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Elastic X-ray scattering from state-selected molecules

Thomas Northey,1 Andrés Moreno Carrascosa,1 Steffen Schäfer,2 and Adam
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EH9 3FJ Edinburgh, UK
2)Aix-Marseille Université and Institut Matériaux Microélectronique Nanosciences de
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(Dated: 16 June 2016)

The characterization of electronic, vibrational and rotational states using elastic (coherent)

X-ray scattering is considered. The scattering is calculated directly from complete active

space self-consistent field (CAS-SCF) level ab-initio wavefunctions for H2 molecules in

the ground-state X1Σ+
g and first-excited EF1Σ+

g electronic states. The calculated scatter-

ing is compared to recent experimental measurements (Y.-W. Liu et al. Phys. Rev. A 89,

014502 (2014)), and the influence of vibrational and rotational states on the observed sig-

nal is examined. The scaling of the scattering calculations with basis set is quantified, and

it is found that energy convergence of the ab-initio calculations is a good indicator of the

quality of the scattering calculations.

a)Electronic mail: Adam.Kirrander@ed.ac.uk
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I. INTRODUCTION

Ever since Bragg’s original discovery in 1912, X-ray scattering has dramatically advanced our

understanding of the structure of matter, ranging from atoms to proteins, crystals and solids. De-

spite the historical importance of gas-phase X-ray scattering1–5, electron scattering came to domi-

nate experiments in the gas-phase on account of the greater scattering cross-sections of electrons6.

Now, however, rapid development of synchrotron sources, detectors, and new X-ray Free-Electron

Lasers (XFELs)7–12 has sparked renewed interest in gas-phase X-ray scattering13–21.

Recent double differential, and hence energy-resolved, synchrotron-based measurements of

X-ray scattering cross-sections13–16 include the measurement of elastic X-ray scattering from

gas-phase H2 in the electronic ground-state13. Furthermore, the technology to orient and align

molecules experimentally is developing rapidly22–24. For instance, Bartlett et al.23 report retention

of initial polarisation for >100 ns for H2(ν = 1, J = 2,M = 0, 2) and in a recent experimental

article, Mukherjee et al.24 demonstrate population transfer of 73% using Stark-induced adiabatic

Raman passage25. It therefore appears timely to consider probing of gas-phase molecules in

specific vibrational, rotational, and electronic states by elastic X-ray scattering.

Theoretically the characterization of electronic states using elastic X-ray scattering has been

considered previously26–28, and metastable electronically excited states have been detected indi-

rectly in experiments via changes in molecular geometry29,30. In the current article, we account

not only for the electronic state of the molecules, but simultaneously account for the electronic,

vibrational and rotational degrees of freedom, thus providing a complete state-specific character-

ization of the molecular states. The calculations are based on our recently developed ab-initio

X-ray diffraction (AIXRD) method28, which in this article is linked to vibrational and rotational

motion, and are benchmarked against earlier calculations31 and recent experiments13. In this con-

text, it is worth mentioning related work on electron scattering that examined, separately, the the-

oretical signatures of vibrational32 or rotational33,34 states of molecules, with experimental results

for partially aligned and state-selected molecules35,36 demonstrating the potential of state-selective

scattering. A related area is scattering from aligned molecules, which aims to minimize rotational

averaging and thus enable measurement of scattering factors in the molecular frame. This has been

considered theoretically37–39 and realized experimentally using electrons40 and X-rays17.
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II. THEORY

According to Fermi’s golden rule, the total X-ray scattering cross section is41,

dS
dΩ

=

(
dσ
dΩ

)
Th

∑
n

(
ωn

ω0

) ∣∣∣〈φn|L̂ |φα̃〉
∣∣∣2 , (1)

where (dσ/dΩ)Th =
(
e2/mec2

)
K is the Thomson cross section of a free electron, with me and e the

mass and charge of an electron, c the velocity of light, and K the polarization factor. The ωn and

ω0 in Eq. (1) are the angular frequencies of scattered and incident X-rays, respectively, and φn and

φα̃ are the final and initial states. The scattering operator is defined as,

L̂ =

Nel∑
j=1

eıqr j , (2)

where Nel is the number of electrons in the molecule, r j the coordinates of each electron, and

the momentum transfer vector, q = k0 − k, is defined as the difference between the incident and

the scattered wave vectors, with |k| = |k0| for elastic scattering. Formally, the sum runs over

all charged particles, but since particle mass appears in the denominator, only the electrons are

included in Eq. (2) with the (e2/me) factor incorporated into the Thomson cross section Eq. (1).

Using completeness and ignoring the pre-factor (ωn/ω0), the total scattering given by Eq. (1) can

be expressed in terms of the ground-state wavefunction and the relative position vectors of the

electrons42,
dS
dΩ

=

(
dσ
dΩ

)
Th
〈φα̃|

Nel∑
i, j

eıq(ri−r j)|φα̃〉, (3)

which can further be expressed in terms of the electron-pair distribution function43.

The diagonal, n=α̃, term in the sum in Eq. (1) corresponds to the elastic (coherent) scatter-

ing that plays a key role in X-ray structural determination44. In the following, we will examine

the elastic scattering cross-sections expressed without the pre-factors in Eq. (1), i.e. the structure

factor,

Ĩα̃(q) =
∣∣∣〈φα̃|L̂ |φα̃〉∣∣∣2 = |Lα̃α̃|2 , (4)

such that Ĩ is directly proportional to the elastic component of the total cross-section (dS/dΩ).

The molecular state α̃ does not only depend on electronic coordinates, but also on the nuclear

coordinates. Using the Born-Oppenheimer approximation and ignoring non-adiabatic couplings,
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the total wavefunction for state α̃ can be written as a direct product of rotational, vibrational and

electronic wavefunctions,

φα̃ = Ψrot
JKM(Ω)Ψvib

ν (R)Ψelec
α (r; R,Ω), (5)

where the electronic wavefunction, Ψelec
α (r; R,Ω), depends parametrically on the nuclear coordi-

nates R and on the orientation of the molecular frame specified by the rotational angles Ω =

(θ, φ, χ). The rotational wavefunction Ψrot
JKM(Ω) is characterized by the three rotational quantum

numbers J, K, and M, and the vibrational wavefunction Ψvib
ν

(R) by the vibrational quantum num-

bers ν. Since the scattering operator in Eq. (2) only acts on the electrons, we first evaluate the

scattering in terms of the fixed-nuclei form factor,

f 0
α (q; R,Ω) = 〈Ψelec

α |L̂ |Ψ
elec
α 〉 =

∫
ρα(r; R,Ω) eıqrdr, (6)

where evaluation of the bracket is equivalent to a Fourier transform of the electron density for

electronic state α, ρα(r; R,Ω). The form factor f 0
α (q; R,Ω) can be calculated directly from the ab

initio electronic wavefunction28,31,45. This can be done either via analytic Fourier transforms of

the Gaussian primitives that constitute the ab initio electronic wavefunction, or via a numerical

Fourier transform (FFT) of the electron density represented on a grid28. It is common in X-ray

crystallography to approximate the electron density by a sum of spherical isolated atom densities,

which gives rise to the independent atom model (IAM)28,44.

Finally, the (proportional) molecular elastic scattering in Eq. (4), Ĩα̃(q), can be written as a

convolution of f 0
α (q; R,Ω) over the probability distributions given by the rotational and vibrational

wavefunctions,

Ĩα̃(q) =

∣∣∣∣∣∫ |Ψrot
JKM(Ω)|2 |Ψvib

ν (R)|2 f 0
α (q; R,Ω) dR dΩ

∣∣∣∣∣2. (7)

For a diatomic, the rotational wavefunction is given by a spherical harmonic, YJM(θ, φ), with dΩ =

sin θdθdφ, and the vibrational wavefunction Ψvib
ν (R) is specified by the internuclear distance R and

a single vibrational quantum number ν.

As an aside, it is worth pointing out that for elastic scattering the above treatment is equivalent

to a Fourier transform of the total electron density, accounting for nuclear degrees of freedom. For

elastic scattering the scattering operator can be written in terms of the density operator,

L̂ =

∫
ρ̂e(r)eıqrd3r (8)
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with the total electron density ρ̂e(r) given by the operator, ρ̂e(r) =
∑Ne

j=1 δ(r − ri). This formulation

emphasizes that the elastic scattering occurs from the total electron density, giving an effective

form factor f 0
α̃ (q) that depends on the overall quantum state of the molecule. The advantage of this

equivalent perspective is that it emphasizes that, for instance, the shape of the electron density of

a diatomic molecule in the J = 0 rotational state is a spherical shell rather than a dumbbell.

III. COMPUTATIONAL

A. Electronic states and vibrational wavefunctions
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FIG. 1: Potential energy curves (PECs) for H2 X and EF 1Σ+
g states calculated at the

CAS(2, 2)-SCF and CAS(2, 7)-SCF level of theory with basis sets aug-cc-pVTZ and
aug-cc-pVQZ (results indistinguishable at the resolution of the figure). The reference PECs are
taken from Wolniewicz46,47. The probability distributions for vibrational states ν = 0, 1 are also

included (arbitrary units).

We consider the ground X1Σ+
g and first excited EF1Σ+

g electronic states of H2. The potential

energy curves (PECs) for these states are calculated using multi-configurational Complete Active

Space Self-Consistent Field theory at the CAS(2, 7)-SCF/aug-cc-pVQZ level using D2h symmetry.

The PECs are shown in Fig. 1 together with reference curves by Wolniewicz et al.46,47. A detailed

comparison of the present calculations and the reference data at the stationary points is made in

Table I. Overall, the present ab-initio calculations reproduce the reference curves well. The (2, 7)

active space, with seven molecular orbitals (MOs) shown in Fig. 2, is necessary for a correct

description at longer bond lengths, in particular to correctly predict the outer EF minimum, which

requires additional bonding molecular orbitals such as 3Ag, B2u and B3u, and for the ground-state at
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(a) B1u (b) Ag (c) Ag

(d) B3u (e) B2u

(f) Ag (g) B1u

FIG. 2: H2 CAS(2, 7)-SCF/aug-cc-pVQZ active space molecular orbitals (MOs) with D2h point
group symmetry labels, at the outer EF minimum (RF = 4.37475793 a0). From left to right the

molecular orbitals are ordered in terms of their energy.

Energy (Eh) CAS(2, 7) Reference |ECAS − ERef|

UX(R0) -1.17089198 -1.17447311 0.00358113

UEF(RE) -0.71554080 -0.71815235 0.00261155

UEF(RF) -0.70762693 -0.71451800 0.00689107

TABLE I: H2 ab-initio energies in atomic units calculated by CAS(2, 7)-SCF/aug-cc-pVQZ
(present calculations) and reference values from Wolniewicz et al.46,47. The absolute energy

difference between the two results is included in the third column. The comparison is done at the
stationary points of the CAS(2, 7) potentials (see Fig. 1), at the ground state minimum,

R0 = 1.40493984 a0, and at the inner and outer EF state minima, RE = 1.90495263 a0 and
RF = 4.37475793 a0. The maximum difference in stationary point position between the

CAS(2, 7)-SCF/aug-cc-pVQZ and the Wolniewicz calculations is 4R = 0.016 a0.

larger internuclear distances where for instance the B1u σ
∗ MO contributes. The failure of a smaller

(2, 2) active space at large R is demonstrated by the CAS(2, 2)-SCF PECs shown in Fig. 1. In the

following, the Wolniewicz reference curves are used to calculate the vibrational wavefunctions,

while the CAS-SCF ab-initio wavefunctions are used to calculate the electron density and the

elastic X-ray scattering.

The vibrational wavefunctions are integrated using a 5th order Runge-Kutte algorithm, with the
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orthonormality of the vibrational wavefunctions ensured via a Cholesky factorisation48. The cal-

culation is done using the Wolniewicz reference PECs46,47 and masses from the latest CODATA49.

The vibrational probability distributions for the ν = 0, 1 states on the X and EF potentials are

shown in Fig. 1. The EF potential wells are less steep than the X state, leading to wider vibra-

tional wavefunctions. The outer EF minimum supports two localized vibrational wavefunctions

with ν = 0, 1, with more excited vibrational wavefunctions spanning both EF minima50.

B. AIXRD calculations

0 2 4 6 8
q (a

0
-1)

0

20

40

60

|%
∆

I|

aug-cc-pVTZ

aug-cc-pVDZ

6-311++G**
6-31G**
6-31G
STO-3G
IAM

FIG. 3: Convergence of H2 elastic scattering as a function of basis set shown in terms of |%∆Ĩ(q)|
(see Eq. (9)), with CAS(2, 7)-SCF/aug-cc-pVQZ scattering calculations used as reference.

The elastic X-ray scattering is calculated directly from the electronic wavefunctions using the

ab-initio X-ray diffraction (AIXRD) method presented in an earlier article28. This approach relies

on analytical Fourier transforms of the Gaussian primitives that constitute the basis sets. Here,

we examine the convergence of the elastic X-ray scattering signal as a function of the basis set

and method for the H2 molecule. The comparison is made in terms of the rotationally-averaged

scattering, which produces radial curves that only depend on the momentum transfer q.

Fig. 3 shows the convergence of the X-ray elastic scattering for each method in terms of the

absolute percent difference, |%∆Ĩ(q)|, with the percent difference defined as,

%∆Ĩ(q) = 100
Ĩmethod − Ĩ0

Ĩ0
, (9)

where the reference scattering, Ĩ0, is calculated using the CAS(2, 7)-SCF/aug-cc-pVQZ method.
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METHOD Error (%) |E − ERef| Primitives Speed-up

Mean Max (10−2 Eh) Ng Ngp

IAM 44.1 59.0 - - 826.5

STO-3G 20.3 63.1 3.723 12 30 110.2

6-31G 7.9 20.5 2.819 16 56 59.0

6-31G∗∗ 3.4 10.1 1.011 28 90 36.7

6-311++G∗∗ 1.8 4.4 0.692 36 182 18.2

aug-cc-pVDZ 21.7 40.7 1.065 60 240 13.8

aug-cc-pVTZ 1.7 6.1 0.427 148 1122 3.0

aug-cc-pVQZa 0.0 0.0 0.358 300 3306 1.0
a Used as reference

TABLE II: Comparison of accuracy and speed for various levels of theory for scattering from the
X1Σ+

g ground state at R0 = 1.40493984 a0. The mean and maximum errors shown correspond to
the errors in Fig. 3, with the scattering from CAS(2, 7)-SCF/aug-cc-pVQZ taken as reference (see
Eq. (9)). The gap |E − Eref| between calculated energies and Wolniewicz reference value46 is used
as a proxy for ab-initio convergence. The speed of the scattering calculations scales linearly with
the number of non-zero unique Gaussian products per molecular orbital, Ngp, with the number of

Gaussian primitives given by Ng. The IAM calculation uses tabulated atomic form factors51.

All the listed ab-initio calculations are done at the CAS(2, 7)-SCF level, except for the STO-3G

and 6-31G where CAS(2, 2)-SCF is used. The calculations are done for the X1Σ+
g ground state

at bond length R0 = 1.40493984 a0, corresponding to the CAS(2, 7)-SCF/aug-cc-pVQZ X1Σ+
g

stationary point. In Table II the mean and the maximum absolute errors are given for each method.

The mean absolute error is defined as,

〈|%∆Ĩ(q)|〉 =
1

qmax − qmin

∫ qmax

qmin

|%∆Ĩ(q)| dq, (10)

with integration over the interval [qmin, qmax] = [0, 8.3] a−1
0 . The method closest to the reference

Ĩ0 result is the calculation that uses the aug-cc-pVTZ basis, with a mean 〈%∆Ĩ(q)〉 = 1.7%. The

6-311++G∗∗ calculation is a close second with 〈%∆Ĩ(q)〉 = 1.8%. The poorest performing cal-

culations are STO-3G, and somewhat surprising, the aug-cc-pVDZ. The comparative failure of

STO-3G, 6-31G, and aug-cc-pVDZ at high q is likely to be due to a poor description of electron

correlation and thus short-range features in the electron density.

8



The energy convergence of each ab-initio calculation relative the highly accurate Wolniewicz

reference value46, shown as |E − ERef| in Table II, predicts quite accurately the quality of the scat-

tering AIXRD results. The energy convergence |E − ERef| ranks correctly the four best-performing

methods, and identifies the three poorest performing ones. In terms of computational speed, also

listed in Table II, the AIXRD calculations scale linearly with Ngp, which is the number of non-zero

unique Gaussian products per molecular orbital. Note that Ngp < N2
g , where Ng is the number of

Gaussians primitives (in fact, Ngp ≈ N1.42
g in the present set of calculations). In terms of a practical

trade-off between accuracy and speed, AIXRD using the aug-cc-pVTZ basis performs almost as

well as the quadruple-zeta basis set with mean |%∆I(q)|=1.7 while being a factor three faster. The

6-311++G∗∗ basis provides an even better balance of speed and performance, with a factor 18

speed-up while maintaining a very low mean and maximum error, which might be of particular

benefit for calculations in larger molecules.

(a) Ab-initio (b) IAM

FIG. 4: Comparison of the electron densities implied by ab-initio calculations and the
independent atom model (IAM). The electron density 87% isosurfaces are shown for

ground-state H2 at the equilibrium bond-length. Fig. 4a shows the results for
CAS(2,7)-SCF/aug-cc-pVTZ, and Fig. 4b the corresponding IAM density.

The IAM method is also included in the comparisons presented in Fig. 3 and Table II. IAM is

based on tabulated atomic form factors51, and thus performs extremely well in terms of speed (>

800 speed-up), but rather poorly in terms of accuracy with a mean 〈|%∆I(q)|〉 = 44.1% deviation

from the reference. All examined AIXRD methods are significantly more accurate than the IAM,

especially in the important q < 6 a−1
0 range (q < 12 Å−1), as can be seen in Fig. 3. This is due to

a better overall description of the electron density compared to the IAM, which does not allow for

any distortion of the electron density due to chemical bonding. The difference in electron density

between ab-initio electronic structure calculations and IAM can be seen clearly in Fig. 4, which

shows electron density isosurfaces for the H2 ground-state. It is worth noting that the tabulated

IAM form factors are taken from Hartree-Fock level ab-initio calculations51.
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IV. RESULTS

A. Scattering from specific electronic states

0 2 4 6 8
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FIG. 5: Rotationally-averaged elastic X-ray scattering from the X and EF 1Σ+
g states in H2,

calculated at the ground-state equilibrium bond length, R0, and at the EF inner and outer minima,
RE and RF. The scattering is calculated at the CAS(2, 7)-SCF/aug-cc-pVTZ level. Previous

calculations by Bentley and Stewart31 are included for reference.
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ρ
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FIG. 6: Radially integrated electron density for the H2 X and EF 1Σ+
g electronic states (calculated

at the CAS(2, 7)-SCF/aug-cc-pVTZ level at internuclear distance R0), with the radial distance r
defined from the origin at the central point between the two nuclei.

We now consider the effect of different electronic states on the scattering. Figure 5 shows

rotationally averaged elastic scattering curves for the X and EF electronic states of H2 at three

different bond lengths: the ground-state equilibrium bond length, R0, and the EF inner and outer

minima, RE and RF. The quality of the calculations is confirmed by comparison to previous scat-
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tering curves calculated by Bentley and Stewart31 which utilised a Davidson-Jones expansion of

the essentially exact wavefunction for the H2 ground-state at equilibrium geometry.

Each X-ray scattering curve is distinct, showing that not only changes in bond length alter the

scattering but also changes in electronic structure. Vertical excitation from the ground X state

to the EF state leads to a more diffuse electron density, with a corresponding drop in scattering

intensity, in particular at small q (q ∈ [0, 1] a−1
0 ) since small q’s are sensitive to the overall size of

the electron density, commensurate with the general principles of Fourier transforms. A second

peak appears in the EF scattering at approximately q = 1.5 a−1
0 , corresponding to a distance of

approximately 4.2 a0 in real space using the reciprocal relation q = 2π/d. Examination of the

radially integrated electron density for the X and EF 1Σ+
g electronic states for internuclear distance

R = R0, reveals that the electron density of the X ground-state decays smoothly, leading to an

almost Gaussian scattering curve, while the EF electron density is concentrated in two shells,

their centra separated roughly by 4 a0, shown in Fig. 6. The main driver of this shift in electron

density is a change of occupancy in the Ag orbitals. In the ground state, the first Ag MO (Fig. 2b)

is highly occupied (occ=1.9634). After excitation, the second Ag MO (Fig. 2c) gains occupancy

(occ=0.8183).

Changes in bond length also affect the scattering strongly, as can be seen by comparing the

scattering curves for the EF state at bond lengths R0 and RE in Fig. 5, which are similar in shape

but shifted in q. It is hard to separate the effect of the bond length from the effect of the electronic

structure on the scattering, especially for a molecule like H2 with no core electrons to balance the

signal from the valence electrons. The difference between the scattering curves for X(R0→RF)

and EF(RE→RF) is due to a combination of changes in bond length and the composition of the

electronic wavefunction. For instance, at the inner EF minimum, RE, the first two Ag orbitals

are occupied (occ=1.1730 and occ=0.8175, respectively). These orbitals are almost Gaussian-

like and encompass both nuclei evenly. At the outer minimum, RF, the B1u orbital which has a

two-center character, becomes the most occupied (occ=1.0251 from occ=0.0075 at RE). At the

same time the second Ag orbital decreases in occupancy to occ=0.1094 and also acquires two-

center character, while the first Ag orbital retains its smooth shape and a relatively large occupancy

(occ=0.8324). There are other changes in occupancy, including that the more diffuse orbitals

such as B2u and B3u gain about 1% of total occupancy. This means that going from RE to RF the

electronic structure undergoes quite significant changes, making it difficult to decouple the effects

of electronic structure and bond length.
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B. Accounting for vibrations and rotations in scattering
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FIG. 7: H2
1Σ+

g X(ν = 0, 1, 2, 3) and EF(ν = 0, 1) rotationally averaged X-ray elastic scattering,
with the scattering at fixed bond length R=R0 included for reference. The scattering is calculated

at the CAS(2, 7)-SCF/aug-cc-pVTZ level.

We begin by investigating the effect of vibrations on the scattering when rotational averaging

is included. Rotationally averaged X-ray scattering curves are calculated from the H2
1Σ+

g X(ν =

0, 1, 2, 3) and EF(ν = 0, 1) states. These are shown in Fig. 7, which includes as reference the

scattering from rigid R = R0 molecules. It is clear that the electronic state change X → EF

leaves a stronger signature in the scattering than the vibrational transitions, with the difference

between vibrational states most noticable for high q (>3 a−1
0 ). The difference in signal due to

different vibrational states mostly relates to slight changes in the bond length distributions and

thus in ρ(r; R). The ν = 0 ground vibrational state scattering curves are very close to the rigid-

molecule R = R0 curves, since the ground vibrational state encompasses a rather narrow and nearly

symmetric distribution about the equilibrium bond length R0 (Fig. 1).

The difference between vibrational states becomes more apparent if the scattering signal is

not rotationally averaged. Scattering from specific electronic, vibrational and rotational states

ceases to be rotationally symmetric, such as the concentric rings in Fig. 11, and instead becomes a

function of the scattering angles θ and φ, such as the images in Fig. 8. The radial scattering angle

θ ∈ [0, π] relates to the amplitude of the momentum transfer vector as |q| = 2|k0| sin (θ/2). We

focus on the selectively excited states reported in Ref.23, which are 1Σ+
g X(ν = 1, J = 2,M = 0, 2).

In the experiments, these states retained polarisation for >100 ns, which is sufficiently long for a

hypothetical X-ray scattering experiment.
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FIG. 8: Detector images for elastic scattering from H2, calculated as the difference,
∆Ĩ(q) = ĨνJM(q) − Ĩ000(q), between specific rotational-vibrational states in the electronic

ground-state and the reference rotational-vibrational ground-state (ν = 0, J = 0,M = 0). The
scattering is calculated at the CAS(2, 7)-SCF/aug-cc-pVTZ level for the electronic ground-state X

1Σ+
g . The qmax = 1.4 a−1

0 in the images and the X-rays are incident along the y-axis in the
laboratory frame in which the rotational wavefunctions are defined.

Elastic scattering difference images for the (ν=0,J=1,M=0,1), the (ν=0,J=2,M=0,2), and the

(ν=1,J=2,M=0,2) are shown in Fig. 8, with the (ν=0,J=0, M=0) electronic ground-state used as

reference. The images are calculated such that the incoming X-rays align with the laboratory frame

y-axis, with the rotational states defined relative the laboratory z-axis. The electronic orbitals were
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FIG. 9: Square-amplitude of the spherical harmonics, |YJM(θ, φ)|2. The distance from the origin
corresponds to the value of |YJM(θ, φ)|2 in each direction - the colour and lighting are for aesthetic

purposes only. The angle θ is defined relative the z-axis, which coincides with a C∞ principal
rotation axis, and the origin is a point of inversion.

inspected for consistency with the symmetry-restricted D2h calculations used elsewhere in this

article. The signal strengths shown in Fig. 8 correspond to percent differences relative the 000

ground state of between −45% and 50%, i.e. quite significant changes. The detector images are

particularly apt at picking out changes in the rotational states, but also the vibrational states leave

stronger signatures than in the rotationally averaged curves considered previously, as evident when

comparing Fig. 8c and 8d, or 8e and 8f. The detector images for the M = 0 states are quite similar,

irrespective of quantum number J (the ν quantum number makes a bigger difference), as can be

seen by comparing Fig. 8a and 8c. The same holds true for |M| = J states, as can be seen by

comparing Fig. 8b and 8d. This can be directly attributed to the overall shapes of the rotational

wavefunctions, which are shown in Fig. 9. The M = 0 states have a dumbbell shape, while

|M| = J states are disc-shaped. Increasing J leads to a flatter disc, the effect of which is shown

in Fig. 10 which compares the scattering patterns for (ν=5,J=1,M=1) and (ν=5,J=0,M=9). The

higher angular momentum of the J = 9 state leads to a thinner disc, albeit this is limited by the

intrinsic radius of the H-atoms. The choice of a high vibrational quantum number, ν = 5 in this

case, emphasizes the effect by increasing the radius of the disc.

Finally, it is worth noticing the importance of the direction of the incoming X-ray. As evident
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FIG. 10: Difference scattering image, 4Ĩ = Ĩ511 − Ĩ599, for states (ν = 5, J = 1,M = 1) and
(ν = 5, J = 9,M = 9). The difference in scattering reflects the gradual flattening of the rotational

wavefunction, ultimately limited by the radius of the H-atoms.
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FIG. 11: Detector difference images calculated in the same manner as in Fig. 8, except that the
X-rays are incident along the laboratory frame z-axis. In every other respect, the two figures

above correspond to Figs. 8a-8b.

from Fig. 9, the square-amplitude of all spherical harmonics is symmetric around the z-axis. Figure

11 shows the scattering images that correspond to the images in Fig. 8a-8b when instead of being

orthogonal to the z-axis, the incoming X-ray is parallel. The symmetry, or lack thereof, with

respect of the X-ray is reflected in the scattering pattern.

C. Comparison to experiment

In a recent experiment, Liu et al. measured double differential cross-sections for H2
13, provid-

ing an opportunity to compare the present calculations to experimental data obtained at the Taiwan
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FIG. 12: Comparison to recent gas-phase H2 X-ray scattering experiment. Elastic scattering data
was obtained at the Taiwan Beamline BL12XU of SPring-8 with an incident photon energy of

about 9889 eV and an energy resolution of about 70 meV13. The theoretical scattering curves are
calculated using AIXRD as described in the present article, with wavefunctions calculated at the
CAS(2, 7)-SCF/aug-cc-pVTZ level, both with the internuclear distance fixed at the equilibrium

bond length, R0, and for the ν = 0 and ν = 1 vibrational states.

Beamline BL12XU at SPring-8. Importantly, the experiment used an energy-resolved spectrom-

eter with a resolution of about 70 meV to isolate the elastic signal, instead of recording the total

signal which otherwise contains contributions from inelastic and even ionization channels.

The experimental results, together with theoretical AIXRD curves calculated at the equilibrium

bond length R0, as well as for H2 vibrational states ν = 0 and ν = 1, are shown in Fig. 12.

The curves shown have been rotationally averaged, as appropriate for a thermal 8.94 atm gas at

equilibrium conditions. The R0 and ν = 0 curves are quite similar, as discussed previously, and it

would require high resolution and very small errorbars on the experiment to distinguish them. The

agreement between the calculated ν = 0 curve and the experimental data validates our method for

predicting molecular form factors based on ab-initio electronic structure calculations.

The scattering curve for the ν = 1 vibrational state of H2 is also included in the figure, but

has extremely low population at room-temperature thermal conditions. The ratio of the ν = 0

and ν = 1 populations at T = 298 K is N0/N1 = e−(E0−E1)/kT ≈ 1.6 × 109 according to the Boltz-

mann distribution, using Eν = hcν̃(ν + 1
2 ) with wavenumber ν̃ = 4382.87 cm−1 obtained from the

CAS(2, 7)-SCF/aug-cc-pVTZ calculation (the experimental reference value is 4401.21 cm−152).

However, it is apparent that for a non-negligible population of v > 0, it would become necessary

to consider the excited vibrational state in the X-ray scattering, at least for high q.
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V. DISCUSSION AND SUMMARY

The results in this article demonstrate that electronic structure leaves a strong signature in the

elastic scattering signal, in particular for molecules with a large proportion of valence electrons

as compared to core electrons. This is in agreement with previous work28, with scattering from

Rydberg states27,53,54 constituting an extreme example. It is therefore important to account for

electronic structure, and hence electron density, beyond the independent atom model (IAM) when

considering electronically excited states, or even vibrationally excited states that protrude beyond

any small region of the potential energy surface.

In the crystallography community, the shortcomings of IAM have been known for a long time.

One of the first efforts to go beyond IAM was due to Stewart et al.55, who used the hydrogen

molecule to extract bound-hydrogen-atom form factors more suited for the refinement of high-

resolution X-ray diffraction data obtained from organic molecular crystals. Stewart et al. then

introduced generalized atomic form factors determined from a finite multipole expansion of the

charge density about each nucleus56,57, with the Fourier-Bessel coefficients of the pseudoatom

radial density functions determined by a least-squares fit to the molecular form factor.

Although quite convenient, such pseudoatom approaches might be surpassed by the direct

AIXRD approach28. Certainly, for excited electronic states that cannot be reduced to a small

number of standard form factors, the AIXRD approach is by far the most effective and flexible.

In this article, we have investigated the convergence properties of AIXRD and find that it scales

linearly with the number of non-zero products of Gaussian primitives, Ngp, and that importantly,

the quality of the wavefunction and thus the scattering correlates with the energy convergence,

making it easy to assess the quality of the ab-initio scattering.

For vibrational states, we find that the signatures of specific states are strongest at large values

of the momentum transfer q. Also, one must note that it is in general not possible to separate

changes in scattering due to the bond length from changes due to the electronic structure. An in-

teresting observation in our calculations is that if rotational states can be prepared selectively, this

dramatically increases the information on the detector, not only in terms of identifying rotational

states but also vibrational states. Recent state-selective experiments that achieve a high popula-

tion transfer indicate that state-selective scattering might one day become experimental reality,

especially if combined with the large photon-flux of XFEL sources.

The ’spectroscopic’ techniques for state-selection are complemented by advances in molecular
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alignment by highly focussed laser fields58, which can be used to measure scattering form factors

in the molecular frame. However, in contrast to the spectroscopic techniques, the strong-field

methods excite rotational wavepackets or groups of states rather than single quantum states. Such

dynamic control can be quite powerful59–62, but may require further attention to the theoretical

description of the scattering63–65.

High-precision measurement of the differential cross section of X-ray elastic scattering from

H2
13 provides a welcome opportunity to examine molecular form factors and an interesting route

for the study of the electronic structure of atoms and molecules. The excellent agreement between

the experimental measurements and the calculations presented in this article hold promise that

this approach could be extended to a wider range of molecules28. In the future, the prospect of

identifying electronic states in conjunction with time-dependent ultrafast X-ray scattering could

enable complete characterization of reaction paths using X-ray scattering. Recent time-resolved

experiments18–20,66 combined with theory28,65,67 constitute an important first step towards this goal.
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