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Whither climate change post-Paris? 
Roy Thompson 

Abstract 

The Paris Climate Agreement has been welcomed by many as providing a remarkably strong basis for global 

action on anthropogenically mediated climate change, by underpinning a highly ambitious, very clever and 

forward-looking political process. On the other hand the sum total of the fresh emission reductions pledged 

is very small. A new climate-economics model is explored to help focus on two key points remaining at 

issue post-Paris, namely where are we now? and where are we headed? The output reinforces the 

unpalatable finding that in the absence of even stronger carbon-pricing policies, temperatures and sea-level 

will, this century, rise significantly beyond what are currently deemed to be ‘dangerous’ levels. Pigouvian 

taxes have long been championed by economists as providing a simple, down-to-earth corrective remedy for 

market failures, such as excessive carbon emissions. The Wilsonian modification, or ‘feebate’, provides an 

attractive modern variant that could easily be implemented post-Paris. 
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The phrase ‘Anthropogenic Climate Change’ is considered by Rahmstorf (2008) to involve two slightly 

different ideas. The first, he suggests, is a statement about the future which can be summed up as follows 

“anthropogenic emissions of greenhouse gases will lead to significant global warming”. The second, he 

proposes, is an affirmation about what we can observe now, that is to say “human activities already have 

noticeably changed global climate”. In this short article I reflect on these two facets of Anthropogenic 

Climate Change within the context of the process of the adoption, signing and ratification of the Paris 

Climate Agreement. In particular, by making use of a straightforward energy-balance model and a stripped-

down integrated assessment model, I focus on the two questions: where are we now? and where are we 

headed? 

The Paris Agreement, negotiated by 195 countries plus the European Union, was formally adopted on Dec 

12 2015. Over 34,000 words, with 1,600 bracketed passages, had been successfully resolved by the 21st 

session of the Conference of the Parties (COP21)1. The Paris Agreement sets a long-term goal of restricting 

the average global temperature increase to “…well below 2°C above pre-industrial levels...” with all 

countries pursuing efforts “…to limit the temperature increase to 1.5 °C…” What are we to make of the 

Paris Agreement and the COP process? Paris was the latest of the series of United Nation (UN) meetings 

that form part of the global environmental treaty, negotiated in 1992, that seeks to prevent dangerous climate 

change. However, international climate governance has transpired to be a particularly intractable affair. So 

despite the best efforts of the long sequence of Climate Conferences stretching back over 50 years via Paris, 

Kyoto and Rio through to President Lyndon B. Johnson's Science Advisory Committee in 1965, greenhouse 

gas (GHG) concentrations have exhibited a trend of ever-accelerating rise. Hansen (2015), for example, 

reports that global fossil-fuel GHG emissions have increased by about 3% per year since the adoption of the 

Kyoto Protocol in 1997, compared to a growth rate of only 1.5% in the preceding decades. 

The starting point for the modelling work used here is the minimal, but practical, energy-balance model of 

the Earth’s climate system developed by Thompson (2015) in order to estimate the Earth’s climate 

sensitivity2 and to make projections of future warming. The simplicity and parsimony of the model readily 

allow it also to be used to back-project temperatures to pre-industrial times. Surprisingly the Paris 

Agreement does not concern itself with what the phrase ‘pre-industrial levels’ actually means. In broad 

terms the UN normally follows the science of the most recent assessment report of the IPCC. But the Fifth 

Assessment Report (AR5) does not define the pre-industrial.  



Roughly speaking there are three approaches that might be used to try to determine pre-industrial 

temperatures: (i) direct observation, (ii) proxy data and (iii) modelling. All have technical difficulties. The 

first suffers from the problem that the geographical distribution of direct measurements was rather sparse 

before the mid-1800s. The second has worries over climate-proxy calibration, standardization, bias and 

variable geographical coverage. The third approach (used here) aims to hindcast a pre-industrial temperature 

level by linking direct measurements of global (or land + sea) temperatures made through the industrial 

period, with synchronous measures of greenhouse gas concentrations (direct + ice-core data) and aerosol 

forcings (direct + ice-core data). It simultaneously allows for the concurrent effects of volcanic eruptions 

and ENSO variations, and for the non-steady state situation which results from ocean heat-flux damping. 

With this approach the pre-industrial temperature is simply the constant in the energy-balance equation (i.e., 

the constant represents the value predicted for the dependent variable when all the independent variables are 

simultaneously equal to zero3).  

By using the energy-balance approach to project backwards I find the 1951-1980 base-period of the GISS 

temperature series to lie 0.65 oC above pre-industrial. In addition the mean monthly global temperatures of 

each month from December 2015 to April 2016 have all turned out to lie between 1.1 and 1.3 oC above the 

GISS baseline. So if the phrase “well below 2 °C” in the Paris Agreement is taken to mean in the region of 

1.7 to 1.8 oC (as opposed to, say, 1.9 oC as denoting “just below 2 °C”) then ironically the five months 

between the adoption and the signing ceremony of the Climate Agreement coincides very closely with 

recent global temperatures first breaking through the Paris aspiration and limit (of respectively 1.5 and 1.7-

1.8 oC above pre-industrial).  

Turning to the second question of ‘where are we headed?’ the minimal energy-balance approach can again 

be put to use. The energy-balance equation (Eq. 3 and 4 in Thompson, 2015) is easily embedded within a 

climate-economics model (i.e. a basic integrated assessment model, IAM). IAMs date back to the pioneering 

work of Nordhaus (1992). Today’s state-of-the-art IAMs have become rather complex, and so can be 

difficult to interrogate (Stanton et al., 2009). Anthoff (2004), for example, describes an IAM (FUND2.8) 

with some 7,000 lines of computer code and more than 700 parameters. Without a firm understanding of the 

individual model components and without close experience of their circuitous interactions, an appreciation 

of the subtleties of their output can be problematic. An alternative approach is used here - namely to employ 

a sparse model, but one which captures the key aspects of climate economics. Maddison’s 1995 study 

developed a good, simple example of a sparse IAM. Here a dynamic, welfare-optimizing scheme was 

selected for use (in essence a cost-benefit scheme). The model depends on just four central ingredients. 

These are the damage function (Fig. 1a), the cost function (Fig. 1b), the climate sensitivity and the discount 

rate. Let us consider each component in turn. 

The damage function of Fig. 1a builds on Tol (2009) in plotting damage (the costs to society of changing 

climate) as a quadratic of temperature. The quadratic serves to remind us of how the world, for millennia, 

has been operating near an optimum temperature; how a fall of a few degrees would result in an ice age with 

severe economic consequences; or how a rise of a few degrees would also cause acute economic stress. In 

Fig. 1a, the least-squares quadratic fit to the 21 currently available data points is constrained to pass through 

the origin. The location of the downward curvature of the quadratic curve (Fig. 1a, right-hand side) can be 

seen to be of vital concern for estimating future climate damage.  

Next we turn to the cost function (Fig. 1b). Marginal abatement costs for reducing the world’s dependence 

on fossil fuels (Fig. 1b), although not without controversy, are reasonably well agreed as involving a few 

percent per year of projected gross world product (GWP). The simplest approach to estimating abatement 

costings (of changing from fossil to non-fossil fuels) is to order different technologies (from left to right 

across Fig. 1b) according to their emission-reduction costs. A typical sequence might be: improving building 

insulation, energy-efficiency measures, afforestation, nuclear power, renewables, adding carbon capture at 

coal-fired power stations and so on. As ever there are difficulties in determining detailed costs. Grubb et al. 

(1993) point out that economic approaches using “top-down” models based on price indices and elasticities 

tend to overestimate costs, whereas technology-orientated explorations with their “bottom-up” cost and 



performance models tend to underestimate. Nevertheless a steep rise in costs is to be expected for deeper 

emission cuts. A further critical question is how the cost curve will evolve over time. Briefly, for Paris to be 

effective, today’s cost curve (long-dash curve in Fig. 1b) will somehow need to be shifted substantially 

down, or to the right. To date, market forces alone have proved to be inadequate to the task. Lord Stern 

captured this grave situation with the memorable aphorism, “Climate change is a result of the greatest 

market failure the world has seen”. 

 

Figure 1. Schematic damage and cost functions. (a) Damage curve. Constrained (no constant) quadratic fit 

to the 21 currently available data points, as garnered by Tol (2015). Damage expressed as percentage of 

global GNP. (b) Marginal abatement costs expressed as percentage of global GNP. Costs (solid curve), for 

emission reductions up to 60%, put together from Morris et al. (2012), Maddison (1995) and Grubb et al. 

(1993). Costs of achieving higher emission reductions (longdash curve) are very uncertain. The dashed 

curve indicates hoped-for reduced abatement costs with technological advancement through the 21st 

century. The dotted line is illustrative of the even stronger technological advances that would be needed to 

make scenarios such as RCP2.6 (van Vuuren et al., 2011b), which aim to limit the temperature increase to 2 

°C, become economically feasible. Note how damage (plotted in panel a) is regressed against temperature 

(units °C) whereas for costs (plotted in panel b) the independent variable is emission reduction (units %). 

Climate sensitivity (units °C per GHG doubling) provides the mathematical link that allows the two to be 

combined. 

Thirdly we have the climate system. Here the dominant terms we need are the thermal inertia of the ocean 

response (which regulates how swiftly surface temperatures will react to a climate forcing), the masking 

effect of aerosols and the climate sensitivity. The parameter values adopted are those found by the energy-

balance model described in Thompson (2015). The climate system (especially the principal parameter of 

climate sensitivity) provides the crucial scaling linkage between damages (Fig. 1a) and costs (Fig. 1b) in the 

cost-benefit optimization. 

Finally we need to address the time dimension. The profound difficulties and uncertainties associated with 

the distant time-horizons of climate change can cause problems for ethical and economic enquiries. Here a 

utilitarian approach is used in order to capture the time-issues of climate change, specifically within a 

welfare-optimization scheme. The potentially troublesome dilemma, of the choice of discount rate (i.e. the 

conversion rate needed to translate future monetary transactions into today’s monetary values), is overcome 

numerically by analysing all reasonable rates (see Fig. 2). 



 

Figure 2. Simplified diagram showing global temperature change as modelled for a selection of the two key 

climate-economics parameters of discount rate and climate sensitivity. The dotted line plots the temperature 

trajectory for the business-as-usual scenario (RCP8.5) and a high sensitivity. The associated grey polygon 

shows the temperature trajectories found when RCP8.5 greenhouse emissions are reduced in the most cost 

effective way (for annual discount rates of 0, 2, 4, & 5%). Note how high temperatures are reached, by 

2100, even assuming behaviour commensurate with a discount rate of zero. The solid black line, and 

associated grey polygon, show the same results but this time using a mid-range climate sensitivity. In this 

case the discount rate has a rather modest effect on the optimum cost-balance strategy and hence on the 

peak temperature reached by the end of the century. Also note how overall the predominant determinant of 

the rate of global warming is climate sensitivity rather than discount rate. 

The new, least-cost climate-economics model combines the above four components. It works by testing 

different prognoses of future greenhouse emissions. It begins by taking a reference prognosis (e.g. business-

as-usual4, Nakicenovic et al., 2006) and then calculates the change in total utility for various emission-

reduction scenarios. It ends by plotting the temperature change revealed for optimum (maximum) utility.  

Fig. 2 shows the results for a range of combinations of the two key climate-economics parameters of 

discount rate and climate sensitivity. In all cases the economic optimization generates high temperature 

increases by the century end. With a high (4 °C per CO2 doubling) climate sensitivity, global temperatures 

reach around 5 to 7 oC, whereas with a mid-range (2.5 °C per CO2 doubling) sensitivity temperatures reach 

3.5 to 4.5 oC. Very briefly the high temperatures arise because, although the best welfare outcomes are 

found to involve some reduction in GHG emissions (from abatement and improved low-carbon 

technologies), the reductions never become large as then the abatement costs would far outweigh any future 

saving to be accrued from diminished climate-induced damage. The model results confirm that in practical 

terms the only way out of the predicament that the world finds itself in, i.e. the double bind of seeking global 

prosperity alongside an annulment of human-induced climate change (Garrett, 2011), is for society to 

rapidly engineer a large downward shift in abatement costs (cf. shortdash line in Fig. 1b), or to engage in a 

much more substantial carbon-sequestration programme (cf. dotted line in Fig. 1b). Looking more closely at 

Fig. 2, its left hand side is found to be quite revealing. Little effect on global warming temperatures is found 

before 2045 (for any of the economic scenarios) as the long-lag times inherent in the climate-economics 

system serve to delay any impact from emission reductions until mid-century.  

A check that the findings of the sparse climate-economics model, used here, are credible despite the model 

minimalism is provided by a comparison with results from more complex IAMs. Typically more computer 

intensive IAMs have not been used to cover the full range of the combinations of variables shown in Fig. 2. 

However where the two procedures overlap, such as an assessment of the effect of discount rate on end-of-



the-century temperatures when adopting a modest climate sensitivity, excellent agreement is found. In this 

specific instance both approaches reveal the same modest discount-rate effect (compare the thin grey 

polygon in the lower half of Fig. 2 with its equivalent depiction in Fig. 23 on page 64 of Bosello et al., 

2012).  

As a last climate-economics point, it is worth emphasising that the new architecture for global climate 

policy, as enshrined in the Paris Agreement, brings together very disparate national pledges. As these NDCs 

(Nationally Determined Contributions) are voluntary (and therefore non-binding) and are being set, 

monitored and enforced by individual countries they are naturally sub-optimal (in a global sense). 

Consequently the Paris Agreement is primed to generate feebler temperature reductions than those unearthed 

by the cost-benefit optimisation of Fig. 2, and will lead to less satisfactory welfare outcomes. 

Finally, in closing, what about the question of policy instruments? While nations are free to set their own 

post-Paris (post-COP 21) emission-reduction policies, the dominant approaches are most likely to involve 

cap-and-trade and command-and-control (Kossoy et al., 2015). It remains to be seen if the COP/UNFCCC 

process can build a demand for low-carbon products and so spur innovation into new ‘renewable’ 

technologies with a focus on the de-carbonisation of the global economy. Briefly the British economist 

Arthur Pigou came up with the policy instrument of choice decades ago when developing his concept of 

economic externalities (Pigou, 1920). His simple, down-to-earth remedy for market failure was the 

imposition of the corrective measure of a Pigouvian tax. This market-based mechanism works by taxing 

people (using a flat, across-the-board fee) so that they pay the full cost of a specific good or service, i.e. at a 

cost that takes into account the harm caused to innocent bystanders. People respond to such a tax by 

changing their behaviour: buyers by reducing their consumption, sellers by striving to improve their product 

or to lower their costs. Thus the primary benefit of the tax is that it provides, through classic market 

economics (Smith, 1976), an incentive for companies to create cleaner, greener technologies. In effect it 

serves to reduce the economic inertia for change, thereby allowing the market place to select the winning 

technologies. An attractive modern variant is the Wilsonian modification5 which involves recycling 100% of 

the revenues generated directly to taxpayers.  

The Wilsonian approach, to carbon and energy taxation, through a combination of fee and rebate or 

“feebate” (an idea much championed by Hansen, 2015), could well achieve substantial public endorsement 

as it is a free-market solution which requires no significant increase in administrative bureaucracy. British 

Columbia has given the world a first-rate example of this textbook approach to a carbon tax (Murray and 

Rivers, 2015). The Pigou/Wilsonian arrangement has been in place since 2008 (Carl and Fedor, 2016). 

Carbon fees are imposed on fossil fuels burned for transport, home heating, and electricity, but a balance is 

achieved by rebate or by personal income taxes and corporate taxes being reduced by an equivalent amount. 

Murray and Rivers (2015) and Metcalf (2016) report that the British Columbian scheme has been a great 

success. Fossil-fuel consumption has reduced by 5-15% while at the same time no negative effect has been 

observed on economic performance. For instance, British Columbia’s rate of economic growth has kept pace 

with that of the rest of Canada, while many jobs have been generated in sectors like healthcare and retail 

where people spend their newfound disposable income Murray and Rivers (2015). In all emission reduction 

stratagems designed to produce an economically efficient phase-out of fossil fuels a key concern is the 

optimal price of carbon. As described above, and as summarised by Fig. 2, climate sensitivity is found to 

prevail as the pivotal climate/economics parameter for setting the price correctly.  

In short while it would be naïve to expect the Paris Agreement to be a miraculous cure for all the maladies 

arising from global warming (Savaresi, 2016), the Paris stratagems are nevertheless found to be distinctly 

sub-optimal on account of the lack of a strong carbon-pricing policy, i.e. of failing to follow a Pigouvian line 

of attack. The stratagems encoded within the Paris Agreement will turn out to be especially ineffectual and 

unfit for purpose if historical aerosol emissions (Hansen et al., 2013) have been serving to mask a high 

climate sensitivity (Thompson, 2015; Kaya et al., 2016). 

 



Notes 

1. The Conference of the Parties (COP), which is the “supreme body” of the United Nations Framework 

Convention on Climate Change (UNFCCC) meets annually. A key task for the COP is to review the national 

communications and emission inventories submitted by Parties (Member States). By making use of this 

information, the COP assesses the effects of the measures taken by Parties and the overall progress made. 

2. In practical terms climate sensitivity is the temperature rise that will result following a doubling of 

atmospheric CO2.  

3. The date when the independent variables are zero in the sparse IAM is 1750 AD, as this marks the start of 

the rise in atmospheric levels of the main greenhouse gases as used in RCPs (Representative Concentration 

Pathways), i.e. in the latest generation of scenarios that provide time-dependent projections of atmospheric 

greenhouse gas concentrations for input into climate models.  

4. The RCP8.5 scenario (Van Vuuren et al., 2011a) is most commonly used as representing business-as-

usual (BaU). It combines a continuing high population growth (to a peak value of 12 billion) with modest 

income growth alongside steadily improving technological development and increasing improvements in 

energy-intensity efficiency. BaU scenarios have withstood the test of time amazingly well. Over the last 

quarter of a century, for example, global CO2 emissions have closely tracked the original BaU projection, 

SA90-A-High in the 1st IPCC Scientific Assessment Report (published in 1990), of a 0.53 GtCO2 increase 

year-on-year (Nakicenovic, 2015). 

5. David Wilson, Professor Emeritus of Mechanical Engineering at the Massachusetts Institute of 

Technology: the unsung inventor of the carbon tax. [Accessed 31-12-2015 
http://www.bostonglobe.com/ideas/2014/08/09/the-unsung-inventor-carbon-tax/f1xFyWmaXf2XzW3nVxrNJK/story.html] 
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