the present case, no particular behaviour can be seen for higher frequencies, and

the presented spectrograms focus on the zone of interest. As in the centered490

obstacle case, no missing mode is observed, due to the coupling of modes at

the contact point. A descending formant can be observed which follows a time
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evolution as described in [30] (experimental study) and [34] (numerical study)

where a string vibrating against a tanpura bridge is described. Its evolution is

accurately reproduced by the numerical result, although some differences appear495

after 2 s, when the signal amplitude has become very small. The essential role of

dispersion highlighted in [30, 14] is again demonstrated through the spectrogram

in Fig. 21 where dispersion is cancelled. Comparing Fig. 20b and 21, one

observes a similar ascending behaviour for lowest frequencies and during the

first 1 s of the signal. However spectrograms substantially differ after in time as500

well as in the high frequency range. This shows the essential role of dispersion

in the rich and complex behaviour of the signal.

6. Conclusion

In this paper, the motion of a stiff damped string against an obstacle has

been studied numerically and experimentally in both transverse polarisations.505

The present investigations focus on point obstacles, but the scheme allows the

consideration of arbitrarily shaped obstacles along (Oz). It is based on a modal

approach, allowing a flexible adjustment of numerical behaviour in the lin-

ear regime (i.e., the eigenfrequencies and frequency-dependent damping coef-

ficients). In particular, measured values can be employed so that very realistic510

results can be obtained, which constitutes a major advantage of the method.

While having a intrinsically modal nature, the scheme operates in the spatial

domain. It could therefore be interpreted as a spectral method [57] combined

with a time-stepping method. It is unconditionally stable, so that no bound

on space and time steps is required for stability. Moreover, it is exact when515

the collision force is not present, contrary to other existing methods such as

Hamiltonian methods [58, 33] and finite differences [46]. The necessity of a

high sampling rate has been highlighted in order to obtain reliable results for

simulations over a long duration. This affects the computation time, which

could be improved by defining a variable spatial step, finer around the obsta-520

cle, and a variable time step, finer around contact events. Such refinements
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should however be carefully handled, since a variable space step would change

the structure of involved matrices, and a variable time step should be completed

together with a sampling rate conversion without introducing additional arte-

facts. The relevance of numerical results with regards to experiments has been525

demonstrated in Section 5. To this end, a highly controlled experimental set up

has been presented, as well as a reliable measure of the string linear features.

Then a fine comparison between numerical and experimental results has been

completed over a long duration, with an obstacle either at the middle of the

string or near one boundary. In both cases, comparisons show an almost perfect530

agreement, without adding losses in the contact law. Results thus demonstrate

both the accuracy of the numerical method and its ability to recover the most

important physical features of the experiment. To the knowledge of authors,

such a detailed comparison is absent from the literature.

In the present study, no realistic excitation mechanism in relation to musical535

gesture is included. The next step may thus be to incorporate the dynamics

of the musician’s fingers [59]. Moreover, differently shaped obstacles may be

considered, including distributed barriers in order to simulate a wider range of

musical instruments. In addition, the coupling between transverse motions of

the string is limited and unilateral. A more complex model may be considered.540

In order to complete the model, coupling to the structure could also be included

as well as possible sympathetic strings [60, 61].
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AppendixA. Identities and inequalities for stability analysis

In this appendix, useful properties of the matrices involved in the numerical

scheme are demonstrated. Three main properties, directly used in the proof of

the stability of the scheme, are shown. The following identities are also recalled

for an N×N positive semi-definite symmetric matrix M, and un ∈ RN a vector.

1. 〈Mδttu
n, δt.u

n〉 =
1

2
δt− 〈δt+un,Mδt+un〉 (A.1)

2. 〈Mun, δt.u
n〉 =

1

2
δt−

〈
un+1,Mun

〉
(A.2)

These identities are useful in the course of the computations for demonstrating550

stability. The proof is straightforward.

Let us give the first property.

Property 1. Let M be a N × N positive semi-definite symmetric matrix and

un, un+1 ∈ RN . Then one has:

〈
un+1,Mun

〉
≥ −∆t2

4
〈δt+un,Mδt+un〉 . (A.3)

Proof. Because M is symmetric, we have the following equality for any two

vectors u, v in RN :

〈u,Mv〉 = ∆x
∑
i,k

mikviuk = ∆x
∑
i,k

mikvkui = ∆x 〈v,Mu〉 .

The inequality then results from the following equality:

〈
un+1,Mun

〉
=

1

4

〈
un+1 + un,M(un+1 + un)

〉
− ∆t2

4
〈δt+un,Mδt+un〉 .

Assuming that M is semi-definite positive gives the result.

Property 2. Using the notations defined in Section 2.6, 1 + ei ±Ai > 0, ∀i.

Proof. Let us first consider the case 0 < σi < ωi.555

Introducing X = σi∆t, Y = ωi∆t, and Z =
√
Y 2 −X2, one has:

1 + ei −Ai = 1 + e−2X − 2e−X cos(Z) > 1 + e−2X − 2e−X = f1(X).
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f1(X) is positive since f ′1(X) > 0 and f1(0) = 0, therefore 1 + ei −Ai > 0. The

same reasoning leads to 1 + ei +Ai > 0.

Let us now study the case 0 < ωi < σi. In this case, defining Z =
√
X2 − Y 2:

1 + ei −Ai = 1 + e−2X − 2e−X cosh(Z) = f2(X,Z).

By assumption, 0 < ωi < σi, so that 0 < Y < X, and therefore 0 < Z < X.

On one hand, f2,X > 2(e−X − e−2X) > 0 and f2(0, Z) = 0 (since 0 < Z < X,

the limiting case is X = Z = 0). On the other hand, f2,Z = −2e−X sinh(Z) < 0560

and f2(X,X) = 0. Finally, 1 + ei − Ai > 0. Obtaining 1 + ei + Ai > 0 is

straightforward.

Property 3. Ď1, Ď2 and Ď3 (given in Section (2.6)) are symmetric and pos-

itive semi-definite.565

Proof. The proof is given for Ď2 and Ď3. Given those, the proof for Ď1 is

straightforward. Let us first focus on Ď2.

Since Č2 is diagonal and S̃−1 = S̃T , symmetry of Ď2 is obtained by con-

struction of the matrix:

Ď2 = SČ2S−1 = ∆xSČ2ST

of which coefficients are given by:

(Ď2)i,j = ∆x

N−1∑
k=1

SikČ2kk
STkj = ∆x

N−1∑
k=1

SikČ2kk
Sjk,

with i, j ∈ {1, ..., N}.

Let us now show that Ď2 is positive semi-definite. To do so, it is sufficient

to show that Č2 is positive semi-definite. Indeed:570

Let C be a square diagonal matrix and D = S̃CS̃−1 with S̃ =
√

∆xS, where S

is such that S̃−1 = S̃T . Consider q and u such that u = S̃q. Then: 〈q,Cq〉 =

qTCq = qT S̃T S̃CS̃T S̃q = 〈u,Du〉. Therefore, is C is positive semi-definite, D

is.
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If diagonal coefficients of Č2 are positive, then the proof is done. Since

ωi > 0 ∀i, one has to show that 1 + (1− γi)ω
2
i ∆t2

2 + σ∗i ∆t > 0. Developing and

rearranging this expression, one obtains:

1 + (1− γi)
ω2
i∆t2

2
+ σ∗i ∆t =

ω2
i∆t2

2

(
1 +

1− ei
1 + ei

)[
1 + ei

1 + ei −Ai

]
. (A.4)

(A.4) is positive if 1 + ei − Ai > 0. This is satisfied (see Property 2), so that575

1 + (1− γi)ω
2
i ∆t2

2 + σ∗i ∆t > 0.

Finally, Ď2 is semi-definite positive. In the lossless case, which is a limiting

case to the lossy one, the demonstration is similar, starting from a reduced

expression of coefficients.

Let us now study Ď3, the symmetry of which is obtained as previously.580

As for Ď2, it is sufficient to show that Č3 is semi-definite positive. The

denominator of Č3ii is positive as demonstrated above. Besides, one has:

σ∗i =
1− ei
1 + ei

[
ω2
i∆t

2

(
1 +

Ai
1 + ei −Ai

)]
. (A.5)

As previously, this quantity is positive. Finally, Ď3 is semi-definite positive. In

the lossless case, This matrix does not appear in the problem since it is null.
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