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Abstract: Modifier adaptation (MA) is a real-time optimization (RTO) method characterized
by its ability to enforce plant optimality upon convergence despite the presence of model
uncertainty. The approach is based on correcting the available model using gradient estimates
computed at each iteration. MA uses steady-state measurements and solves a static optimization
problem. Hence, after every input change, one typically waits for the plant to reach steady state
before measurements are taken. With many iterations, this can make convergence to the plant
optimum rather slow. Recently, an approach that uses transient measurements for steady-state
MA has been proposed. This way, plant optimality can be reached in a single transient operation.
This paper proposes to improve this approach by using a dynamic model to process transient
measurements for gradient computations. The approach is illustrated through the simulated
example of a CSTR. Furthermore, the proposed method is less dependent on the choice of the
RTO period. The time needed to reach plant optimality is of the order of the plant settling
time, whereas several transitions to steady state would have been necessary using the standard
static MA scheme.

Keywords: Real-time optimization, Modifier adaptation, Plant-model mismatch, Gradient
estimation, Transient measurements.

1. INTRODUCTION

Process optimization is very valuable for improving pro-
cess performance, while meeting productivity, quality,
safety and environmental objectives. Model-based meth-
ods rely extensively on the quality of the model at hand
and thus suffer in the presence of plant-model mismatch.
Furthermore, even with an accurate plant model, the pres-
ence of slow disturbances generally leads to a drift of
the optimal operating conditions, and measurement-based
adaptation is needed to maintain plant optimality. This
constitutes the field of real-time optimization (RTO).
Among the various RTO methods, the class labeled mod-
ifier adaptation (MA) uses measurements to appropri-
ately modify the cost and constraint functions of the
optimization problem. These schemes, whose idea was
put forward in the late 70s (Roberts, 1979; Roberts and
Williams, 1981), have received renewed attention in the
last decade (Brdyś and Tatjewski, 2005; Gao and Engell,
2005; Marchetti et al., 2009). MA is a model-based RTO
method that repeatedly solves a modified model-based op-
timization problem. In contrast to the two-step approach
that uses plant measurements to update the model pa-
rameters and the updated model to perform optimization
(Marlin and Hrymak, 1997), MA constructs and updates
correction terms that are added to the cost and constraint

functions of the optimization problem. The main advan-
tage of MA lies in its proven ability to converge to the
plant optimum, even in the presence of structural plant-
model mismatch, a case where the two-step approach will
generally fail (Forbes and Marlin, 1996). Furthermore, MA
does not need to assume that the set of active constraints is
known, which is often the case for implicit RTO schemes
that reformulate the optimization problem as a control
problem (Skogestad, 2000; François et al., 2005). However,
MA may require several iterations to steady state before
reaching plant optimality. It is therefore of great interest to
combine the ability of MA to converge to plant optimality
without prior knowledge of the set of active constraints
with the ability of implicit schemes to converge to the plant
optimum in a single iteration to steady state.
A first step in that direction was made recently by François
and Bonvin (2013), who proposed to implement steady-
state MA in the transient phase, thereby attempting to
reach optimality in a single transient operation to steady
state. For this, the steady-state optimization problem is
solved repeatedly online, with the steady-state modifiers
being estimated from transient measurements. The lat-
ter are used as if they were steady-state measurements.
The approach is consistent since transient measurements
tend to steady-state measurements when the plant reaches
steady state. The gradients are estimated from input and



output measurements using neighboring extremals under
the assumption of parametric uncertainty (Gros et al.,
2009). The nice MA property of reaching a KKT point
of the plant upon convergence is preserved, provided the
gradient estimates converge to their true values. However,
the main disadvantage of this approach is that, during
transient operation, the steady-state gradient estimates
might be rather inaccurate, which might lead to oscillatory
behavior and even prevent convergence.
This paper proposes to use dynamic models to process
transient measurements and predict the corresponding
steady-state constraint and output values. The contribu-
tion of this paper includes: (i) a simply way of using tran-
sient measurements to estimate the steady-state values of
plant constraints and gradients, and (ii) an illustration
that the use of dynamic models helps reach plant opti-
mality.
The paper is organized as follows. The optimization prob-
lem and the static MA formulation are presented in Sec-
tion 2. Section 3 describes the use of transient measure-
ments to estimate steady-state values with the use of
dynamic models. The implementation aspects are illus-
trated via a simulated CSTR in Section 4, while Section 5
concludes the paper.

2. RTO VIA MODIFIER ADAPTATION

2.1 Problem Formulation

The problem of optimizing the steady-state plant perfor-
mance in the presence of constraints can be formulated
mathematically as a nonlinear program (NLP):

u?p := arg min
u

φp (u)

s.t. Gp (u) ≤ 0 , (2.1)

where u is the nu-dimensional vector of inputs, Gp is the
nG-dimensional vector of plant constraints and φp is the
scalar cost function at steady state. Here, the subscript
(·)p indicates a quantity related to the plant.
The necessary conditions of optimality (NCO) for the
plant are:

Gp

(
u?p
)
≤ 0, ν?p ≥ 0, ν?

T

p Gp

(
u?p
)

= 0

∇uφp
(
u?p
)

+ ν?
T

p ∇uGp

(
u?p
)

= 0, (2.2)

where νp is the nG-dimensional vector of Lagrange multi-
pliers. In practice, the functions φp and Gp are unknown.
A steady-state model of the plant is used to construct the
following model-based NLP:

u? = arg min
u

φ (u, θ)

s.t. G (u, θ) ≤ 0, (2.3)

where φ and G represent the models of the cost and
constraint functions, respectively, and θ the q-dimensional
vector of uncertain model parameters. We will assume that
φ and G are twice continuously differentiable.

2.2 Modifier Adaptation

In the presence of plant-model mismatch, the model opti-
mum u? does not in general match the plant optimum

u?p. MA uses plant measurements to iteratively modify
the model-based optimization problem (2.3) in such a way
that, upon convergence, the NCO of the modified problem
match those of the plant. At the kth iteration, the optimal
inputs computed using the modified problem are applied to
the plant, and the resulting values of the plant constraints
and of the gradients of the plant cost and constraints at
steady state are compared to the model predictions. Then,
the following optimization problem is solved to determine
the next inputs:

u?k+1 := arg min
u

φm,k(u, θ) (2.4)

s.t. Gm,k(u, θ) ≤ 0 (2.5)

with: φm,k(u, θ) := φ(u, θ) + ΛφT

k u (2.6)

Gm,k(u, θ) := G(u, θ) + εGk + ΛGT

k (u− u?k) (2.7)

εGk := Gp(u
?
k)−G(u?k, θ) (2.8)

ΛφT

k := ∇uφp (u?k)−∇uφ (u?k, θ) (2.9)

ΛGT

k := ∇uGp (u?k)−∇uG (u?k, θ) , (2.10)

where the nG-dimensional vector εGk are the zeroth-order

modifiers, and the nu-dimensional vector Λφ
k and the (nu×

nG) matrix ΛG
k represent the first-order modifiers.

Between the iterations k and k + 1, the constant input
values u?k+1 are applied until the plant reaches steady
state, at which time new modifier terms are computed
for the next RTO iteration. In practice, MA is imple-
mented with exponential filtering of the modifiers, which
(i) prevents too large modifications of the optimization
problem between consecutive iterations, (ii) reduces the
impact of measurement noise, and (iii) provides additional
degrees of freedom (the gains of the exponential filter) for
enforcing convergence (Marchetti et al., 2009). For the sake
of simplicity, we will implicitly assume the presence of this
filter.

2.3 Gradient Estimation via Neighboring Extremals

Computing the values of εGk in Eq. (2.8) is relatively
straightforward since the plant constraints are generally
monitored. On the other hand, computing the plant gra-
dients is much more demanding. Several gradient estima-
tion methods used in the context of RTO are discussed
in François et al. (2012). Here, we use the neighboring-
extremal (NE) method that relies on input and output
measurements (Gros et al., 2009). For this, we introduce
the output equations

y = H (u, θ) , (2.11)

where y is the p-dimensional vector of outputs at steady
state.
For p ≥ q, a variational analysis of the cost (Gros et al.,
2009) and of the constraints (François and Bonvin, 2013)
gives:

∇uφ (u, θ) =∇uφ (u?, θ) +∇2
uθφ (∇θH)

+
δy

+
(
∇2

uuφ−∇2
uθφ (∇θH)

+∇uH
)
δu (2.12)

∇uG (u, θ) =∇uG (u?, θ) +∇2
uθG (∇θH)

+
δy

+
(
∇2

uuG−∇2
uθG (∇θH)

+∇uH
)
δu. (2.13)



where the deviation variables are δy := y − y?0 and
δu := u− u?0, where y?0 = H (u?0, θ).
François and Bonvin (2013) proposed to replace the
steady-state model predictions by steady-state output
measurements in the estimation of steady-state gradients:

∇̂uφp (u) =∇uφ (u?, θ) +∇2
uθφ (∇θH)

+
δyp

+
(
∇2

uuφ−∇2
uθφ (∇θH)

+∇uH
)
δu (2.14)

∇̂uGp (u) =∇uG (u?, θ) +∇2
uθG (∇θH)

+
δyp

+
(
∇2

uuG−∇2
uθG (∇θH)

+∇uH
)
δu, (2.15)

with δyp := yp − y?0, and where the notation (̂.) indicates
an estimated steady-state value.

3. MODIFIER ADAPTATION USING TRANSIENT
MEASUREMENTS

François and Bonvin (2013) proposed to apply MA during
transient operation. At time tj , the optimal inputs u?j+1
are computed and applied to the plant until the next
RTO execution at time tj+1 = tj + τRTO, where τRTO is
the RTO period. The optimization problem for computing
u?j+1 reads:

u?j+1 := arg min
u

φm,j(u, θ) (3.1)

s.t. Gm,j(u, θ) ≤ 0 (3.2)

with: φm,j(u, θ) := φ(u, θ) + Λ̂
φT

j u (3.3)

Gm,j(u, θ) := G(u, θ) + ε̂Gj + Λ̂
GT

j (u− u?j ) (3.4)

ε̂Gj := Ĝp

(
u?j
)
−G

(
u?j , θ

)
(3.5)

Λ̂
φT

j := ∇̂uφp
(
u?j
)
−∇uφ

(
u?j , θ

)
(3.6)

Λ̂
GT

j := ∇̂uGp

(
u?j
)
−∇uG

(
u?j , θ

)
. (3.7)

Here, the modifiers have to be estimated as the steady-
state values corresponding to the current inputs u?j . The
conditions ensuring that the operating point reached upon
convergence is optimal for the plant are given next.

Theorem 1. Consider the MA problem that uses tran-
sient measurements with the inputs computed iteratively
as the solution to the optimization problem (3.1)-(3.7). If

the plant reaches steady state and the estimates Ĝp

(
u?j
)
,

∇̂uφp
(
u?j
)

and ∇̂uGp

(
u?j
)

converge to their true values,
then the plant will satisfy the NCO (2.2).

Proof 1
The proof can be found in François and Bonvin (2013).

It is assumed that the steady-state plant constraints

Ĝp

(
u?j
)

can be estimated from online measurements. Fur-

thermore, the gradients ∇̂uφp
(
u?j
)

and ∇̂uGp

(
u?j
)

are

inferred from the steady-state values δŷp(u
?
j ) := ŷp

(
u?j
)
−

y?0 using Eqs. (2.14) and (2.15). We describe next two ways

of estimating Ĝp

(
u?j
)

and ŷp(u
?
j ).

3.1 Method A: Steady-State Values from Transient
Measurements

François and Bonvin (2013) proposed to simply use the
transient measurements at time tj as estimates of the
steady-state values corresponding to the current inputs u?j ,
that is:

Ĝp

(
u?j
)

= Gp (tj) (3.8)

ŷp
(
u?j
)

= yp (tj) . (3.9)

Remark 1. Note that, for j → ∞, Ĝp(u
?
∞) = Gp(t∞)

and ŷp(u
?
∞) = yp(t∞), which leads to ∇̂uφp (u?∞) =

∇uφp (u?∞) and ∇̂uGp (u?∞) = ∇uGp (u?∞) if the gradient
expressions (2.14) -(2.15) are accurate. Hence, if the con-

straint and output measurements are accurate, Ĝp

(
u?j
)
,

∇̂uφp
(
u?j
)

and ∇̂uGp

(
u?j
)

will converge to their true
values, thus meeting the assumptions in Theorem 1.

3.2 Method B: Steady-State Values from Transient
Measurements and Dynamic Models

We assume the availability of dynamic models that are
consistent with the steady-state models used for optimiza-
tion, and we introduce the superscript (.)dyn to denote the
variables resulting from integration of the dynamic model:

ẋdyn(t) = F
(
xdyn(t), u(t),θ

)
xdyn(0) = x0 (3.10)

ydyn(t) = h
(
xdyn(t), u(t),θ

)
(3.11)

Gdyn(t) = g
(
ydyn(t), u(t),θ

)
. (3.12)

Consistency with the steady-state model means that, if
u(t) → u∞ when t → ∞, then Gdyn(t) → G(u∞, θ)
and ydyn(t)→ y∞ = H(u∞, θ), that is, the dynamic and
steady-state models predict the same steady-state values
of the constraints and outputs for any input value.

In this work, instead of taking the current measured values
of the plant constraints and outputs as the steady-state
estimates, as was done in Eqs (3.8)-(3.9), we propose to
account for dynamic effects (at least those predicted by the
model) by estimating the plant steady-state quantities as
the steady-state values predicted by the model corrected
with an additive bias term that is computed as the
difference between the measured and predicted quantities
at time tj :

Ĝp(u
?
j ) := G(u?j ,θ) +

(
Gp(tj)−Gdyn(tj)

)
, (3.13)

ŷp(u
?
j ) := y(u?j ,θ) +

(
yp(tj)− ydyn(tj)

)
. (3.14)

Ĝp(u
?
j ) in Eq. (3.13) is then used in Eq. (3.5) to estimate

the zeroth-order modifiers ε̂Gj . Similarly, we propose to use
ŷp(u

?
j ) in Eq. (3.14), rather than simply yp(tj), to estimate

the steady-state plant gradients via Eqs. (2.14) and (2.15).

Remark 2. It is easily seen that the use of dynamic
models still allows meeting the assumptions in Theorem 1,

in particular Ĝp(u
?
∞) = Gp(t∞) and ŷp(u

?
∞) = yp(t∞).

Indeed, from the assumption that the dynamic and the
steady-state models are consistent, it follows that, upon
convergence to u?∞ when j → ∞, G(t∞) = G(u?∞,θ).



Using this last equality in Eq. (3.13) for j → ∞ gives

Ĝp(u
?
∞) = Gp(t∞), which leads to Ĝp(u

?
∞) = Gp(u

?
∞).

Similarly, φ̂p(u
?
∞) = φp(u

?
∞) and ŷp(u

?
∞) = yp(u

?
∞), that

is, the estimates (3.13)-(3.14) converge to their true values.

Remark 3. If the dynamic and the steady-state models
are consistent, the contribution of Method B over Method
A is a dynamic adjustment that accounts for the modeled
dynamic effects, which vanish when steady state is reached
upon convergence.

4. ILLUSTRATIVE CASE STUDY

4.1 Problem Formulation

We consider the well-known Van de Vusse reaction system
(Van de Vusse, 1964). In a CSTR, cyclopentadiene (A) is
converted into the product cyclopentanol (B). Dicyclopen-
tadiene (D) is also produced from A and cyclopentadiol
(C) is produced through the undesired conversion of the
desired product B:

A
k1−→ B

k2−→ C

2A
k3−→ D.

The dynamic reactor model reads:

ċA =−r1 − r3 + (cA,in − cA)d (4.1)

ċB = r1 − r2 − cBd (4.2)

ċC = r2 − cCd (4.3)

ċD =
1

2
r3 − cDd (4.4)

Ṫ = (Tin − T )d+
kwAR
ρcpVR

(TJ − T )

− 1

ρcp
(r1∆H1 + r2∆H2 + r3∆H3) (4.5)

r1 = k1cA, r2 = k2cB , r3 = k3cA
2, (4.6)

where cX denotes the concentration of Species X ∈
{A,B,C,D}, d is the dilution rate, cA,in is the inlet
concentration of A, kw is the coefficient of heat transfer
with the cooling jacket, AR denotes the cooling-jacket
surface, VR is the reactor volume, cp is the heat capacity,
Tin is the inlet temperature of the feed A, TJ is the
jacket temperature, T is the reactor temperature, and
ri is reaction rate of the ith reaction, i = 1, 2, 3, with
the reaction enthalpy ∆Hi. The associated reaction rate
constant ki, pre-exponential factor ki0 and normalized
activation energy Ei follow the Arrhenius law:

ki = ki0exp

(
− Ei
T + 273.15

)
, i = 1, 2, 3. (4.7)

The measured output variables are y = [cA cB cC cD T ]T .
The objective is to maximize the production of B at
steady state by manipulating the inputs d and TJ . The
optimization problem, which considers bounds on d and
TJ , is formulated mathematically as follows:

Table 1. Model and plant parameters (uncer-
tain parameters in bold)

Model Plant Unit

cA,in 4.6× 103 5.1× 103 mol.m−3

Tin 98 104.9 ◦C
k10 1.544× 1012 1.287× 1012 h−1

k20 1.544× 1012 1.287× 1012 h−1

k30 7.234× 106 9.043× 106 m3.mol−1.h−1

E1 9.758× 103 9.758× 103 K
E2 9.758× 103 9.758× 103 K
E3 8.560× 103 8.560× 103 K
∆H1 4.2 4.2 kJ.mol−1

∆H2 −11 −11 kJ.mol−1

∆H3 −62.78 −41.85 kJ.mol−1

kwAR
ρcpVR

30.828 30.828 h−1

1
ρcp

3.522× 10−4 3.522× 10−4 m3.K.kJ−1
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Figure 1. Open-loop response of the plant productivity to
steps in the inputs.

max
d,TJ

J := cBd (4.8)

s.t. Eqs (4.1)-(4.7) at steady state

dmin ≤ d ≤ dmax (4.9)

TJ,min ≤ T J ≤ TJ,max, (4.10)

where (.) denotes a steady-state value, dmin = 3h−1,
dmax = 35h−1, TJ,min = 50◦C and TJ,max = 200◦C.

Table 1 summarizes the model and plant parameters.
Uncertainty affects the values of the inlet concentration of
Species A, the inlet temperature, the kinetic parameters of
the three reactions, and the enthalpy of the third reaction.
The upper bound on the dilution rate is active at the plant
optimum.
The input steps d = 30→ 35 h−1 and TJ = 120→ 144◦C
are applied to the reactor to characterize the open-loop
plant response (Figure 1). It can be seen that the plant
takes about 8 min to reach steady state, and the non-
minimum phase behaviour can be observed by the initial
decrease in the productivity.

4.2 MA Implementation using Transient Measurements

MA is implemented using transient measurements and
either Method A or Method B to estimate the steady-state

quantities Ĝp(u
?
j ) and ŷp(u

?
j ). The operation is started

at the conservative operating point u = [30 120]T . The
objective is to steer the plant to its unknown optimum by
applying MA using transient measurements.
For Method B, the first iteration uses the model steady-
state values as initial states for simulating the dynamic



model. The subsequent iterations use as initial states the
final values of the previous iteration.
We apply an exponential filter in the adaptation of the
cost-gradient modifiers in order to avoid abrupt input
changes,

Λ̂φT

j =
(
1−Kf

)
Λ̂φT

j−1 +Kf
(
∇̂uφp

(
u?j
)
−∇uφ

(
u?j , θ

))
.(4.11)

Note that only the cost-gradient modifiers are filtered
as there are no uncertain inequality constraints in this
problem.
The following four scenarios are considered next:

• Scenario 1: Kf = 0.5 and τRTO = 60 sec.
• Scenario 2: Kf = 0.5 and τRTO = 30 sec.
• Scenario 3: Kf = 0.75 and τRTO = 20 sec.
• Scenario 4: Kf = 0.2 and τRTO = 20 sec.

The performances obtained with Methods A and B are
compared for each of the four scenarios. Note that, in all
cases, the dilution rate reaches its upper bound in the first
RTO execution.

Scenario 1. Figure 2 shows that the performances of
both methods are fairly similar, with a slight advantage
to Method B. Note that both methods converge to the
plant optimum despite significant parametric mismatch.
The reactor reaches optimality in about 9 min, which is
slightly more than the reactor settling time.

Scenario 2. Figure 3 shows that, with a more frequent
repetition of the optimization, the degradation due to the
uncompensated dynamic effects increases. The oscillations
exhibited by Method A are due to poor approximations
of the cost gradients in the initial part of the transient.
With the use of dynamic models (Method B), the plant
converges faster and without much oscillation.

Scenario 3. Figure 4 shows that reducing τRTO and the
amount of filtering are quite detrimental to Method A. In
contrast, Method B handles the situation very nicely.

Scenario 4. Figure 5 shows that the performance of
Method A can be significantly improved with more filter-
ing, even with small values of the RTO period. However,
Method B still performs better than Method A.

Method B clearly outperforms Method A. While decreas-
ing τRTO reduces the time to converge to the plant opti-
mum with Method B, it increases oscillations with Method
A. When the oscillations become too large, the jacket-
temperature input saturates, which results in a limit cycle
(Fig. 4).

Table 2 compares the convergence of all scenarios and
methods. One sees that Method B converges faster than
Method A. An interesting feature is the fact that Method
B appears to be rather insensitive to the choices of Kf and
τRTO, which is not the case of Method A. This very nice
property can be related to the use of dynamic models.
Finally, note that, with Method B, there is no real need for
decreasing τRTO any further, since the system has its own
dynamics and cannot settle to steady state much faster.
Here, the reactor does not simply settle to steady state, it
settles to the optimal steady state!
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Figure 2. Scenario 1: Dilution rate, jacket temperature,
and plant productivity vs. time.
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Figure 3. Scenario 2: Dilution rate, jacket temperature,
and plant productivity vs. time.

Table 2. Convergence times for different sce-
narios and methods

Scenario Method Kf
τRTO
[sec]

Convergence
time [min]

1
A 0.5 60 12
B 0.5 60 10

2
A 0.5 30 >30
B 0.5 30 10

3
A 0.75 20 -
B 0.75 20 9

4
A 0.2 20 15
B 0.2 20 10
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Figure 4. Scenario 3: Dilution rate, jacket temperature,
and plant productivity vs. time.
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Figure 5. Scenario 4: Dilution rate, jacket temperature,
and plant productivity vs. time.

5. CONCLUSIONS

This paper has proposed a significant improvement for
a recent MA scheme that uses transient measurements
for static optimization. The improvement consists in pro-
cessing these transient measurements through dynamic
models, thereby improving the estimation of plant con-
straints and gradients at steady state. This way, static MA
can be implemented during transient operation, with the
objective to reach the plant optimum in a single transition
to steady state. In a way, this is similar to what is done
with implicit RTO methods, such as extremum-seeking
control (Ariyur and Krstic, 2003), self-optimizing con-
trol (Skogestad, 2000) and NCO-tracking (François et al.,
2005). However, MA that uses transient information has
the advantage of being an explicit RTO method, which re-
peatedly solves the optimization problem and is therefore
able to deal with changing active constraints.

The approach has been illustrated by means of the real-
time optimization of the Van de Vusse CSTR reactor. This
reaction system is known to exhibit non-minimum phase
behavior, which makes the use of the original MA scheme
with transient measurements more difficult. Simulations
have shown that the new approach makes it possible to
converge to the plant optimum within the settling time
of the reactor, while being much less sensitive than the
previous approach to the choice of the RTO period and
the filter gains applied to the gradient modifiers.
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