

Edinburgh Research Explorer

Dynamic Longitudinal Associations Between Social Support and Cognitive Function: A Prospective Investigation of the Directionality of Associations

Citation for published version:

Liao, J, Terrera, GM, Head, J & Brunner, EJ 2016, 'Dynamic Longitudinal Associations Between Social Support and Cognitive Function: A Prospective Investigation of the Directionality of Associations', *Journal of Gerontology: Social Sciences*. https://doi.org/10.1093/geronb/gbw135

Digital Object Identifier (DOI):

10.1093/geronb/gbw135

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Publisher's PDF, also known as Version of record

Published In: Journal of Gerontology: Social Sciences

Publisher Rights Statement:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Original Research Report

Dynamic Longitudinal Associations Between Social Support and Cognitive Function: A Prospective Investigation of the Directionality of Associations

Jing Liao, Graciela Muniz-Terrera, Jenny Head, and Eric John Brunner

Department of Epidemiology and Public Health, UCL, London, UK.

Correspondence should be addressed to Jing Liao, PhD, School of Public Health, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou 510080, P.R. China. E-mail: liaojing5@mail.sysu.edu.cn

Received April 26, 2016; Editorial Decision Date September 20, 2016

Decision Editor: Shevaun Neupert, PhD

Abstract

Objective: To investigate the reciprocity of social support and cognitive function in late life.

Method: Analyses were based on three parallel repeat measures of social support and cognition from the Whitehall II cohort, providing 10-year follow-up of 6,863 participants (mean age 55.8 years, *SD* 6.0 at baseline). Alternative hypotheses were evaluated via four bivariate dual change score models: Full coupling model estimated mutual influences of social support and cognition on subsequent changes in each other; social causation model assumed a unidirectional influence from social support onto changes in cognition, while the opposite assumption was tested by health selection model; last, no coupling model suggested independent growth of these two sets of variables.

Results: A better cognition at the preceding stage was related to less positive changes in confiding support and less negative changes in practical support. In contrast, influences from social support on subsequent changes in cognition were not detected.

Discussion: This empirical study provides some evidence for the health selection mechanism, such that cognition modified changes in social support. The hypothesized neuroprotective effect of social support was not detectable.

Keywords: Cognitive aging—Longitudinal change—Reciprocal—Social support—Temporality

Prospective studies suggest social relationships confer cognitive benefits in late life (Fratiglioni, Wang, Ericsson, Maytan, & Winblad, 2000; Seeman et al., 2010). Cognitive decline, however, is likely to curtail social engagement (Shouse, Rowe, & Mast, 2013) and strain social relationships (Lang, 2001). Consequently, the observed neuroprotective effect of social relationships may be produced by reverse causality (Stoykova, Matharan, Dartigues, & Amieva, 2011), insofar as cognitive decline may be the cause rather than the consequence of the lack or deterioration of social relationships.

Social causation and health selection are two major hypotheses widely used to understand the dynamic

associations of social relationships and cognition (Mackinnon, Christensen, Hofer, Korten, & Jorm, 2003). Social causation hypothesizes that better social support (Seeman, Lusignolo, Albert, & Berkman, 2001) and larger social networks (Béland, Zunzunegui, Alvarado, Otero, & Del Ser, 2005) retard cognitive decline, aligned with social integration theory reviewed by Berkman, Glass, Brissette, and Seeman (2000). Conversely, health selection operates if cognitive limitations affect quantity (Aartsen, van Tilburg, Smits, & Knipscheer, 2004) and quality (Gurung, Taylor, & Seeman, 2003) of social relationships, due to reduced social functioning (Washburn, Sands, & Walton, 2003) and diminished social reciprocity (Lang, Wagner, & Neyer,

© The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

2009). The direction of health selection effect is unclear. Poor cognition may hamper social integration or instead may mobilize support and consolidate social network (van Tilburg & Broese van Groenou, 2002).

The dynamic interplay between social relationships and cognition has been studied in only three population-based longitudinal aging cohorts. Thomas (2011) investigated the cross-lagged associations between social engagement and cognitive limitation, showing social causation in women and health selection in men. Using the same statistical technique, Li and Zhang (2015) found bidirectional associations of diverse social networks and cognitive maintenance in a Chinese elderly sample. Ellwardt and colleagues (2013) modeled directional parallel latent growth curves (PLCM) of social support and cognition in the Longitudinal Ageing Study Amsterdam and found evidence for social causation only.

Cross-lagged and directional PLCM models address the possibility of reciprocity, but they have weaknesses. The cross-lagged model estimates each variable as a combined function of this variable's preceding value, the other variable at the previous time and a time-specific residual. Differences in measurement reliability of the variables considered may bias the estimation (Rogosa, 1980), and this model may overlook systematic growth across multiple waves (Bollen & Curran, 2006). The directional PLCM regresses the latent slope parameter of one repeat measure onto the intercept of the other, assuming the intercept is the initial time point when change starts. This assumption depends on the intercept placement (Grimm, 2007) and may be inappropriate in most aging research (Robitaille, Muniz, Piccinin, Johansson, & Hofer, 2012). The dual change score model (DCSM; McArdle & Hamagami, 2001) is an alternative approach that accounts for different reliabilities (i.e., amount of measurement errors) and stability (i.e., amount of interindividual change) in multivariate longitudinal data and simultaneously estimates intervariable lead-lag effects and intravariable growth patterns. Furthermore, DCSM allows statistical comparison of alternative hypotheses concerning the time-lagged associations.

The current study employs bivariate DCSM (BDCSM) to investigate bidirectional relationships between three repeat measures of social support and cognition in the Whitehall II cohort, enabling rigorous evaluation of social causation and health selection processes. Given that high-quality social relationships may be more important than social network size in preserving cognitive abilities (Amieva et al., 2010), we specifically assessed types of support transmitted (i.e., confiding support, practical support) and supportive role fulfillment (i.e., negative aspects of relationships) by close social ties that provide the most reliable (Aartsen et al., 2004) and emotionally rewarding (Carstensen, Fung, & Charles, 2003) support as people age. Confiding support includes provision of empathy and

information, whereas practical support involves tangible aid and helping behaviors (Gottlieb & Bergen, 2010). Conversely, well-intentioned support may elicit social strain if the recipient finds support is unsuitable, intrusive, or overcontrolling (Rook, 1984). Two domains of cognitive function, namely executive function and memory, were investigated in view of the cognitive-domain-specific associations reported previously (Gow, Corley, Starr, & Deary, 2013; Liao et al., 2014).

Method

Study Population

The Whitehall II cohort recruited 10,308 participants from 20 London based civil service departments in 1985–1988. At study baseline, all participants underwent clinical health check-ups and completed self-administrated questionnaires. Subsequent data collection alternated between postal questionnaires alone and postal questionnaires accompanied by clinical check-ups (Marmot & Brunner, 2005). The current study used the parallel repeat measures of cognition and social support over a 10-year period at Phases 5 (1997–1999), 7 (2002–2004), and 9 (2007–2009). The University College London Medical School Committee on ethics of human research approved the Whitehall II study.

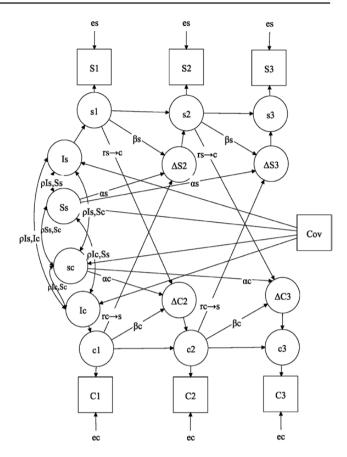
Cognitive Function

Executive function was derived from three tests: the Alice Heim 4-I test (AH4-I), an inductive reasoning test, consisting of 65 verbal and numeric items to be completed within 10 min, and two tests of verbal fluency, phonemic fluency and semantic fluency, where participants were instructed to recall in writing as many words beginning with "S" (phonemic) and as many animal names (semantic) as possible in 1 min. The verbal fluency tests involve both linguistic (storage and retrieval) and fluent (speed and efficiency) components. Despite their knowledge-based nature, the verbal fluency tests are widely used to measure executive function (Bryan & Luszcz, 2000). A composite score of executive function was created by first standardizing the raw scores of these three tests into Z-scores (mean = 0; SD = 1) based on Phase 5 mean and SD; then these Z-scores were averaged to yield executive function scores. Confirmatory factor analysis supports the construction of the composite executive function score, with the factor loadings of 0.69 for AH4-I, 0.71 for phonemic fluency, and 0.84 for semantic fluency.

Short-term verbal memory was measured by a 20-word audiotaped list of single- or double-syllable words presented at 2-s intervals, which participants were required to recall in writing over 2 min. Included cognitive tests had high test–retest reliability (0.67–0.89) within 3 months (Singh-Manoux et al., 2012).

Social Support

Social support was measured by the Close Persons Questionnaire, which had good test-retest reliabilities over a 4-week interval (0.71–0.88; Stansfeld & Marmot, 1992). Factor analysis identified three subscales (Stansfeld & Marmot, 1992): confiding support, practical support, and negative aspects of close relationships. Confiding support (seven items, Cronbach's $\alpha = 0.86$), referring to confiding and emotional support, included being given information and guidance, wanting to confide, boosting self-esteem, and sharing interest. Practical support (three items, Cronbach's $\alpha = 0.80$) indicated tangible help received. Negative aspects of close relationships (four items, Cronbach's $\alpha = 0.65$) captured adverse interactions and inadequate support. Repeated measures of social support were scaled to Z-scores analogous to that of cognition, where means and SDs at Phase 5 were used as referents.


Covariates

Age, sex, ethnicity, longstanding illness, depressive symptoms, and prevalent chronic diseases including coronary heart disease, stroke, diabetes, or cancer measured at Phase 5 were used. Education and employment grades (i.e., clerical or support grades [low], professional or executive grades [medium], and administrative grades [high]), as indicators for socioeconomic position, were adjusted for given their positive association with social support (Ajrouch, Blandon, & Antonucci, 2005) and cognition (Singh-Manoux, Richards, & Marmot, 2005). To control for the potential effect of life events on changes in the identity of the closest person, marital history from Phase 5 to 9 was included with five categories, always married (referent), always unmarried (always single, divorced, or widowed), became unmarried (married at Phase 5 and became single, divorced, or widowed in following wave(s)), remarried (divorced or widowed at Phase 5 and remarried in subsequent wave(s)), and intermittent patterns (moved in and out of marriage more than once during the follow-up).

Statistical Procedures

BDCSM was used to investigate the bidirectional timelagged relationships between social support and cognitive measure. Figure 1 depicts a path diagram of BDCSM applied to the three repeated measurements of social support (S_{1-3}) and cognition (C_{1-3}) assessed at Phases 5, 7, and 9 with 5-year intervals. Altogether six separate sets of analyses were carried out (2 cognitive measures × 3 measures of social support).

Under the classical true score theory, each repeated measure at time point *t* for individual *n* can be decomposed into a latent true score plus an independent time-invariant measurement error (e.g., $S_{(t)n} = s_{(t)n} + e_n$; McArdle, 2009). Latent changes over 5 years between two adjacent

Figure 1. Path diagram of a conditional bivariate dual change score model (BDCSM). Observed social relationships $(S_{1,3})$ and cognition $(C_{1,3})$ are presented by squares, with their corresponding latent true scores $(s_{1,3'}, c_{1,3})$ presented by circles. Time-invariant errors are *es*, *ec*. ΔSt and ΔCt are error-free latent changes at time *t*. Intercepts (Is, Ic) are anchored atTime 1, representing the reliable proportion of variance at Time 1. Overall change factors (slope: *Ss, Sc*) indicate the common constant linear component of change scores. Regression pathways are represented by one-headed arrows and variance and covariances by two-headed arrows. Unlabeled pathways are fixed to 1, except for the regression paths with the covariates (Cov). α = constant change component, β = autoproportion, and $r_{c \rightarrow s}$ or $r_{s \rightarrow c}$ = coupling parameter.

measures of social support were labeled as $\Delta S (s_{(t)} - s_{(t-1)})$ and cognition as $\Delta C (c_{(t)} - c_{(t-1)})$, which were the reliable changes measured in *SD* units for their corresponding measures separated from errors $(e_s, e_c; McArdle, 2009)$. The latent change score in one variable was defined by three additive components: (a) the constant regression α , usually constrained to be one, referring to the latent linear slope (S_s, S_c) ; (b) the autoproportion β , proportional to the variable's preceding value; and (c) the coupling effect γ , indicating the timedependent effect of one variable on subsequent change in the other. Latent change scores of social support (s) and cognitive function (c) at time *t* for individual *n* can be written as,

$$\Delta S(t)_n = \alpha_s \times s_{sn} + \beta_s \times s(t-1)_n + r_{c \to s} \times c(t-1)_n$$

And

$$\Delta C(t)_n = \alpha_c \times s_{cn} + \beta_c \times c(t-1)_n + r_{s \to c} \times s(t-1)_n$$

The substantive interpretation of the coupling parameter γ was evaluated via fitting four models comparing alternative hypotheses: (a) full coupling model, assuming bidirectional influences between social support and cognition: (b) social causation model, assuming unidirectional influence from social support to latent changes in cognition $(r_{c \to c} = 0)$; (c) health selection model, assuming unidirectional influence from cognition onto latent changes in social support $(r_{s\to c} = 0)$; and (d) no coupling model, assuming independent latent changes between social support and cognition (both γ 's = 0). Compared with the full coupling model, a significant loss in goodness-of-fit for alternative nested models suggested the necessity to allow bidirectional coupling effects between social support and cognition. If there was no significant loss in goodness-of-fit, the more parsimonious model was chosen.

Multiple fit indices were used to assess the goodness-of-fit. Log-likelihood ratio test and Bayesian information criterion compared model fit between nested models. The Tucker–Lewis index (TLI), the comparative fit index (CFI), and the root mean square error of approximation (RMSEA) indicate the fit of the hypothesized models with the observed data. Cutoff values close to 0.95 were used to determine a good fit for TLI and CFI, and ≤0.06 for RMSEA (Ferrer & McArdle, 2010).

All BDCSMs controlled forage and sex on the intercepts and slopes to avoid spurious associations. The best fitting BDCSM were then controlled for other timeinvariant covariates and marital history over follow-up. Supplementary analyses were conducted restricted to a subsample with complete data for social support and cognition at all three waves and among those who remained married and consistently nominated their spouse as the closest person. We also reanalyzed the data stratifying by sex and age (by mean age 55 years of Phase 5), considering previous sex-specific (Thomas, 2011) and age-group-specific (Ellwardt et al., 2013) findings.

Models were estimated by Mplus v7 (Muthén & Muthén, 2012). Missing data were handled with the full information maximum likelihood procedure, which uses both partially and fully complete cases to estimate parameters under the assumption of missing at random (Enders & Bandalos, 2001). Robust maximum likelihood estimation was used to provide corrected standard errors adjusted for non-normality of the data.

Results

Analyses were based on 6,863 participants who completed at least one cognitive test (n = 7,495) and one measure of social support (n = 7,908) from Phase 5 to 9 and had data on other covariates. Included participants tended to be younger, male and white, better educated, and employed in higher grades than those not included. Over the 10-year followup, 368 (5.4%) had died and 680 (9.9%) did not respond or had withdrawn from the study sample. Social support measures did not vary by participation status (p value range .21 to .91). Participants who dropped out were likely to have low baseline cognitive scores (p < .001). Table 1 displays Z-scores of cognition and social support. The study sample had a mean age of 55.8 years at analysis baseline. The majority were white males, 41% had a high university qualification and 43% had a high employment grade. Although half reported longstanding illness, only 13% were depressed and had a diagnosed chronic disease. Nearly 70% participants remained married during follow-up.

Table 2 gives the statistical comparison between alternative BDCSMs. For executive function and confiding support, results from goodness-of-fit indices indicated that health selection was the preferred model (γ_{c} = -0.11, 95% confidence interval [CI] = -0.22, -0.01). There was no evidence suggesting confiding support had effect on executive function ($\gamma_{s\to c} = -0.05$, 95% CI = -0.17, 0.07). As such, constraining the lagged influence from confiding support to changes in executive function to zero was not associated with loss in model fit, corrected $\Delta \chi^2$ (1, n = 6.859) = 0.61, p = .44, whereas the other models resulted in significant loss of fit. Likewise, the health selection model was also preferred for the dynamics between executive function and practical support, with a leading effect from executive function on subsequent changes in practical support ($r_{c \to s} = 0.18, 95\%$ CI = 0.06, 0.30). The coupling parameters between executive function and negative aspects of close relationships were virtually zero (γ for both directions -0.04, 95% CI = -0.22, 0.14); thus, no coupling model was preferred, corrected $\Delta \chi^2$ (2, n = 6,862 = 0.36, p = .84. The preferred models were similar for memory and social support, namely, health selection for confiding and practical support and no coupling for negative aspects of close relationships (lower part of Table 2).

Table 3 presents estimates from fully adjusted health selection models (The no-coupling associations of negative aspects of close relationships and cognition were not shown). As regards confiding support (first and second columns), negative coupling parameters from either measure of cognition indicated that preceding high levels of cognition predicted less improvement in confiding support (negative deviations from the positive mean slope), adjusted for the effects of autoregression and covariates. Similarly, high levels of cognition tended to positively influence subsequent changes in practical support (third and fourth columns). The paired change equations are (numbers in square brackets indicate deviations around mean slopes),

 $\Delta Confiding(t)_n = 0.22 \pm [0.37] - 0.41 Confiding(t-1)_n - 0.11 Executive(t-1)_n$ $\Delta Executive(t)_n = 0.00 \pm [0.36] - 0.53 Executive(t-1)_n,$

 $\Delta Confiding(t)_{y} = 0.21 \pm [0.39] - 0.41 Confiding(t-1)_{y} - 0.22 Memory(t-1)_{y}$

 $\Delta Memory(t)_{\mu} = -0.16 \pm [0.00] - 0.05 Memory(t-1)_{\mu},$

 $\Delta Practical(t)_{u} = -0.08 \pm [0.32] - 0.35 Practical(t-1)_{u} + 0.18 Executive(t-1)_{u}$

 $\Delta Executive(t)_{n} = 0.00 \pm [0.36] - 0.53 Executive(t-1)_{n}$

 $\Delta Practical(t)_n = -0.06 \pm [0.37] - 0.38 Practical(t-1)_n + 0.39 Memory(t-1)_n$

 $\Delta Memory(t)_n = -0.17 \pm [0.00] - 0.04 Memory(t-1)_n.$

5			

Table 1. Descriptive Statistics for Variables Used in the Analysis ($n = 6,863$)

	Measurement occasion		
	Phase 5	Phase 7	Phase 9
Variable	1997–1999	2002–2004	2007–2009
Executive function ^a			
Ν	5,970	6,324	6,045
Mean (SD)	0.00 (1.00)	-0.28 (0.96)	-0.36 (0.94)
Memory ^a			
Ν	6,017	6,349	6,060
Mean (SD)	0.00 (1.00)	-0.03 (0.99)	-0.26 (0.94)
Confiding support ^a			
Ν	6,954	6,631	6,475
Mean (SD)	0.00 (1.00)	0.04 (1.00)	0.10 (1.01)
Practical support ^a			
Ν	6,979	6,633	6,472
Mean (SD)	0.00 (1.00)	-0.06 (0.99)	-0.15 (0.99)
Negative aspects of close relationships ^a			
Ν	6,964	6,624	6,478
Mean (SD)	0.00 (1.00)	-0.11 (0.97)	-0.14 (0.95)
Mean age, years (SD)	55.86 (6.03)		
Male (%)	70.8		
White (%)	92.3		
University qualification (%)	41.0		
High employment grade (%)	42.8		
Had longstanding illness (%)	49.8		
Had depressive symptoms (%)	13.0		
Prevalent chronic disease ^b (%)	13.9		
Always married ^c (%)	69.9		

Note: ^aAll measures of cognitive function and social support were Z-scored based on Phase 5 means and standard deviations. ^bPrevalent chronic disease was diagnosed coronary heart disease, stroke, diabetes, or cancer. ^cAlways married were those who remained married over Phases 5–9.

These equations represent 5-year changes in each variable as a function of itself and the other variable conditional on other covariates included. For instance, regarding the first pair of equations, confiding support was expected to increase by 0.22 (\pm 0.37) units over the next 5 years. This increase was decelerated if the previous level of confiding support (-0.41) or executive function (-0.11) is high. On the other hand, executive function was expected to change by 0.00 (\pm 0.36) on average, which was negatively influenced by preceding cognitive level (-0.53) only.

To visualize the expected changes in theses bivariate systems, vector fields (Boker & McArdle, 1995) were plotted to jointly interpret these changes alongside correlations between intercepts and slopes. A given pair of coordinates is a bivariate starting point, and the directional arrow is a display of the expected pair of 5-year changes from this point (McArdle & Grimm, 2010). As illustrated in Figure 2A and C, participants with initial low levels of confiding support and cognition, perceived evident increases in confiding support. These increases were more gradual for those with higher starting levels of confiding support (y-axis) or higher preceding levels of executive function (*x*-axis). Changes in executive function, however, only depended on its own initial scores. As for practical support and cognition (Figure 2B and D), participants who started with higher levels of practical support were more likely to decline (*y*-axis), while higher preceding levels of cognition (*x*-axis) decelerated these processes. Changes in cognition again were not affected by levels of practical support.

Virtually identical estimates for the dynamic associations were obtained from the restricted subsample (n = 4,086) with complete data for 3 measurement occasions as well as among participants who remained married and consistently nominated their spouse as the closest person (n = 3,623). Similar dynamics were also shown in sex- and age-stratified analyses, indicating sex- and age-invariant dynamic associations (Supplementary Appendix 1 and 2).

Discussion

We investigated the bidirectional relationships between three aspects of social support and cognition over a 10-year follow-up from middle to early old age. Our findings show that a better cognition at preceding stage was related to

				Goodness-of-	fit indices				
β _c	β_s	γ_{c-s}	γ_{s-c}	$\overline{Corrected \ \chi^2}$	<i>p</i> for Lr test	BIC	TLI	CFI	RMSEA
1									
-0.53 (0.03)	-0.37 (0.12)	-0.11 (0.05)	-0.05 (0.06)	-37,637.3	_	75,522	0.99	1.00	0.02
-0.53 (0.03)	-0.30 (0.12)	O ^a	-0.05 (0.06)	-37,639.4	.05	75,517	0.99	1.00	0.02
-0.52 (0.03)	-0.37 (0.12)	-0.11 (0.05)	0 ^a	-37,637.7	.44	75,514	0.99	0.99	0.02
-0.52 (0.03)	-0.30 (0.12)	0 ^a	0 ^a	-37,639.7	.12	75,509	0.99	0.99	0.02
-0.51 (0.04)	-0.36 (0.14)	0.18 (0.06)	-0.12 (0.08)	-38,379.2	_	77,006	0.99	1.00	0.02
-0.50 (0.04)	-0.19 (0.16)	0 ^a	-0.13 (0.09)	-38,383.3	.004	77,005	0.99	0.99	0.02
-0.52 (0.03)	-0.34 (0.14)	0.18 (0.06)	0ª	-38,381.0	.12	77,000	0.99	1.00	0.02
-0.52 (0.03)	-0.18 (0.16)	0 ^a	0 ^a	-38,385.0	.009	77,000	0.99	0.99	0.01
	-	-0.04 (0.09)	-0.04 (0.09)	-38,446.8	_	77,141	0.99	1.00	0.02
-0.51 (0.05)	-0.49 (0.14)	O ^a	-0.04 (0.09)	-38,446.9	.69	77,132	0.99	1.00	0.01
-0.52 (0.03)	-0.44 (0.22)	-0.04 (0.09)	O ^a	-38,446.9	.68	77,132	0.99	1.00	0.01
-0.52 (0.03)	-0.49 (0.14)	O ^a	0 ^a	-38,447.0	.84	77,124	0.99	1.00	0.02
				-					
-0.06 (0.01)	-0.38 (0.13)	-0.22 (0.11)	0.00 (0.01)	-43,882.9	_	87,978	0.99	0.98	0.04
-0.06 (0.01)	-0.31 (0.12)	O ^a	0.00 (0.01)	-49,291.7	.07	87,973	0.98	0.99	0.03
-0.06 (0.01)	-0.38 (0.13)	-0.22 (0.11)	O ^a	-43,883.0	.77	87,969	0.99	0.99	0.03
-0.06 (0.01)	-0.31 (0.12)	O ^a	0 ^a	-43,884.9	.17	87,964	0.98	0.99	0.03
				-					
-0.06 (0.01)	-0.39 (0.14)	0.40 (0.13)	-0.00 (0.01)	-44,626.7	_	89,465	0.97	0.98	0.04
-0.06 (0.01)	-0.19 (0.16)	O ^a	-0.00 (0.01)	-44,631.3	.003	89,466	0.97	0.98	0.04
-0.06 (0.01)	-0.38 (0.14)	0.39 (0.13)	O ^a	-44,626.9	.57	89,457	0.98	0.98	0.04
-0.06 (0.01)	-0.19 (0.16)	0ª	0ª	-	.07	89,457	0.98	0.98	0.04
()	()					,			
	1	-0.18 (0.19)	0.01 (0.01)	-44,691.2	_	89,594	0.98	0.96	0.03
-0.06 (0.01)	-0.51 (0.13)	0ª	0.01 (0.01)	-44,692.0	.31	89,587	0.98	0.97	0.03
-0.06 (0.01)	()	-0.15 (0.18)	0 ^a	,	.41	,	0.98	0.97	0.03
-0.06 (0.01)	-0.50 (0.13)	0ª	0ª	-44,692.2	.43	89,579	0.98	0.98	0.03
	-0.53 (0.03) -0.53 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.51 (0.05) -0.51 (0.05) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.03) -0.52 (0.01) -0.06 (0.01)	$\begin{array}{c} -0.53 \ (0.03) & -0.37 \ (0.12) \\ -0.53 \ (0.03) & -0.30 \ (0.12) \\ -0.52 \ (0.03) & -0.37 \ (0.12) \\ -0.52 \ (0.03) & -0.37 \ (0.12) \\ -0.52 \ (0.03) & -0.30 \ (0.12) \\ \end{array}$ $\begin{array}{c} -0.51 \ (0.04) & -0.36 \ (0.14) \\ -0.50 \ (0.04) & -0.19 \ (0.16) \\ -0.52 \ (0.03) & -0.34 \ (0.14) \\ -0.52 \ (0.03) & -0.18 \ (0.16) \\ \end{array}$ $\begin{array}{c} \text{close relationships} \\ -0.51 \ (0.05) & -0.44 \ (0.22) \\ -0.51 \ (0.05) & -0.49 \ (0.14) \\ -0.52 \ (0.03) & -0.44 \ (0.22) \\ -0.52 \ (0.03) & -0.49 \ (0.14) \\ \end{array}$ $\begin{array}{c} -0.06 \ (0.01) & -0.38 \ (0.13) \\ -0.06 \ (0.01) & -0.31 \ (0.12) \\ -0.06 \ (0.01) & -0.39 \ (0.14) \\ -0.06 \ (0.01) & -0.19 \ (0.16) \\ \text{close relationships} \\ -0.06 \ (0.01) & -0.19 \ (0.16) \\ \text{close relationships} \\ -0.06 \ (0.01) & -0.19 \ (0.16) \\ \text{close relationships} \\ -0.06 \ (0.01) & -0.19 \ (0.16) \\ \text{close relationships} \\ -0.06 \ (0.01) & -0.51 \ (0.13) \\ -0.06 \ (0.01) & -0.51 \ (0.13) \\ -0.06 \ (0.01) & -0.42 \ (0.21) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{c} \qquad \beta_{s} \qquad \gamma_{c-s} \qquad \gamma_{s-c} \qquad \text{Corrected } \chi^{2}$ $-0.53 (0.03) -0.37 (0.12) -0.11 (0.05) -0.05 (0.06) -37,637.3$ $-0.53 (0.03) -0.30 (0.12) \qquad 0^{a} \qquad -0.05 (0.06) -37,639.4$ $-0.52 (0.03) -0.37 (0.12) -0.11 (0.05) \qquad 0^{a} \qquad -37,637.7$ $-0.52 (0.03) -0.30 (0.12) \qquad 0^{a} \qquad 0^{a} \qquad -37,639.7$ $-0.51 (0.04) -0.36 (0.14) \qquad 0.18 (0.06) \qquad -0.12 (0.08) \qquad -38,379.2$ $-0.50 (0.04) -0.19 (0.16) \qquad 0^{a} \qquad -0.13 (0.09) \qquad -38,383.3$ $-0.52 (0.03) -0.34 (0.14) \qquad 0.18 (0.06) \qquad 0^{a} \qquad -38,381.0$ $-0.52 (0.03) -0.18 (0.16) \qquad 0^{a} \qquad 0^{a} \qquad -38,385.0$ close relationships $-0.51 (0.05) -0.44 (0.22) -0.04 (0.09) -0.04 (0.09) -38,446.8$ $-0.51 (0.05) -0.44 (0.22) -0.04 (0.09) \qquad 0^{a} \qquad -38,446.9$ $-0.52 (0.03) -0.44 (0.22) -0.04 (0.09) \qquad 0^{a} \qquad -38,446.9$ $-0.52 (0.03) -0.49 (0.14) \qquad 0^{a} \qquad 0^{a} \qquad -38,446.9$ $-0.52 (0.03) -0.49 (0.14) \qquad 0^{a} \qquad 0^{a} \qquad -43,882.9$ $-0.06 (0.01) -0.38 (0.13) -0.22 (0.11) \qquad 0.00 (0.01) -43,882.9$ $-0.06 (0.01) -0.31 (0.12) \qquad 0^{a} \qquad 0^{a} \qquad -43,883.0$ $-0.06 (0.01) -0.39 (0.14) \qquad 0.40 (0.13) -0.00 (0.01) -44,626.7$ $-0.06 (0.01) -0.39 (0.14) \qquad 0.40 (0.13) -0.00 (0.01) -44,626.7$ $-0.06 (0.01) -0.39 (0.14) \qquad 0.40 (0.13) -0.00 (0.01) -44,626.7$ $-0.06 (0.01) -0.19 (0.16) \qquad 0^{a} \qquad -43,884.9$ $-0.06 (0.01) -0.19 (0.16) \qquad 0^{a} \qquad -44,626.9$ $-0.06 (0.01) -0.19 (0.16) \qquad 0^{a} \qquad 0^{a} \qquad -44,626.9$ $-0.06 (0.01) -0.31 (0.12) \qquad 0^{a} \qquad 0^{a} \qquad -44,626.9$ $-0.06 (0.01) -0.51 (0.13) \qquad 0^{a} \qquad 0^{a} \qquad -44,621.2$ $-0.06 (0.01) -0.51 (0.13) \qquad 0^{a} \qquad 0^{a} \qquad -44,621.2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\beta_{c} \qquad \beta_{s} \qquad \gamma_{c*} \qquad \gamma_{r*c} \qquad Corrected \chi^{2} \qquad p \text{ for } Lr \text{ test } BIC$ $= 0.53 (0.03) = 0.37 (0.12) = 0.11 (0.05) = -0.05 (0.06) = -37,637.3 \qquad - 75,522$ $= 0.53 (0.03) = 0.30 (0.12) = 0^{\circ} \qquad -0.05 (0.06) = -37,637.3 \qquad - 75,517$ $= 0.52 (0.03) = -0.37 (0.12) = -0.11 (0.05) = 0^{\circ} \qquad -37,637.7 \qquad .44 \qquad .75,514$ $= 0.52 (0.03) = -0.30 (0.12) = 0^{\circ} \qquad 0^{\circ} \qquad -37,637.7 \qquad .44 \qquad .75,519$ $= 0.51 (0.04) = -0.36 (0.14) = 0.18 (0.06) = -0.12 (0.08) = -38,383.3 \qquad .004 \qquad .77,005$ $= 0.52 (0.03) = -0.34 (0.14) = 0.18 (0.06) = 0^{\circ} = -38,381.0 \qquad .12 \qquad .77,000$ $= -0.52 (0.03) = -0.34 (0.14) = 0.18 (0.06) = 0^{\circ} = -38,385.0 \qquad .009 \qquad .77,000$ $= 0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = -0.04 (0.09) = -38,446.8 \qquad - 77,141$ $= -0.51 (0.05) = -0.44 (0.22) = -0.04 (0.09) = -0.04 (0.09) = -38,446.9 \qquad .68 \qquad .77,132$ $= -0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = 0^{\circ} = -38,446.9 \qquad .68 \qquad .77,132$ $= -0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = 0^{\circ} = -38,446.9 \qquad .68 \qquad .77,132$ $= -0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = 0^{\circ} = -38,446.9 \qquad .68 \qquad .77,132$ $= -0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = 0^{\circ} = -38,446.9 \qquad .68 \qquad .77,132$ $= -0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = 0^{\circ} = -38,446.9 \qquad .68 \qquad .77,132$ $= -0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = 0^{\circ} = -38,446.9 \qquad .68 \qquad .77,132$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0.00 (0.01) = -43,882.9 \qquad - 87,978$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0^{\circ} = -38,484.9 \qquad .17 \qquad .87,974$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0^{\circ} = -43,883.0 \qquad .77 \qquad .87,973$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0^{\circ} = -43,883.0 \qquad .77 \qquad .87,974$ $= -0.06 (0.01) = -0.38 (0.14) = 0.39 (0.13) = 0^{\circ} = -0.00 (0.01) = -44,626.7 \qquad - 89,465$ $= -0.06 (0.01) = -0.38 (0.14) = 0.39 (0.13) = 0^{\circ} = -0.00 (0.01) = -44,626.7 \qquad - 89,465$ $= -0.06 (0.01) = -0.19 (0.16) = 0^{\circ} = -0.00 (0.01) = -44,626.7 \qquad - 89,465$ $= -0.06 (0.01) = -0.19 (0.16) = 0^{\circ} = -0.00 (0.01) = -44,626.7 \qquad - 89,594$ $= -0.06 (0.01) = -0.19 (0.16) = 0^{\circ} = -0.00 (0$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\beta_{c} \qquad \beta_{s} \qquad \gamma_{cs} \qquad \gamma_{cs} \qquad Corrected \chi^{2} \qquad p \text{ for } Lr \text{ test } BIC \qquad TL1 \qquad CFI$ $= 0.53 (0.03) = -0.37 (0.12) = -0.11 (0.05) = -0.05 (0.06) = -37,637.3 \qquad - \qquad 75,522 = 0.99 = 1.00$ $= 0.53 (0.03) = -0.30 (0.12) = 0^{a} \qquad -0.05 (0.06) = -37,637.3 \qquad - \qquad 75,517 = 0.99 = 1.00$ $= 0.52 (0.03) = -0.37 (0.12) = -0.11 (0.05) = 0^{a} \qquad -37,637.7 \qquad .44 \qquad 75,514 = 0.99 = 0.99$ $= -0.52 (0.03) = -0.37 (0.12) = 0^{-1} (0.06) = 0^{a} \qquad -37,637.7 \qquad .44 \qquad 75,514 = 0.99 = 0.99$ $= -0.51 (0.04) = -0.36 (0.14) = 0.18 (0.06) = -0.12 (0.08) = -38,383.3 = .004 = 77,005 = 0.99 = 1.00$ $= -0.50 (0.04) = -0.13 (0.14) = 0.18 (0.06) = 0^{a} \qquad -38,381.0 = 12 = 77,000 = 0.99 = 1.00$ $= -0.52 (0.03) = -0.34 (0.14) = 0.18 (0.06) = 0^{a} \qquad -38,385.0 = .009 = 77,000 = 0.99 = 1.00$ $= -0.51 (0.05) = -0.44 (0.22) = -0.04 (0.09) = -0.04 (0.09) = -38,446.8 \qquad - \qquad 77,141 = 0.99 = 1.00$ $= -0.51 (0.05) = -0.44 (0.22) = -0.04 (0.09) = -0.04 (0.09) = -38,446.8 \qquad - \qquad 77,141 = 0.99 = 1.00$ $= -0.51 (0.05) = -0.44 (0.22) = -0.04 (0.09) = -38,446.9 = .68 = 77,132 = 0.99 = 1.00$ $= -0.52 (0.03) = -0.44 (0.22) = -0.04 (0.09) = 0^{a} \qquad -38,447.0 \qquad .84 \qquad 77,124 = 0.99 = 1.00$ $= -0.52 (0.03) = -0.49 (0.14) = 0^{a} \qquad 0^{a} \qquad -38,447.0 \qquad .84 \qquad 77,124 = 0.99 = 1.00$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0.00 (0.01) = -43,882.9 \qquad - \qquad 87,978 = 0.99$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0.00 (0.01) = -43,883.0 = .77 \qquad 87,969 = 0.99$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0^{a} \qquad -43,884.9 \qquad .17 \qquad 87,964 \qquad 0.98 \qquad 0.99$ $= -0.06 (0.01) = -0.38 (0.13) = -0.22 (0.11) = 0^{a} \qquad -43,884.9 \qquad .17 \qquad 87,964 \qquad 0.98 \qquad 0.99$ $= -0.06 (0.01) = -0.38 (0.14) \qquad 0.39 (0.13) = 0^{a} \qquad -44,626.7 \qquad - \qquad 89,465 \qquad 0.97 \qquad 0.98$ $= -0.06 (0.01) = -0.18 (0.19) = 0.01 (0.01) = -44,626.7 \qquad - \qquad 89,465 \qquad 0.97 \qquad 0.98$ $= -0.06 (0.01) = -0.18 (0.19) = 0.01 (0.01) = -44,626.7 \qquad - \qquad 89,457 \qquad 0.98 \qquad 0.98$ $= -0.06 (0.01) = -0.14 (0.21) = -0.18 (0.19) = 0.01 (0.01) = -44,621.3 \qquad .07 \qquad 89,457 \qquad 0.98 \qquad 0.98$ $= -0.06 (0.01) = -0.41 (0.21) = -0.18 (0.19) \qquad 0.01 $

Table 2. Comparisons of Bivariate Dual Change Score Models for Social Support and Cognition

Note: β_c , β_s = autoproportion parameter for cognitive function (C) and social relationships (S); γ_{cs} = coupling parameter from cognition to social relationships; γ_{ec} = coupling parameter from social relationships to cognition. BIC = Bayesian information criterion; CFI = comparative fit Index; corrected χ^2 statistics adjusted for non-normal distribution; Lr tests = log-likelihood ratio tests, where a significant loss (p < .05) in model fit suggests full coupling model is better; RMSEA = root mean square error of approximation; TLI = Tucker–Lewis index. Cutoff values of 0.95 for TLI and CFI and 0.06 for RMSEA indicate a good model fit. Full coupling assumes bidirectional influence between social support and cognition (referent); social causation assumes unidirectional influence from social support to latent changes in cognition only; health selection assumes unidirectional influence from cognition. All models adjusted for age and sex. Standard errors in parentheses.

less positive changes in confiding support and less negative changes in practical support over the next 5 years, whereas there was no detectable influence from either measure of social support on subsequent changes in cognition. For negative aspects of close relationships, this study did not find directional relationships either to or from cognition.

Our findings endorse health selection process between cognition and social support as in some studies (Green, Rebok, & Lyketsos, 2008; Stoykova et al., 2011; Thomas, 2011), but not social causation (Ellwardt et al., 2013) or bidirectional associations (Li & Zhang, 2015) suggested by others. The current study further indicates that the influence of cognitive function on subsequent changes in social support varied by support type and the initial level of social support. The positive influence from preceding cognition on change in practical support may reflect the accessibility of practical support. Better cognition may facilitate individuals to build a strong social bank (Antonucci, Fiori, Birditt, & Jackey, 2010), the credit of which can be redeemed to fulfill their needs for support (Lang et al., 2009), presenting better maintenance when the initial level of practical support was high, or more rapid response to the needs when the initial level of practical support was low. On the other hand, the less positive improvement in confiding support

	Confiding support		Executive function		Practical support	port	Executive function	ction
Parameter	β	95% CI	β	95% CI	ß	95% CI	9	95% CI
Autoproportion β	-0.41**	(-0.65, -0.17)	-0.53***	(-0.59, -0.46)	-0.35**	(-0.58, -0.12)	-0.53 * * *	(-0.59, -0.46)
Coupling γ	-0.11*	(-0.22, -0.01)	0^{a}	I	0.18^{**}	(0.06, 0.29)	0^{a}	I
Initial mean μ_{I}^{b}	0.16^{*}	(0.12, 0.21)	0.59***	(0.56, 0.63)	0.21^{***}	(0.17, 0.25)	0.59***	(0.56, 0.63)
Slope mean µs ^b	0.22 * * *	(0.14, 0.31)	0.00	(-0.03, 0.04)	-0.08*	(-0.14, -0.01)	0.00	(-0.03, 0.04)
Initial variance σ_I^2	0.61^{***}	(0.58, 0.64)	0.50 * * *	(0.47, 0.51)	0.43	(0.40, 0.46)	0.50***	(0.47, 0.51)
Slope variance σ_s^2	0.14*	(0.03, 0.24)	0.13 * * *	(0.10, 0.16)	0.10^{**}	(0.03, 0.16)	0.13^{***}	(0.10, 0.16)
Correlation ρ_{LS}	0.18^{**}		0.22^{***}		0.09		0.22***	
$\rho I_{s} I_{c} \rho s_{s} s_{c}$	-0.02		0.02		-0.02**		-0.05^{**}	
pl',S, ps,I	-0.01*		0.06^{*}		-0.02**		-0.09**	
ian	0.32 * * *		0.11^{***}		0.40^{***}		0.11 * * *	
Parameter	Confiding support		Memory		Practical support	port	Memory	
Autoproportion β	-0.41 **	(-0.65, -0.18)	-0.05 * * *	(-0.08, -0.02)	-0.38**	(-0.62, -0.15)	-0.04	(-0.08, -0.01)
Coupling γ	-0.22*	(-0.45, -0.01)	0^{a}	Ι	0.39 * *	(0.15, 0.65)	0^{a}	Ι
Initial mean μ_{I}^{b}	0.17	(0.12, 0.21)	0.26^{***}	(0.22, 0.31)	0.21^{***}	(0.17, 0.25)	0.27***	(0.23, 0.31)
Slope mean μs ^b	0.21^{***}	(0.13, 0.29)	-0.16^{***}	(-0.19, -0.14)	-0.06*	(-0.13, -0.00)	-0.17	(-0.19, -0.14)
Initial variance σ_I^2	0.61^{***}	(0.58, 0.64)	0.36^{***}	(0.33, 0.39)	0.43 * * *	(0.40, 0.46)	0.35***	(0.32, 0.39)
Slope variance σ_s^2	0.15*	(0.03, 0.27)	$0^{\rm c}$	I	0.14	(0.04, 0.24)	$0^{\rm c}$	
Correlation ρ_{LS}	0.19^{**}		0c		0.10^{*}		0c	
$\rho I_s, I_c$ $\rho s_s, s_c$	0.00		0°		-0.01		Oc	
	Oc		0.08		$0^{\rm c}$		-0.14	
ian	0.32^{***}		0.51 * * *		0.40		0.51 * * *	
Note: 95% CI = 95% confidence support or cognition; S_{j} , S_{c} are slc *Constrained to be zero as no stat qualification, a high employment * $p < .05$, ** $p < .01$, *** $p < .001$.	Note: 95% CI = 95% confidence interval. Autoproportion β is the self-feedback effect from variables' preceding value; coupling γ is the lead-lag effect of one variable on subsequent change in the other; $I_{\beta}I_{c}$ are intercepts for support or cognition, $S_{\beta}S_{c}$ are slopes for support or cognition. Support or cognition, $S_{\beta}S_{c}$ are slopes for support or cognition. Constrained to be zero as no statistically significant effects from any measure of social support to subsequent changes in cognition was found. ^b Intercepts and slopes were conditional for 55 years, white male, with a university qualification, a high employment grade, had no longstanding illness or chronic disease, and were not depressed at Phase 5, and remained married over Phase 9. cRandom effect was not identified for memory slope.	ion β is the self-feedback ef gnition. ects from any measure of so inding illness or chronic dis	fect from variables' prece cial support to subseque ease, and were not depre	ck effect from variables' preceding value; coupling γ is the lead-lag effect of one variable on subsequent change in the other; $I_{\rho}I_{c}$ are intercepts for of social support to subsequent changes in cognition was found. ⁶ Intercepts and slopes were conditional for 55 years, white male, with a university c disease, and were not depressed at Phase 5, and remained married over Phase 5 to Phase 9. cRandom effect was not identified for memory slope.	lead-lag effect of on ound. ^b Intercepts an I married over Phas	ie variable on subsequent , d slopes were conditional e 5 to Phase 9. ^c Random e	change in the other; for 55 years, white r effect was not identif	$I_{\rho}I_{c}$ are intercepts for nale, with a university ed for memory slope.

Table 3. Parameter Estimates From Fully Adjusted Health Selection Models for Social Support and Cognitive Function

Journals of Gerontology: PSYCHOLOGICAL SCIENCES, 2017, Vol. 00, No. 00

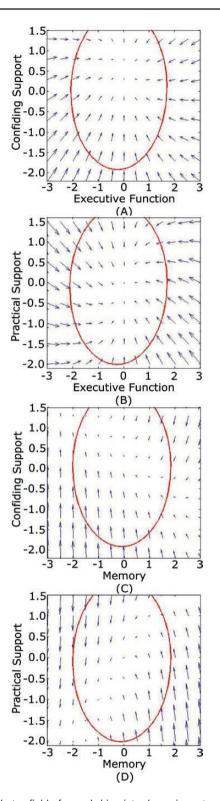


Figure 2. Vector fields for each bivariate dynamic system between social support and executive function (A and B) and memory (C and B) in the Whitehall II cohort. The ellipsoid encompasses 95% of the data.

may be partially due to the already high initial levels of confiding support for those participants with better cognition to begin with, who may also be more aware of the vicissitudes of life and be sensitive to negative interpersonal exchanges (Bourne, Fox, Starr, Deary, & Whalley, 2007; Staudinger, Dörner, & Mickler, 2005).

A previous study using the Whitehall II cohort examined social support over midlife (age range 37-68 years) as explanatory factors for variations in subsequent cognitive decline (Liao et al., 2014). We found that midlife cumulative high level of negative support was associated with faster decline in executive function, with a 10-year change accelerated by -0.04 SD (95% CI = -0.08, -0.01). In the present analysis, we allowed both social support and cognition to change from mid to late life (age range 45–80 years) and investigated the reciprocity of these dynamics. There was no evidence that differences in negative support affected 5-year changes in executive function (-0.04, 95%) CI = -0.22, 0.14), although the point estimate suggested an adverse influence of negative support on cognitive decline as in the earlier study. Addressing different specific research questions, these two sets of analyses are not directly comparable. Given the modest effect size estimated previously (Liao et al., 2014) and the wide CI obtained here, it is plausible that current analysis lacked power to identify the weak effect of negative support on cognitive decline, which may also require longer time to demonstrate. Meanwhile, in light of the socioemotional selectivity theory (Carstensen et al., 2003), the quality of interpersonal relationships improves as people age. Findings from these two studies may indicate that the pernicious effects of mid-age high negative support on cognitive aging may be mitigated once the age-related decline in negative support was taken into account.

The current study is the only analysis that applied BDCSM in the context of social support and cognitive decline. By using BDCSM, this study rigorously evaluated alternative hypotheses, accounting for measurement error and systematic growth of both variables. The coupling effects of cognition on subsequent changes in social support represent deviations from the systematic growth (Lövdén, Ghisletta, & Lindenberger, 2005), above and beyond autoproportional effect and covariates included. Existing literature using cross-lagged regression (Li & Zhang, 2015) or PLCM (Ellwardt et al., 2013) cannot fully capture these dynamic features available in BDCSM. Based on different change functions, comparison between alternative statistical techniques is not straightforward (Ferrer & McArdle, 2003; Grimm, 2007). BDCSM used in our study advances other statistical models in investigating hypotheses involving dynamics and growth (Bollen & Curran, 2006; Ferrer & McArdle, 2010; Ferrer et al., 2007; Lövdén, Bergman, Adolfsson, Lindenberger, & Nilsson, 2005; McArdle, 2009).

Furthermore, although previous studies assessed the diversity of social network (Li & Zhang, 2015) or social engagement (e.g., volunteering, religious services; Thomas, 2011), our study examined the quality of support in relation to cognitive aging. It is likely that productive social

interaction rather than receptive social support is cognitively stimulating (Park, Gutchess, Meade, & Stine-Morrow, 2007). We measured social support using the self-reported Close Persons Questionnaire, which evaluates the "perceived received quality of support" from close relationships based on past experiences (Stansfeld & Marmot, 1992). Being weakly associated with support actually received (Bolger, Zuckerman, & Kessler, 2000), perceived support reflects a combination of truth, personality (Bourne et al., 2007; Zammit, Starr, Johnson, & Deary, 2014), and other relational schemas (Reis, Clark, & Holmes, 2004). Close relationships, being central to people's life, tend to be associated with more responsibilities than other peripheral social ties (Reis et al., 2004). Our findings hence may reflect different expectation in support responsiveness (Gray, 2009).

Several limitations of our study should be considered. First, our findings were based on the Whitehall II occupational cohort of British civil servants, which is not representative of the general population. Nevertheless, the level of social support (Stafford, McMunn, Zaninotto, & Nazroo, 2011) and age-related cognitive decline (Allerhand, Gale, & Deary, 2014) were comparable between our sample and the English Longitudinal Study of Ageing. Further, as the analytic sample comprises relatively healthy and youngerold persons, the extent to which observed associations are affected by dementia cases is likely to be marginal (only 57 participants had mini-mental state examination < 23 over the follow-up). Second, in this aging cohort, selective attrition is associated with low cognition but not with social support. Such nonrandom dropout dependent on cognitive competency may reduce statistical power to detect the influence of social support on the limited range of cognitive changes. That is, attrition was associated with a greater reduction in the variance of cognition than in the variance of social support, which may result in the leading effect of cognition over social support. This speculation needs to be verified by joint models that deal with missing not at random (Enders & Bandalos, 2001).

Third, in constructing the latent change equations, it is necessary to model the autoregression process. This approach however may introduce bias analogous to baseline adjustment. Although the DCSM estimates the true latent change scores free from measurement error (McArdle, 2009), we cannot entirely exclude the possibility that other unmeasured common causes associated with both baseline measures and change scores may bias the estimations obtained (Glymour, Weuve, Berkman, Kawachi, & Robins, 2005). Nevertheless, potential bias, due to baseline adjustment, is likely to be negligible for the associations of interest because the cross-sectional associations between social support and cognition were nonsignificant (p value range .15 to .77). Fourth, the current longitudinal panel included only three measurement occasions having both social support and cognitive measures available in the Whitehall II cohort. The wide CI around the coupling

parameter suggests our study may be underpowered to detect some effects of interest. Additional phases would increase the power and gain statistical precision and facilitate the investigation on discontinuities in dynamics (Ferrer et al., 2007). Last, most of the covariates were time invariant because allowing them to vary would substantially increase modeling complexity. Moreover, change in some covariates, for example, depressive symptoms, could be direct consequences of the previous status of social support or cognition, and hence should be considered as mediators rather than as confounders.

Our study systematically investigated alternative dynamic hypotheses between social support and cognition from middle to early old age using BDCSM. Our findings suggest the health selection process, namely, cognition modified subsequent 5-year change in confiding and practical support, but not vice versa. This study contributes to the understanding of the interplay between psychosocial and cognitive aging.

Supplementary Material

Please visit the article online at http://gerontologist.oxfordjournals.org/ to view supplementary material.

Funding

The Whitehall II study is supported by grants from the Medical Research Council (grant K013351), the British Heart Foundation (grant RG/13/2/30098), and the National Institute on Aging, U.S. National Institutes of Health (grant AG13196). J. Head was partially supported by the Economic and Social Research Council (grant ES/K01336X/1) and the National Institute on Aging (grant R01AG013196). The funding bodies did not play any role in the study design; the collection, analysis, and interpretation of the data; the writing of the manuscript; or the decision to submit the paper for publication.

Acknowledgments

We thank the research scientists, study and data managers, and clinical and administrative staff of the Whitehall II study. Whitehall II data, protocols, and other metadata are available to bona fide researchers for research purposes. Please refer to the Whitehall II data sharing policy at http://www.ucl.ac.uk/whitehallII/data-sharing. The majority of the analysis was conducted during the doctoral training of J. Liao at UCL.

Conflict of Interest

There is no conflict of interest to declare.

References

Aartsen, M. J., van Tilburg, T., Smits, C. H. M., & Knipscheer, K. C. P. M. (2004). A longitudinal study of the impact of physical and cognitive decline on the personal network in old age. Journal of Social and Personal Relationships, 21, 249–266. doi:10.1177/0265407504041386

- Ajrouch, K. J., Blandon, A. Y., & Antonucci, T. C. (2005). Social networks among men and women: The effects of age and socioeconomic status. *The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences*, 60, 311–317. doi:10.1093/geronb/60.6.S311
- Allerhand, M., Gale, C. R., & Deary, I. J. (2014). The dynamic relationship between cognitive function and positive well-being in older people: A prospective study using the English Longitudinal Study of Aging. *Psychology and Aging*, 29, 306. doi:10.1037/a0036551
- Amieva, H., Stoykova, R., Matharan, F., Helmer, C., Antonucci, T. C., & Dartigues, J.-F. (2010). What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. *Psychosomatic Medicine*, 72, 905–911. doi:10.1097/PSY.0b013e3181f5e121
- Antonucci, T. C., Fiori, K. L., Birditt, K., & Jackey, L. M. H. (2010). Convoys of social relations: Integrating life-span and life-course perspectives. In R. M. Lerner, M. E. Lamb, & A. M. Freund (Eds.), *The handbook of life-span development: Social and emotional development* (Vol. 2, pp. 193–209). Hoboken, NJ: John Wiley & Sons.
- Béland, F., Zunzunegui, M. V., Alvarado, B., Otero, A., & Del Ser, T. (2005). Trajectories of cognitive decline and social relations. *The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences*, 60, 320–330. doi:10.1093/geronb/60.6.P320
- Berkman, L. F., Glass, T., Brissette, I., & Seeman, T. E. (2000). From social integration to health: Durkheim in the new millennium. Social Science & Medicine, 51, 843–857. doi:10.1016/ S0277-9536(00)00065-4
- Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. *Experimental Aging Research*, 21, 77–93. doi:10.1080/03610739508254269
- Bolger, N., Zuckerman, A., & Kessler, R. C. (2000). Invisible support and adjustment to stress. *Journal of Personality and Social Psychology*, 79, 953. doi:10.1037/0022-3514.79.6.953
- Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective (Vol. 467). Hoboken, NJ: John Wiley & Sons.
- Bourne, V. J., Fox, H. C., Starr, J. M., Deary, I. J., & Whalley, L. J. (2007). Social support in later life: Examining the roles of childhood and adulthood cognition. *Personality and Individual Differences*, 43, 937–948. doi:10.1016/j.paid.2007.02.016
- Bryan, J., & Luszcz, M. A. (2000). Measurement of executive function: Considerations for detecting adult age differences. *Journal* of Clinical and Experimental Neuropsychology, 22, 40–55. doi:10.1076/1380-3395(200002)22:1;1-8;FT040
- Carstensen, L. L., Fung, H. H., & Charles, S. T. (2003). Socioemotional selectivity theory and the regulation of emotion in the second half of life. *Motivation and Emotion*, 27, 103–123. doi:10.102 3/A:1024569803230
- Ellwardt, L., Aartsen, M., Deeg, D., & Steverink, N. (2013). Does loneliness mediate the relation between social support and cognitive functioning in later life? *Social Science & Medicine*, 98, 116–124. doi:10.1016/j.socscimed.2013.09.002
- Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. *Structural Equation Modeling*, 8, 430–457. doi:10.1207/S15328007SEM0803_5

- Ferrer, E., & McArdle, J. J. (2003). Alternative structural models for multivariate longitudinal data analysis. *Structural Equation Modeling*, 10, 493–524. doi:10.1207/S15328007SEM1004_1
- Ferrer, E., & McArdle, J. J. (2010). Longitudinal modeling of developmental changes in psychological research. *Current Directions in Psychological Science*, **19**, 149–154. doi:10.1177/0963721410370300
- Ferrer, E., McArdle, J. J., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, S. E. (2007). Longitudinal models of developmental dynamics between reading and cognition from childhood to adolescence. *Developmental Psychology*, 43, 1460. doi:10.1037/0012-1649.43.6.1460
- Fratiglioni, L., Wang, H.-X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on occurrence of dementia: A community-based longitudinal study. *Lancet*, 355, 1315. doi:10.1016/S0140-6736(00)02113-9
- Glymour, M. M., Weuve, J., Berkman, L. F., Kawachi, I., & Robins, J. M. (2005). When is baseline adjustment useful in analyses of change? An example with education and cognitive change. *American Journal of Epidemiology*, 162, 267–278. doi:10.1093/ aje/kwi187
- Gottlieb, B. H., & Bergen, A. E. (2010). Social support concepts and measures. *Journal of Psychosomatic Research*, 69, 511–520. doi:10.1016/j.jpsychores.2009.10.001
- Gow, A. J., Corley, J., Starr, J. M., & Deary, I. J. (2013). Which social network or support factors are associated with cognitive abilities in old age. *Gerontology*, 59, 454–463. doi:10.1159/000351265
- Gray, A. (2009). The social capital of older people. Ageing and Society, 29, 5–31. doi:10.1017/S0144686X08007617
- Green, A. F., Rebok, G., & Lyketsos, C. G. (2008). Influence of social network characteristics on cognition and functional status with aging. *International Journal of Geriatric Psychiatry*, 23, 972– 978. doi:10.1002/gps.2023
- Grimm, K. J. (2007). Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. *International Journal of Behavioral Development*, 31, 328–339. doi:10.1177/0165025407077754
- Gurung, R. A. R., Taylor, S. E., & Seeman, T. E. (2003). Accounting for changes in social support among married older adults: Insights from the MacArthur Studies of Successful Aging. *Psychology* and Aging, 18, 487–496. doi:10.1037/0882-7974.18.3.487
- Lang, F. R. (2001). Regulation of social relationships in later adulthood. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 56, 321–326. doi:10.1093/ geronb/56.6.P321
- Lang, F. R., Wagner, J., & Neyer, F. J. (2009). Interpersonal functioning across the lifespan: Two principles of relationship regulation. *Advances in Life Course Research*, 14, 40–51. doi:10.1016/j. alcr.2009.03.004
- Li, T., & Zhang, Y. (2015). Social network types and the health of older adults: Exploring reciprocal associations. Social Science & Medicine, 130, 59–68. doi:10.1016/j.socscimed.2015.02.007
- Liao, J., Head, J., Kumari, M., Stansfeld, S., Kivimaki, M., Singh-Manoux, A., & Brunner, E. J. (2014). Negative aspects of close relationships as risk factors for cognitive aging. *American Journal* of *Epidemiology*, **180**, 1118–1125. doi:10.1093/aje/kwu236
- Lövdén, M., Bergman, L., Adolfsson, R., Lindenberger, U., & Nilsson, L.-G. (2005). Studying individual aging in an interindividual context: Typical paths of age-related, dementia-related, and

mortality-related cognitive development in old age. *Psychology and Aging*, **20**, 303. doi:10.1037/0882-7974.20.2.303

- Lövdén, M., Ghisletta, P., & Lindenberger, U. (2005). Social participation attenuates decline in perceptual speed in old and very old age. *Psychology and Aging*, **20**, 423. doi:10.1037/0882-7974.20.3.423
- Mackinnon, A., Christensen, H., Hofer, S. M., Korten, A. E., & Jorm, A. F. (2003). Use it and still lose it? The association between activity and cognitive performance established using latent growth techniques in a community sample. *Aging, Neuropsychology,* and Cognition, 10, 215–229. doi:10.1076/anec.10.3.215.16451
- Marmot, M., & Brunner, E. (2005). Cohort profile: The Whitehall II study. *International Journal of Epidemiology*, 34, 251–256. doi:10.1093/ije/dyh372
- McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. *Annual Review of Psychology*, 60, 577–605. doi:10.1146/annurev.psych.60.110707.163612
- McArdle, J. J., & Grimm, K. J. (2010). Five steps in latent curve and latent change score modeling with longitudinal data. In K. van Montfort, J. Oud, & A. Satorra (Eds.), *Longitudinal research with latent variables* (pp. 245–273). Heidelberg, Germany: Springer.
- McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), *New methods* for the analysis of change (pp. 139–175). Washington, DC: American Psychological Association. doi:10.1037/10409-005
- Muthén, L. K., & Muthén, B. O. (2012). *Mplus users' guide* (7th ed.). Los Angeles, CA: Muthén & Muthén.
- Park, D. C., Gutchess, A. H., Meade, M. L., & Stine-Morrow, E. A. L. (2007). Improving cognitive function in older adults: Nontraditional approaches. *The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences*, 62, 45–52. doi:10.1093/geronb/62.special_issue_1.45
- Reis, H. T., Clark, M. S., & Holmes, J. G. (2004). Perceived partner responsiveness as an organizing construct in the study of intimacy and closeness. *Handbook of Closeness and Intimacy*, 2, 201–225.
- Robitaille, A., Muniz, G., Piccinin, A. M., Johansson, B., & Hofer, S. M. (2012). Multivariate longitudinal modeling of cognitive aging: Associations among change and variation in processing speed and visuospatial ability. *The Journal of Gerontopsychology and Geriatric Psychiatry*, 25, 15. doi:10.1024/1662-9647/a000051
- Rogosa, D. (1980). A critique of cross-lagged correlation. *Psychological Bulletin*, 88, 245. doi:10.1037/0033-2909.88.2.245
- Rook, K. S. (1984). The negative side of social interaction: Impact on psychological well-being. *Journal of Personality and Social Psychology*, 46, 1097–1108. doi:10.1037/0022-3514.46.5.1097
- Seeman, T. E., Lusignolo, T. M., Albert, M., & Berkman, L. (2001). Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur

studies of successful aging. *Health Psychology*, 20, 243–255. doi:10.1037/0278-6133.20.4.243

- Seeman, T. E., Miller-Martinez, D. M., Merkin, S. S., Lachman, M. E., Tun, P. A., & Karlamangla, A. S. (2010). Histories of social engagement and adult cognition: Midlife in the US study. *The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences*. doi:10.1093/geronb/gbq091.
- Shouse, J., Rowe, S. V., & Mast, B. T. (2013). Depression and cognitive functioning as predictors of social network size. *Gerontologist*, 51, 157–157. doi:10.1080/07317115.2012.749320
- Singh-Manoux, A., Kivimaki, M., Glymour, M. M., Elbaz, A., Berr, C., Ebmeier, K. P., & Dugravot, A. (2012). Timing of onset of cognitive decline: Results from Whitehall II prospective cohort study. *BMJ*, 344, 7621–7628. doi:10.1016/j. annepidem.2004.10.007
- Singh-Manoux, A., Richards, M., & Marmot, M. (2005). Socioeconomic position across the life course: How does it relate to cognitive function in mid-life? *Annals of Epidemiology*, 15, 572–578. doi:10.1016/j.annepidem.2004.10.007
- Stafford, M., McMunn, A., Zaninotto, P., & Nazroo, J. (2011). Positive and negative exchanges in social relationships as predictors of depression: Evidence from the English longitudinal study of aging. *Journal of Aging and Health*, 23, 607–628. doi:10.1177/0898264310392992
- Stansfeld, S., & Marmot, M. (1992). Deriving a survey measure of social support: The reliability and validity of the Close Persons Questionnaire. Social Science & Medicine, 35, 1027–1035. doi:10.1016/0277-9536(92)90242-I
- Staudinger, U. M., Dörner, J., & Mickler, C. (2005). Wisdom and personality. In R. J. Sternberg & J. Jordan (Eds.), A handbook of wisdom: Psychological perspectives (pp. 191–219). New York, NY: Cambridge University Press.
- Stoykova, R., Matharan, F., Dartigues, J. F., & Amieva, H. (2011). Impact of social network on cognitive performances and age-related cognitive decline across a 20-year follow-up. *International Psychogeriatrics*, 23, 1405–1412. doi:10.1017/ S1041610211001165
- Thomas, P. A. (2011). Gender, social engagement, and limitations in late life. Social Science & Medicine, 73, 1428–1435. doi:10.1016/j.socscimed.2011.07.035
- van Tilburg, T., & Broese van Groenou, M. (2002). Network and health changes among older Dutch adults. *Journal of Social Issues*, 58, 697–713. doi:10.1111/1540–4560.00041
- Washburn, A. M., Sands, L. P., & Walton, P. J. (2003). Assessment of social cognition in frail older adults and its association with social functioning in the nursing home. *The Gerontologist*, 43, 203–212. doi:10.1093/geront/43.2.203
- Zammit, A. R., Starr, J. M., Johnson, W., & Deary, I. J. (2014). Patterns and associates of cognitive function, psychosocial wellbeing and health in the Lothian Birth Cohort 1936. BMC Geriatrics, 14, 53. doi:10.1186/1471-2318-14-53