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Abstract 

The ST18 gene was proposed to act either as a tumor suppressor or as an oncogene in different 

human cancers, but direct evidence for its role in tumorigenesis was missing so far. Here, we 

demonstrate that ST18 is critical for tumor progression and maintenance in a mouse model of 

liver cancer, based on oncogenic transformation and adoptive transfer of primary precursor cells 

(hepatoblasts). ST18 mRNA and protein were detectable neither in the normal liver nor in 

cultured hepatoblasts, but were readily expressed following subcutaneous engraftment and tumor 

growth. ST18 expression in liver cells was induced by inflammatory cues, including acute or 

chronic inflammation in vivo, as well as co-culture with macrophages in vitro. Knocking down 

the ST18 mRNA in transplanted hepatoblasts delayed tumor progression. Induction of ST18 

knockdown in pre-established tumors, caused rapid tumor involution, associated with pervasive 

morphological changes, proliferative arrest and apoptosis in tumor cells, as well as depletion of 

tumor-associated macrophages, vascular ectasia and hemorrhage. Reciprocally, systemic 

depletion of macrophages in recipient animals had very similar phenotypic consequences, 

impairing either tumor development or maintenance, and suppressing ST18 expression in the 

hepatoblasts. Finally, RNA-seq profiling of ST18-depleted tumors prior to involution revealed 

down-regulation of inflammatory response genes, pointing to the suppression of NF-kB-

dependent transcription. Conclusion: ST18 expression in epithelial cells is induced by tumor-

associated macrophages, contributing to the reciprocal feed-forward loop between both cell types 

in liver tumorigenesis. Our findings warrant the exploration of means to interfere with ST18-

dependent epithelium-macrophage interactions in a therapeutic setting. 

Introduction:  

ST18 was originally identified as a candidate tumor suppressor in breast cancer, hence the 

name "Suppression of Tumorigenicity 18" (1). Successive studies revealed activation of the same 

gene in pediatric acute myeloid leukemia (2, 3) and hepatocellular carcinoma (HCC) (4), 

suggesting an oncogenic function of ST18. In particular, the mapping of integration sites of the 

endogenous retrotransposon L1 in hepatocellular carcinoma (HCC) led to the identification of 12 

tumor-specific L1 insertions, one of which activated ST18 (4).  

ST18 (also called NZF-3 or MYT3) is a member of the NZF/MyT1 family of transcription 

factors, a non-classical zinc finger family that includes two other members, neural zinc finger 
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factor-1 (NZF-1) and myelin transcription factor-1 (Myt1), with six C2HC-type fingers arranged 

in two main clusters, each of which might in principle bind DNA (1, 5, 6). The three genes are 

expressed in neural tissue and, based on expression patterns and over-expression experiments, 

are involved in the induction of neuronal differentiation (7). ST18 is expressed at low levels in a 

number of different rat tissues (including liver) and is required for fatty acid- and cytokine-

induced apoptosis in pancreatic ß-cells (8). Finally, RNA interference and mRNA profiling 

studies in human fibroblasts indicated that ST18 regulates pro-apoptotic and pro-inflammatory 

genes in response to TNF-α (5), although the relevance of these regulatory events in cancer 

remained unclear. 

Here, we unravel a critical role for ST18 in a mouse model of HCC based on the adoptive 

transfer of transformed mouse embryonic hepatoblasts (9). ST18 was undetectable in either 

cultured cells or normal livers, but was induced in subcutaneous tumors under the control of 

inflammatory cues, and in particular Tumor-associated macrophages (TAMs). Systemic 

depletion of macrophages in recipient animals prevented ST18 expression in transformed 

hepatoblasts, and impaired both tumor development and maintenance. Reciprocally, ST18 

knockdown in hepatoblasts delayed tumor progression or, when induced in pre-formed tumors, 

led to rapid tumor involution, associated with loss of TAMs and down-regulation of an 

inflammatory gene expression signature. Hence ST18 expression in the epithelial compartment 

contributes to the tight connection between inflammation and tumorigenesis in the liver (10).  

Materials and methods 

Isolation, culture, retroviral infection and subcutaneous transplantation of liver progenitor 

cells. 

We derived hepatoblasts from the two mouse strains C57/JHsd (Harlan laboratories) and 

TRP53/C57 (Jackson laboratories), according to a protocol published previously (9). Liver cell 

suspensions from fetal livers of E 14.5-18.5 mice were diced and treated with Dispase (Gibco, 

1000U/ml) for one hour at 37C°. The livers were dispersed into single cells by pipetting and 

filtrated trough a nylon mesh filter (pore size 100µm). The cellular pellet was washed with 

hypotonic lysis buffer (150 mM NH4Cl, 10 mM KHCO3, 100 µM EDTA) for 3 min at 4°C, 

centrifuged and put in ice. Purification of E-cadherin positive hepatoblasts was performed using 

the MACS magnetic cell sorting system (Miltenyi) through indirect labeling with the rat anti-
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mouse E-cadherin (ECCD-1) antibody (Calbiochem) (11). Before loading onto MACS MS size 

columns, liver cell suspensions were incubated with the antibody complex for 45 minutes at 4C°. 

Antibody complexes were prepared by incubating 4µg of ECCD-1 antibody with 20µl of 

immunomagnetic beads at room temperature for one hour. Eluted cells were plated onto laminin-

coated plates (Sigma) in DMEM (Lonza), supplemented with 10% FBS NA (HyClone), 1% 

glutamine (Euroclone), 1% penicillin/streptomycin (Life Technologies), HGF (40ng/ml, 

Peprotech), EGF (20 ng/ml, Peprotech) and Dexamethasone (10-6M, Sigma). After 48h, cultured 

hepatoblasts were transduced with a combination of retrovirus encoding for c-myc, oncogenic 

RAS (H-RasV12) or shp53. Human hepatocellular liver carcinoma cell line HepG2 (DSMZ) were 

grown in RPMI (Lonza) supplemented with 10% FBS NA (HyClone), 1% glutamine (Euroclone) 

and 1% penicillin/streptomycin (Life Technologies) under 5%CO2 at 37°C. 

To generate shRNA hairpins targeting both human and mouse ST18,  97bp 

oligonucleotides were designed using an online tool (http://euphrates.mit.edu/cgi-

bin/shRNA/index.pl) and used as templates for PCR with the following primers: XhoI_fw (5’- 

CAG AAG GCT CGA GAA GGT ATA TTG CTG TTG ACA GTG AGC G-3’) and EcoRI_rv 

(5’- CTA AAG TAG CCC CTT GAA TTC CGA GGC AGT AGG CA-3’). Amplified PCR 

products were digested with XhoI/EcoRI and cloned in the mir-30 based retroviral 

vector TtRMPVIR (12). The target sequences used in this work are 

TTCATGCTTAAGTCCAATGtg (ST18_1), TTTAAAGACTGGATACTGCtg (ST18_6) and 

TTGATTCAGGAAATGGTGGtg (ST18_7). The efficacy of knock down was initially tested 

in 293T cells. Retroviruses were produced in Phoenix packaging cells and collected in DMEM 

(Lonza) supplemented with 10% tetracycline-free FBS NA (HyClone), 1% glutamine 

(Euroclone), 1% penicillin/streptomycin (Life Technologies). Supernatant was passed through a 

0.45 µm filter and supplemented with polybrene (2µg/ml, Sigma). The infection procedure was 

repeated three times every 4 hours, before adding fresh medium supplemented with HGF 

(40ng/ml, Peprotech), EGF (20 ng/ml, Peprotech) and Dexamethasone (10-6M, Sigma).  

For in vivo tumor formation experiments, 3x105 genetically modified hepatoblasts were 

injected subcutaneously into CD1-nude mice (Charles River) in a volume of 0.3ml of PBS. 

Animals were monitored (2x per week) for signs of distress or disease and tumor size was 

measured using a caliper. Ex vivo imaging of Venus fluorescence in dissected tumors (Fig. 2B 
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and C) was performed on an IVIS Lumina III platform and analysed with the Living Image 

Software, version 4.2 (Caliper Life Sciences). Average radiant efficiency was calculated based 

on the epi-fluorescence signal, as indicated in the user manual. 

Experiments involving animals were performed in accordance with the Italian laws 

(D.L.vo 116/92 and following additions), which enforces the EU 86/609 directive (Council 

Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and 

administrative provisions of the Member States regarding the protection of animals used for 

experimental and other scientific purposes). 

Macrophage depletion in vivo and culture in vitro  

To deplete macrophages in vivo, we used the anti-CSF-1R antibody (ASF98), a rat 

monoclonal anti-murine CD115 antibody (IgG2a) that inhibits CSF-1-dependent cell growth by 

blocking the binding of CSF-1 to its receptor (CSF-1R) and its selectivity has been previously 

characterized (13). As control we injected an isotype-matched anti Rat IgG (Sigma-Aldrich). 

Mice were injected i.p. at doses of 2 mg/mouse. 

Clodronate, encapsulated in liposomes, was also used to deplete macrophages in Mdr2-/- 

and CD1-nude mice. Clodronate liposomes were prepared as described earlier (14). Control 

liposomes contained phosphate-buffered saline (PBS) only. Each animal received 0.01 mL/g (5 

mg of clodronate per 1 mL of the total suspension volume) of clodronate liposomes or control 

liposomes via i.p. injection. The clodronate and control liposomes were obtained from the 

Foundation Clodronate Liposomes, Amsterdam, The Netherlands. 

The murine macrophage cell line RAW264.7 (ECACC) were grown in DMEM (Lonza) 

supplemented with 10% FBS NA (HyClone), 1% glutamine (Euroclone) and 1% 

penicillin/streptomycin (Life Technologies) under 5%CO2 at 37°C. Normal bone marrow 

macrophages were derived from of C57/BL6 mice (Harlan) (15). 

Other methods 

Other protocols and reagents are described online in Supporting Materials and Methods.
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Results 

We used a model based on the genetic manipulation of embryonic liver progenitors 

(hepatoblasts) ex vivo followed by their adoptive transfer into recipient mice (9). Hepatoblasts 

were isolated from fetal livers at embryonic days (E) 14.5-18.5 and transduced with different 

combinations of retroviruses expressing c-myc, oncogenic Ras (H-RasV12) or an shRNA targeting 

p53 (unless using p53-null cells). As expected (9), these cells became immortal in culture and 

acquired a transformed phenotype, as shown by their ability to generate liver-derived tumors 

with histological subtypes (16) and markers characteristic of human HCC when injected 

subcutaneously in immunocompromised CD-1 nude mice (Supporting Figs. S1A, B). RNA 

analysis and immunostaining revealed that ST18 was expressed in tumors, but neither in normal 

liver (1, 8), nor in transformed hepatoblasts in vitro prior to injection into recipient mice (Fig. 

1A), indicating that the gene was induced by tumor-associated micro-environmental signals.  

ST18 is expressed in tumors arising in mice knockout for the Abcb4 or Mdr2 gene 

(henceforth Mdr2−/− mice) (4), a model of inflammation-driven HCC (17). Pre-neoplastic livers 

in 4-10 months old Mdr2−/− animals also became positive for ST18 (Fig. 1B), suggesting that 

expression was triggered by chronic inflammation even before the onset of tumorigenesis. 

Mdr2
−/− mice lack a P-glycoprotein of the bile canalicular membrane, causing defective secretion 

by hepatocytes of lipids required to neutralize bile salts (17). The ensuing high concentration of 

monomeric bile salts causes persistent damage of the hepatic epithelium forming the initial bile 

canaliculi, with the consequent inflammatory response preceding tumor development (18-20). 

These lesions are analogous to those observed in progressive familial intrahepatic cholestasis 

(PFIC), a recessive autosomal disorder involving a chronic hepatic inflammation that progresses 

to fatal liver failure during childhood. PFIC comes in three types, PFIC1, PFIC2 and PFIC3, with 

mutations in the hepatocyte membrane transporters ATP8B1, ABCB11 and ABCB4, respectively 

(21). The most severe form, PFIC2, may further progress to HCC or cholangiocarcinoma (22). 

Liver biopsies from PFIC1, PFIC2 and PFIC3 patients showed expression of ST18 in the three 

conditions, clearly above the levels detected in control tissue (Fig. 1C). Hence, membrane 

transporter deficiencies lead to analogous effects in mice and humans, with chronic inflammation 

and induction of ST18 expression. 
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To further dissect the link between inflammation and ST18 expression, we induced an 

acute inflammatory response in wild-type C57BL/6 mice by intra-peritoneal injection of 

bacterial lipopolysaccharide (LPS) (23). ST18 was induced in the liver 24 hours after LPS 

injection, especially nearby blood vessels (Fig. 1D). Thus, either acute or chronic inflammatory 

conditions could trigger ST18 expression in liver cells, owing most likely to the exposure to pro-

inflammatory cytokines or cellular contacts. 

Based on above results, we hypothesized that expression of ST18 in hepatoblast-derived 

tumors (Fig. 1A) might be driven by the inflammatory microenvironment characteristic of many 

cancers (10, 24). Tumor-associated macrophages (TAMs) have been shown to play important 

cancer-promoting functions in a variety of models, including HCC (25, 26). Consistent with this 

notion, we observed significant infiltration of TAMs in mouse hepatoblast-derived tumors, as 

measured by IHC for the pan-macrophage marker Iba1 (27) (Supporting Fig. 1C). To mimic the 

interplay between macrophages and liver cancer cells in vitro, we co-cultured transformed 

hepatoblasts for 12 hours with either primary bone marrow-derived macrophages or the 

macrophage cell line RAW 264.7, and purified back liver cells before RNA isolation. Co-culture 

led to the acute induction of the ST18 mRNA in hepatoblasts, which was further reinforced by 

pre-treatment of the macrophages with LPS for 1h  (Supporting Fig. 1D). Milder activation of 

the gene was also observed upon treatment of hepatoblasts with RAW 264.7 culture supernatants 

(Supporting Fig. 1E). Thus, macrophages trigger ST18 induction in liver cells in vitro: this 

involves at least in part soluble cues, but remains most effective with cell-cell contacts.  

To address the role of ST18 in tumorigenesis, c-myc- and H-RasV12-transformed p53-/- 

hepatoblasts were transduced with an shRNA hairpin targeting ST18 (expressed from the 

doxycycline-inducible vector TtRMPVIR) (12), sorted for expression of the associated Venus 

marker and injected subcutaneously into CD-1 nude mice. Induction of ST18 knockdown by 

exposure to doxycycline from the day of seeding (day 0) significantly suppressed tumor 

development relative to either untreated mice (shST18 off) or tumors infected with the control 

vector (shREN.713) (Supporting Fig. 2A, B). Thus, expression of ST18 is required for tumor 

development in vivo. 

We then let tumors develop for two weeks before inducing the knockdown: four hours after 

activation, the ST18 shRNA caused hemorrhages that progressively extended from the tumor site 
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to adjacent subcutaneous areas (Fig. 2A). Dissection and ex vivo imaging 24 hours after shRNA 

activation revealed hemorrhagic and friable tumor masses with loss of Venus fluorescence 

relative to untreated controls (Fig. 2B). RNA analysis and IHC staining confirmed a decrease in 

ST18 abundance with residual expression confined to the progressively reduced non-necrotic 

areas (Fig. 2C, D). Similar effects were induced by two other ST18 shRNAs, but not the 

shREN.713 control (Supporting Fig. 3A-D). Closer pathological analysis (Fig. 2E, insets) 

showed that in untreated mice, the subcutaneous tumor mass was consistent with a poorly 

differentiated tumor, composed of highly cohesive atypical cells. Doxycycline treated tumors 

showed severe intra-tumoral hemorrhages and necrotic areas that increased over time. Cells 

became multifocally less cohesive, arranged in bundles, and spindle-shaped.  Staining with the 

vascular endothelial cell marker VE-cadherin (28) revealed a dilatation of intra-tumoral blood 

vessels (ectasia), coincident with a decrease in Ki67 and appearance of cleaved Caspase 3, none 

occurring with the control shRNA (Supporting Fig. 4A, B). Altogether, silencing of ST18 led to 

proliferative arrest and induction of apoptosis, concomitant with vascular ectasia and 

hemorrhage: these combined effects are all likely to contribute to acute tumor regression. 

Knockdown of ST18 in liver cancer cells also led to a rapid loss of TAMs in 

subcutaneous tumors, residual IBA1+ cells showing dramatic changes in morphology suggestive 

of impaired functionality (Supporting Fig. 4C, D). Importantly, TAMs themselves did not 

express ST18, and our experimental system ensures hepatocyte-specific knockdown. Thus, the 

maintenance of TAMs relied on sustained expression of ST18 in cancer cells.  

To further investigate the interplay between ST18 expression in hepatoblasts, TAMs and 

tumor maintenance, we pre-depleted macrophages systemically in recipient animals by intra-

peritoneal injection of a monoclonal antibody that blocks the murine CSF-1 receptor (or CD115) 

(13) or isotype-matched IgG as control. AntiCD-115 effectively caused selective depletion of 

circulating CD115+ cells already 4 days after injection, with no effects on LY6G+ neutrophils 

(Fig. 3A). At this stage (Day 0, Fig. 3B), transformed hepatoblasts were injected subcutaneously: 

examination of the animals over time showed continued depletion of circulating CD115+ 

monocytes/macrophages (Fig. 3B), associated with a significant delay in tumor development 

(Fig. 3C). At day 15, CD115+ cell numbers were minimal and tumors virtually undetectable. At 

the last time-point (day 24) partial recovery of circulating CD115+ cells (Fig. 3B) was 

accompanied by the growth of small tumor masses (Fig. 3C): relative to untreated controls, 
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however, these tumors still lacked macrophages (assessed by IBA1 staining), failed to induce 

ST18 and showed elevated apoptosis (Fig. 3D). Hence, macrophages are required for ST18 

induction and tumor development. 

We then addressed the effect of macrophage depletion in pre-formed tumors by injecting 

anti-CD115 or control IgG in tumor-bearing animals. Four hours after treatment, loss of IBA1+ 

cells was accompanied by down-regulation of ST18, with intra-tumoral and subcutaneous 

hemorrhages (Fig. 3E, F). As an independent means to deplete macrophages, we injected 

liposome-encapsulated clodronate (14). Again, loss of IBA1+ cells coincided with dramatic 

changes in tumor morphology, with necrosis, hemorrhage, loss of ST18 expression, and 

induction of apoptosis (Supporting Fig. 5A). Finally, we injected clodronate in pre-neoplastic 

and neoplastic Mdr2−/− animals, once again causing the parallel loss of IBA1 and ST18 staining 

(Supporting Fig. 5B, C). Altogether, we conclude that TAMs are required both for ST18 

expression in cancer cells and tumor development/maintenance.  

To complement our findings, we addressed the function of ST18 in the human HCC cell 

line HepG2 since, unlike mouse hepatoblasts, these cells expressed ST18 constitutively in the 

absence of inflammatory stimuli (4). ST18 knockdown in cultured HepG2 cells induced cell 

death (Supporting Fig. 6A, B), indicating a cell-autonomous requirement for ST18. As with 

mouse hepatoblasts, induction of the shRNA in subcutaneous HepG2 tumors caused intra-

tumoral hemorrhages and tumor regression (Supporting Fig. 6C-E). 

We finally profiled ST18-dependent gene expression in our mouse model. RNA-seq 

analysis of control and ST18-depleted tumors (analyzed 4 hours following induction of shST18-

6) allowed us to identify 677 and 467 up- and down-regulated genes, respectively (Tables S1, 

S2). The latter included known inflammation-related genes, such as members of the NF-kB 

family of transcription factors, as well as inflammatory cytokines and chemokines  (most notably 

Ccl2) that are known to control the recruitment and activation of myeloid cells to the tumor sites 

(Fig. 4A) (29-33). Gene Set Enrichment Analysis (GSEA; Supporting Tables S3, S4) showed 

that ST18 knockdown led to the down-regulation of inflammation-associated genes, including in 

particular a set of genes up-regulated in hepatic stellar cells after stimulation with LPS (34) (Fig. 

4B) as well as genes containing the binding motif for the inflammatory transcription factor NF-

kB (Fig. 4C). Use of the Ingenuity pathway analyzer software further pointed to a role of the 
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transcription factor NF-kB in the regulation of ST18-dependent genes (Fig. 4C). Analysis of the 

NF-kB subunits P65 and P50 by immunostaining revealed rapid decreases in the levels of both 

proteins following ST18 knockdown (Fig. 4D, E) a result confirmed for p65 in macrophage-

depleted tumors (Fig. 4E, Anti-CD115). While the mechanisms linking ST18 and NF-kB 

activities remain to be addressed, and indirect effects due to macrophage loss cannot be excluded 

at this stage, these data point to a role of ST18 upstream of NF-kB in controlling the 

transcriptional response of liver cells to inflammatory cues, thereby sustaining the mutual 

interaction between tumor cells and TAMs. 

Discussion 

Previous observations, including LINE-1 (L1) insertional mutagenesis in human 

Hepatocellular Carcinoma (HCC), as well as gene amplification and activation in inflammation-

driven HCC nodules in Mdr2-/- mice, pointed to ST18 as a candidate oncogene in hepatocellular 

carcinoma (4). However, direct evidence for a role of ST18 in cancer was missing altogether. 

Using a mouse model of HCC based on ex vivo transformation and adoptive transfer of liver 

progenitor cells (hepatoblasts) (9), we demonstrate that ST18 is important for tumor 

development and maintenance. Detailed analysis revealed an unexpected mode of action for 

ST18, as a central component in a feed-forward loop between neoplastic epithelial cells and 

tumor-associated macrophages (TAMs). 

The ST18 mRNA and protein were undetectable in either normal liver (1, 8) or cultured 

hepatoblasts, but were expressed in subcutaneous tumors derived from the same cells. These 

results led us to hypothesize that ST18 expression in vivo may require tumor-derived micro-

environmental signals and in particular inflammatory infiltrates, a recurrent feature in solid 

tumors (10, 26). In line with this concept, hepatoblast-derived tumors contained infiltrating 

macrophages, ablation of which led to rapid down-regulation of ST18 in the tumor cells. 

Furthermore, ST18 could be induced in liver cells, either in vitro by co-culture with 

macrophages, or in vivo by exposure to inflammatory conditions. Altogether, we conclude that 

ST18 expression in tumors is triggered by inflammatory cues emanating from TAMs.  

The role of ST18 in tumor cells was addressed through inducible knockdown of the gene 

in the transduced hepatoblasts: this led to rapid tumor involution, associated with a series of 

catastrophic events (see below), among which a marked loss of TAM infiltrates. This mutual 
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dependency between expression of ST18 in hepatoblasts and maintenance of TAMs pointed to a 

regulatory loop between both cell types, with a central role in tumor maintenance. Indeed, the 

alternative modalities of intervention used in our experiments - ST18 knockdown in tumor cells 

vs. ablation of TAMs - had strikingly similar consequences. Both treatments suppressed tumor 

progression (compare Supporting Fig. 2 and Fig. 3C, D) or, if applied to pre-formed tumors, 

caused rapid tumor involution, associated with loss of TAMs (Supporting Fig. 4C, D and Fig. 

3E), down-regulation of ST18 (Figs. 2D and 3E), proliferative arrest and apoptosis in the tumor 

cells (Supporting Fig. 4A and Fig. 3D), as well as pervasive hemorrhage, spreading from the 

tumor into the adjacent subcutaneous areas (Figs. 2A and 3F).  

The precise origin of the TAMs infitrating subcutaneous tumor lesions remains to be 

determined. Like most tissues, both the liver and the skin are home to resident macrophage 

populations, which are intimately linked to tissue homeostasis and recruit blood monocytes when 

damage occurs (26, 35). At the steady state, most tissue-resident macrophage populations (with 

some notable exception such as the intestine and, to some extent, the liver) are originated during 

embryonic development by yolk-sac derived precursors, with minimal contribution from adult 

bone marrow hematopoiesis. The contribution of circulating monocytes to the resident 

macrophage pool is instead dominant in inflammatory contexts, such as infection and cancer (33, 

35-38).  

Notwithstanding the origin of TAMs, a large body of literature indicates that these cells - 

in particular in the M2 polarized state - tend to have strong pro-tumoral activities in most cancer 

types (26, 29). In HCC, in particular, TAM infiltration was shown to correlates with poor 

prognosis (39). Our macrophage-depletion experiments with anti-CD115 or Clodronate directly 

support this notion, and are consistent with previous observations in glioblastoma and breast 

cancer (29, 40, 41): it remains to be addressed whether TAMs may also elicit expression of ST18 

in those tumors. Reciprocally, whether ST18 controls TAM function elsewhere than in the liver 

remains unclear. It is noteworthy here that TAMs can either promote or antagonize tumor growth 

(29), which may conceivably also explain the contrasting roles attributed to ST18 in cancer (1-4).  

The signaling pathways through which TAMs elicit ST18 expression in tumor cells, and 

ST18 in turn feeds back to TAMs, also remain to be unraveled. Our RNA-seq analysis indicated 

that ST18 might regulate part of the transcriptional response to inflammatory signals in 
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hepatoblasts, in particular through its requirement for NF-kB activation. Indeed, among the 

genes showing ST18-dependent expression in our tumor model, we find a number of known NF-

kB regulated genes that may have a direct role in TAM homeostasis. CCL2 and Cxcl2, for 

example, are both involved in the recruitment of inflammatory monocytes (and myeloid cells) to 

tumors (32, 33, 42). Other pro-inflammatory cytokines such as IL-1b, IL-6 and CSF3, have been 

shown to control the phenotype of tumor-elicited myeloid cells (43, 44). Although not 

investigated experimentally in this study, the reduced expression levels of these cytokines in 

ST18-depleted tumors supports a model whereby (i.) TAMs derive from circulating monocytes 

in our tumor model and (ii.) ST18 controls the expression of critical environmental factors that 

control the recruitment/activation of TAM 

An essential question brought up by our work regards the primary outputs of the 

aforementioned regulatory loop in tumor maintenance, with two extreme - albeit not exclusive - 

possibilities. First, ST18 may have an intrinsic (cell-autonomous) role in proliferation and 

survival of tumor cells, as suggested by our in vitro data on the HepG2 cell line. In this setting 

the tumorigenic properties of TAMs in the liver would rely - at least in part - on their ability to 

elicit ST18 expression in tumor cells. Second, ST18 may act mainly in a non-autonomous 

manner, allowing the maintenance of TAMs, which in turn signal tumor cell 

proliferation/survival. This cell-extrinsic effect of ST18 on TAMs may thus be an important, if 

not the principal determinant of its tumor-promoting activity in the liver (4).  

In either of the above scenarios, our findings lend further support to the concept that 

macrophage targeting may be an effective therapeutic strategy in liver cancer (26). Among 

others, macrophage depletion enhanced the anti-tumoral effects of the kinase inhibitor sorafenib 

(45) and the chemotherapeutic agent Trabectedin acted in part though its toxic effect of TAMs 

(46). Hence, elucidation of the molecular mechanisms through which ST18 mediates epithelium-

macrophage interactions, bears significant potential for future therapeutic development. 

Finally, the mutual relationship between macrophages and epithelial cells in liver 

tumorigenesis, as well as the involvement of ST18 - and possibly NF-kB - in this process, may 

have important counterparts in tissue homeostasis. Indeed, Clodronate-mediated depletion of 

Kuppfer cells impaired liver regeneration upon partial hepatectomy, due to loss of NF-kB 

activation (47). In the same conditions, direct inhibition of NF-kB in hepatocytes increased 
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apoptosis and decreased proliferation (48). It will thus be interesting to address whether, as 

shown here for TAMs, Kupffer cells mediate the activation of ST18 in the regenerating liver 

epithelium, and whether ST18 is required for activation of NF-kB following partial hepatectomy. 

It is tempting to speculate here that this role of ST18 may extend to other tissues, representing 

perhaps a conserved element of macrophage-epithelium interactions.   
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Figure Legends 

Fig. 1. ST18 is induced by inflammatory cues in hepatoblasts. A, Left: quantitative RT-PCR 

analysis of ST18 mRNA levels in adult liver, in cell lines derived from mouse liver progenitors 

(including E14.5 shp53-Myc, E14.5 shp53-RasV12, E14.5 Myc-RasV12, E18.5 shp53-Myc-RasV12, 

and E18.5 shp53-RasV12) and in subcutaneous tumors derived from the same cells. * p = 0.002; 

** p = 0.0462. Right: ST18 is expressed in subcutaneous hepatoblast-derived tumors, but not 

normal liver. B, H&E: Hematoxylin and eosin staining shows portal inflammatory infiltrates in 

pre-neoplastic Mdr2-/- livers at the indicated ages. ST18: staining of IHC sections with ST18 

antibodies shows positivity in Mdr2-/- but not WT livers. C, Hepatic lesions and ST18 positivity 

in liver biopsies from PFIC1, PFIC 2 and PFIC3 patients. D, Mouse liver sections 24 hours after 

LPS treatment, showing irregular hepatocyte arrangement, inflammatory infiltrates and induction 

of ST18, stronger nearby blood vessels (arrow) in both periportal and centrilobular zones.  

Fig. 2. Expression of ST18 is required for tumor maintenance. A, Hemorrhages initiating 

from the tumor and extending to the adjacent subcutaneous areas are noticeable already 4h after 

ST18 silencing and increase progressively throughout the indicated time-course. All experiments 

shown in this figure were performed with by induction of the shST18-6 hairpin with 

administration of Doxycycline (at time 0) by oral gavage. B,  Left: ex-vivo fluorescent imaging 

of tumors dissected from either untreated recipient mice, or 24h after Doxycycline 

administration. The fluorescent Venus marker is constitutively expressed from the same 

TtRMPVIR vector (12) expressing Doxycycline-inducible shST18: loss of fluorescence after 

ST18 knockdown is thus due to loss of the targeted cells. Right: quantification of average radiant 

efficiency in the same tumors shown in b. (** p = 0.0013). C, Quantitative RT-PCR analysis of 

ST18 mRNA levels in tumors confirms knockdown already 4h after shST18 induction. D, 

Induction of shST18 induces hemorrhages and necrosis concomitant with a progressive decrease 

of ST18 expression. Insets denote that in untreated mice, the tumor is composed of highly 

cohesive atypical cells; in doxycycline treated tumors, instead cells are multifocally less 

cohesive, arranged in bundles and spindle-shaped. Scale bars: 100 µm.  

Fig. 3. Depletion of macrophages in vivo prevents ST18 expression in hepatoblasts, and 

affects both tumor development and maintenance. A, FACS analysis of macrophages 

(CD115+) and neutrophils (LY6G+) in peripheral blood 4 days after injection of mice with Anti-
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CD115 (+), compared with injection of control IgG (-). The data represent the average and s.d. 

from 3 independent mice. *p = 0.01. Cell numbers are expressed relative to total white blood 

cells. B, Analysis of CD115+ cell numbers over time in one of the above animals (note that day 0 

here is the 4th day after anti-CD115 treatment, i.e. the same time-point analysed in panel A). C, 

Left: tumor volumes in mice pre-treated mice with either control IgG (-) or anti-CD115 (+) at 

Days 15 and 24 after tumor seeding. Right: photographs of tumors dissected (at day 24) from 

carriers pre-treated with IgG (control) or anti- CD115+, as indicated. D, H&E and IHC staining 

for the indicated proteins (IBA1, ST18, cleaved caspase 3) reveal hemorrhage, macrophage 

depletion, lack of ST18 expression and increased apoptosis in tumors arising in anti-CD115-

treated, relative to IgG-treated mice. E, H&E and IHC staining 8h after anti-CD115 or control 

IgG injection in established tumors, revealing effects analogous to the above, including intra-

tumoral hemorrhage and necrosis (H&E), decreased ST18 expression and - as expected - loss of 

IBA1+ macrophages. Mean numbers of IBA1+ cells in four different microscopic fields in anti-

CD115 and IgG-injected tumors. ** p < 0.0001. Scale bars: 100 µm. F, Subcutaneous 

hemorrhages are noticeable as early as 4h after anti-CD115 injection in established tumors and 

become more severe over time.  

Fig. 4. ST18 knockdown in hepatoblast-derived tumors affects inflammation- and NF-kB-

associated genes. RNA-seq was used to identify genes whose expression was affected 4h after 

induction of ST18 knockdown with the shST18-6 hairpin in subcutaneous tumors, with three 

mice per condition. A, Genes involved in NF-kB signaling and/or positive regulation of myeloid 

cell activity that showed ST18-dependent expression. B, Gene Set Enrichment Analysis (GSEA) 

showing that genes induced by LPS in hepatic stellar cells (gene set 

SEKI_INFLAMMATORY_RESPONSE_LPS_UP) (34) were down regulated after ST18 

knockdown. The heatmap shows the relative expression of the mRNAs included in this gene set 

in hepatoblast-derived tumors, without (untreated) or with ST18 knockdown (4h Doxy) (three 

independent samples for each condition). C, GSEA revealing that genes containing the NF-kB 

binding motif (V$NFKAPPAB_01) were down-regulated after ST18 knockdown. D, IPA 

(Ingenuity pathway analyzer) software pointed to a central role of NF-kB in the regulation of 

ST18-dependent genes. E, IHC staining of the NF-kB subunits P65 and P50 revealed rapid 

decreases in the levels of both proteins following ST18 knockdown. F, Immunofluorescent 
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detection of the NF-kB subunit P65 revealed its rapid decrease in hepatoblast-derived tumors 

following ST18 knockdown and macrophage depletion. 
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Supplementary Table 1: RNAseq analysis of control and ST18-depleted tumors identify 677 Differentially expressed genes (DEGs) upregulated genes

Supplementary Table 2: RNAseq analysis of control and ST18-depleted tumors identify 467 Differentially expressed genes (DEGs) downregulated genes

Supplementary Table 3: Gene Set Enrichment Analysis (GSEA) showed gene sets downregulated after ST18 Knockdown.

Supplementary Table 4: Gene Set Enrichment Analysis (GSEA) showed gene sets upregulated after ST18 Knockdown.
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Supplementary Table 1: RNAseq analysis of control and ST18-depleted tumors identify 677 Differentially expressed genes (DEGs) upregulated genes

Column A: Annotated genes, indicated by their Gene Symbol

Columns B to D  show differential expression as determined by  RNA-seq. For each comparison, the 

log2Ratio and the q-value are provided. We identified 677 DEGs UP  regulated genes in ST18 KD tumors as 

Supplementary Table 2: RNAseq analysis of control and ST18-depleted tumors identify 467 Differentially expressed genes (DEGs) downregulated genes

Column A: Annotated genes, indicated by their Gene Symbol

Columns B to D  show differential expression as determined by  RNA-seq. For each comparison, the 

log2Ratio and the q-value are provided. We identified 467 DEGs UP  regulated genes in ST18 KD tumors as 

Supplementary Table 3: Gene Set Enrichment Analysis (GSEA) showed gene sets downregulated after ST18 Knockdown.

Column A: Gene set name (GS)

Column B: Number of genes in the gene set (SIZE)

Column C: Enrichment score (ES) 

Column D: Normalized Enrichment score (NES) 

Column E: Nominal p value (NOM p-val)

Column F: False discovery rate (FDR q-val)

Column G: Familywise-error rate (FWER p-val)

Column H: Rank at Max. The position in the ranked list at which the maximum enrichment score occurred.

Supplementary Table 4: Gene Set Enrichment Analysis (GSEA) showed gene sets upregulated after ST18 Knockdown.

Column A: Gene set name (GS)

Column B: Number of genes in the gene set (SIZE)

Column C: Enrichment score (ES) 

Column D: Normalized Enrichment score (NES) 

Column E: Nominal p value (NOM p-val)

Column F: False discovery rate (FDR q-val)

Column G: Familywise-error rate (FWER p-val)

Column H: Rank at Max. The position in the ranked list at which the maximum enrichment score occurred.
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Supplementary Table 1: RNAseq analysis of control and ST18-depleted tumors identify 677 Differentially expressed genes (DEGs) upregulated genes

Supplementary Table 2: RNAseq analysis of control and ST18-depleted tumors identify 467 Differentially expressed genes (DEGs) downregulated genes

Supplementary Table 3: Gene Set Enrichment Analysis (GSEA) showed gene sets downregulated after ST18 Knockdown.
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Mutual epithelium-macrophage dependency in liver carcinogenesis mediated by ST18 
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SUPPORTING INFORMATION 

 
 

Supporting Materials and Methods 

Doxycycline treatment 

CD1-nude or Nod/Scid Hsd mice, injected with hepatoblasts (shp53, Myc, RasV12) containing 

the conditional shRNA vector (TtRMPVIR shST18) to silence ST18, were treated with 

Doxycycline to activate the knockdown of ST18. Mice were fed with 625mg/kg Doxycycline 

containing food (Mucedola). Additionally, we administrated the first dose of 200mg/ml 

Doxycycline (Sigma) in 300µl of water by oral gavage. 

LPS treatment 

C57/JHsd mice were injected intraperitoneally with 100 μg of lipopolysaccharide (LPS) and 

sacrificed 24h after treatment. Liver biopsies were dissected for pathological analysis. 
 

Pathological and immunohistochemical analysis 

Tumor or liver biopsies assigned to histological assessment were fixed in 4% formaldehyde 

overnight. The next day the samples were washed in 70% ethanol and subjected to paraffin 

embedding. 5 µm thick sections were stained with hematoxylin/eosin, and inspected by a 

mouse pathologist.  

Human samples used in the study were obtained from formalin-fixed paraffin-embedded 

(FFPE) tissue from children diagnosed with PFIC1, PFIC2 or PFIC3. All specimens were 

obtained from native-liver hepatectomy performed during transplant surgery, carried out at 

the Hospital Papa Giovanni XXIII, Bergamo (Italy). Informed consent for the surgical 

procedure was obtained from the parents/carers. Formal approval for the use of the samples 

in the present work was provided by the local ethics committee (Comitato Etico della 

Provincia di Bergamo). All samples were kept strictly anonymous.  

For Immunohistochemical analysis, 5 µm thick sections were de-waxed and re-hydrated 

through an ethanol scale, heated in EDTA (0.25mM, pH9, Dako #S2368) or citra solution 

Page 28 of 37

Hepatology

Hepatology

This article is protected by copyright. All rights reserved.



Ravà et al.   Supporting Information    p. 2 
 

(BioGenex #HK086-9K) in a water bath at 99°C for 30 minutes for antigen unmasking, then 

left to cool down for 20 min, washed once in water and after 5 minutes, treated with 3% H2O2 

for quenching of endogenous peroxidases. Slides were incubated with antibodies against 

Albumin (#106582, Abcam, 1:400), a-fetoprotein (#0008, Dako, 1:800), cytokeratin 19 

(#901-242-012811, Biocare medical, 1:100), ST18 (#86563, Abcam, 1:200), Ki67 (#M7249, 

Dako, 1:500), Cleaved Caspase 3 (#9661, Cell Signaling, 1:200), Ve-Cadherin (#6458, Santa 

Cruz, 1:200), IBA1 (#019-19741, Wako, 1:1000), P65 (#86299, Abcam, 1:100) and P50 

(#32360, Abcam, 1:200) in blocking solution (TBS containing 2% BSA, 2% goat serum, 

0.02% Tween20) for 3h at RT. Slides were washed twice with TBS and incubated with the 

secondary antibody (DAKO Cytomation Envision System Labelled Polymer-HRP) for 45 

minutes. After two additional washes in TBS, sections were developed with peroxidase 

substrate solution with DAB (DAKO) for 2-10 minutes. Slides were finally counterstained 

with hematoxylin, de-hydrated through alcoholic scale and mounted with Eukitt. 

RNA extraction and analysis 

Frozen tissue samples were homogenized with a dounce homogenizer or with the 

GentleMACS Dissociator (Miltenyi Biotec), depending on the tissue volume, prior to column 

extraction. RNA was extracted in Trizol (Invitrogen) using the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions. Quantification was performed on Nanodrop, 

and quality was assessed on Bioanalyzer (Agilent). 0.5 µg of total RNA was used for cDNA 

synthesis (using the ImProm-II Reverse Transcriptase, Promega), and 1 μl of the obtained 

cDNA was generally used as template for qPCR expression analyses. qRT-PCR (SYBR-

green, Life Technologies) analysis was performed on an Applied Biosystems 7500 Real-time 

PCR system. Gene expression analyses by qRT-PCR were accomplished using the 

mouse/human ST18 primers (F’ GAAAACGGCACATTGGACTT; R’ 

GGTGAGGAAGTTGGGGGTAT). Values were normalized to RPLP0 (F’ 

TTCATTGTGGGAGCAGAC; R’ CAGCAGTTTCTCCAGAGC). For RNA-seq, 5 μg of 

total RNA were depleted of ribosomal RNA with the Ribo-ZeroTM rRNA Removal Kit from 

Epicentre®. Successful removal of ribosomal RNA was assessed using the BioAnalyser 

2100. RNAseq libraries were prepared with the Illumina TruSeq RNA sample preparation kit 

v2 following the manufacturer’s protocol. Briefly, RNA was fragmented and cDNA was 

synthesized, end-repaired and 3’-end-adenylated. Following adapter ligation, libraries were 

amplified by PCR for 15 cycles. Libraries with distinct TruSeq adapter indices were 

multiplexed (3 libraries per lane) on a HiSeq 2000 and sequenced for 50 bases in the paired-
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end mode. Duplicated reads were eliminated using rmdup function from the suite samtools 

(http://samtools.sourceforge.net/). Differentially expressed genes were determined using the 

DESeq2 tool (15) available from Bioconductor with default parameters. Functional 

annotation was performed using the Gene Ontology categories of the bioinformatics tool 

Gene Set Enrichment Analysis (GSEA) based on Molecular Signatures Database (MSigDB). 

The dataset was deposited in the NIH GEO database under accession number GSE72403 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=kjgnciyupdkdbib&acc=GSE72403) 

Flow cytometry and cell sorting 

Primary hepatoblasts transduced with TtRMPVIR shRNA plasmids were monitored by flow 

cytometry for expression of the associated Venus marker without prior fixation, as single cell 

suspension in PBS. Cells were analyzed using a FACSCalibur (Becton-Dickinson; Mountain 

View, CA) flow cytometer. Macrophages were detected in peripheral blood with anti-mouse 

CD115 APC (#17-1152, eBioscience, 1:100). Neutrophils were detected with Anti-Mouse 

Ly-6G (#551459, BD Pharmingen 1:300). Liver progenitor cells, derived from E18.5 p53-

null mice, transduced with retroviruses expressing c-myc, oncogenic Ras (H-RasV12) and 

shST18 (expressed from the vector TtRMPVIR) (12), were sorted for expression of the 

associated Venus marker using a Moflo Astrios (Beckman Coulter). All FACS data were 

analyzed using the FlowJo software (TreeStar). 
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Supporting Figure Legends 

Supporting Fig. 1. Subcutaneous tumors derived from liver progenitor cells are of 

hepatic origin. A, Hematoxylin and eosin (H&E) stained sections show close resemblance of 

hepatoblast-derived subcutaneous tumors with different histological subtypes of human HCC 

(Solid, Pseudoglandular, Trabecular), as indicated above each panel. B, Tumor sections were 

stained for the liver progenitor markers albumin, α-fetoprotein, or cytokeratin 19. A 

representative subcutaneous tumor generated with shp53, Myc and RasV12-transduced E18.5 

hepatoblasts is shown here as an example. All tumors examined in this study were positive 

for at least two of the three markers, confirming their liver origin. C, Staining for the pan-

macrophage marker IBA1 (32) reveals abundant macrophage infiltration in subcutaneous 

tumors. All scale bars in A-D are 100 μm. D. ST18 induction in hepatoblasts upon co-culture 

for 12h with normal bone marrow-derived macrophages (*p = 0.0020) or RAW 264.7 

(**** p = 0.0008). Pre-treatment of the macrophages with LPS for 1h further augmented 

their ST18-inducing potential  (**p = 0.0011 and ****p = 0.028 both relative to co-culture 

with untreated macrophages). Hepatoblasts were purified by sorting based on the Venus 

marker before RNA extraction and qRT-PCR. E. ST18 induction in hepatoblasts by treatment 

with macrophage supernatant (1h). * p = 0.0367. Scale bars: 100 μm. 

Supporting Fig. 2. ST18 expression is required for tumor development in vivo. A, Mice 

transplanted with c-myc- and H-RasV12-transformed p53-/- hepatoblasts expressing a 

doxycycline-inducible ST18 shRNA hairpin (shST18-6) show reduced tumor development, 

compared with either non-induced shST18-6, or the control hairpin shREN.713. The 

photographs show three different mice per experimental condition, with Doxycycline used to 

induce either shST18-6 or shREN.713 from the day of seeding (day 0). B, Tumor volumes, 

measured at day 21, with (+) of without (-) induction of either shST18-6, or shREN.713 from 

day 0.  

Supporting Fig.  3. ST18 depletion causes rapid hemorrhages in vivo. A, As Fig. 2A, and 

B-D as Fig. 2D, for two other ST18-specific shRNAs (shST18-1 and -7) and the shREN.713 

control, as indicated. Scale bars: 100μm.  

Supporting Fig. 4. Immunohistological analysis of subcutaneous tumors following ST18 

knockdown. A, Immunohistochemical staining reveals vascular ectasia (VE-cadherin), 

decrease in proliferation (Ki67) and apoptosis (cleaved Caspase 3) upon ST18 silencing (with 

shST18-6 induced for 4h). B, None of the aforementioned changes occurred after induction 
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of the shREN.713 control. C, Staining for the macrophage marker IBA1 before (untreated) 

and after activation of shST18-6 or shREN.713, as indicated. ST18 knockdown in the 

epithelial cells causes morphological changes in macrophages, in particular retraction of 

cytoplasmic processes and cellular rounding (insets). D, Reduction in macrophage numbers 

in shST18-6-expressing tumors after 4h (* p = 0.0003) and 8h (** p = 0.0001) of doxycycline 

treatment. Scale bars: 100μm.  

Supporting Fig. 5. Clodronate-mediated depletion of macrophages in vivo confirms 

their crucial role for ST18 expression. A, Tumor-bearing animals were treated with 

liposome-encapsulated clodronate. Three days after treatment loss of IBA1+ macrophages is 

accompanied by hemorrhage, loss of ST18 expression and induction of cleaved Caspase 3. B, 

C, Clodronate treatment in pre-neoplastic (B, 7 months) and neoplastic (C, 17 months) Mdr2-

/- mice causes reduced ST18 expression within 2 days. Scale bars: 100μm . 

Supporting Fig. 6. ST18 knockdown in HepG2 cells induces cell death in vitro and 

tumor regression in vivo. A, Quantitative RT-PCR analysis of mRNA levels in HepG2 cells 

shows expression of ST18 at basal level and 24h after shST18 induction. Mouse hepatoblasts 

grown in vitro do not express ST18, and are shown for comparison. B, Activation of shST18 

but not shREN.713 induces death of HepG2 cells, as measured by trypan blue staining. The 

shST18-6 hairpin, which targets both human and mouse ST18, was induced by Doxycyline 

treatment for the indicated periods of time. C, Hemorrhage and D, tumor regression 

following shST18 activation in subcutaneous HepG2 tumors. Following the seeding of 3x105 

HepG2 cells subcutaneously, tumors were left to develop in the recipient animals for 30 days, 

prior to doxycycline treatment (day 0). E, Tumors dissected following shST18 knockdown 

(shST18-6 ON, 24 hours after induction) show reduced sizes compared to either untreated 

mice (shST18 OFF) or to shREN.713 control tumors with or without doxycycline. 
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