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Abstract 

 

Individuals aged >65 years are the fastest expanding population demographic 

throughout the developed world.  Consequently, more aged patients are 

receiving diagnoses of impaired renal function and ‘nephrosclerosis’ - age 

associated histological changes in the kidneys.   Recent studies have shown 

that the aged kidney undergoes a range of structural changes and has altered 

transcriptomic, haemodynamic and physiologic behaviour at rest and in 

response to renal insults.  These changes impair the ability of the kidney to 

withstand and recover from injury, contributing to the high susceptibility of the 

aged population to acute kidney injury, and their increased propensity to 

develop subsequent progressive chronic kidney disease.  This review 

examines these features of the aged kidney, and explores the various proven 

and putative pathways contributing to the changes seen with aging in both 

experimental animal models and in man.  The potential for further study to 

increase understanding of the aged kidney, and to lead to novel therapeutic 

strategies is discussed.  
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Introduction 

 

The Centre for Disease Control predicts that 72 million Americans will be 

aged 65 years or older by 2030, accounting for approximately 20% of the U.S. 

population.1 Eurostat predicts that 28% of Europeans will be aged over 65 by 

2060.2 These increasing numbers of elderly individuals will inevitably lead to 

increasing diagnoses of age related kidney impairment. 

 

In renal aging a complex interplay of genetics, environmental change and 

cellular dysfunction leads to characteristic structural and functional changes.3 

This review summarises our current understanding of the factors driving age-

associated changes in the kidney. 

 

Clinical features of renal aging in man 

 

Structural changes of aging 

With age there is a decline in total nephron size and number, tubulointerstitial 

changes, glomerular basement membrane thickening and increased 

glomerulosclerosis (Figure 1).4,5  This age-related histological appearance is 

frequently described as “nephrosclerosis” and describes a combination of 2 or 

more histological features: any global glomerulosclerosis, tubular atrophy, 

interstitial fibrosis > 5% and any arteriosclerosis. A study of healthy kidney 

donors demonstrated nephrosclerosis in only 2.7% of biopsies from donors 

aged less than 30 years, 58% from 60-69 year olds and 73% from donors 
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aged greater than 70.6 Cadaver studies estimate that the upper limit of normal 

glomerulosclerosis in aging exceeds 10%.7 

 

Nephrosclerosis remains a poorly understood observation, and its importance 

within an aging kidney is far from clear. We know that nephrosclerosis 

correlates with aging and mild hypertension in healthy living donor kidneys.8 

Importantly however, age related decline in measured GFR does not correlate 

with the presence or absence of nephrosclerosis.9 In fact, nephrosclerosis 

does not correlated with urine albumin excretion, family history of end-stage 

renal disease, body mass index, serum cholesterol, glucose, or uric acid.10 It 

remains unclear then, whether nephrosclerotic changes have any contribution 

to the functional changes seen in aging, or are perhaps distinct and 

unrelated.11  

 

The Aging-CKD spectrum 

Our understanding of the pathways underlying renal aging is incomplete and 

derived from studies of healthy aging kidneys and extrapolation from 

experimental and clinical studies of CKD.  

 

It is important to note the distinction between these conditions, with the 

mechanisms of progressive genetic, immune or toxin mediated injury seen in 

CKD distinct from the gradual, prevalent changes seen in the aging kidney.  

Throughout this review we will focus on the changes seen in the ‘healthy’ 

aged kidney, though due to the paucity of experimental and clinical data 
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available in aging kidneys at times reference will be made to mechanisms in 

progressive CKD which may also be of relevance to the uninjured but aged 

kidney.  Processes discussed below such as cellular senescence, fibrosis, 

vascular rarefaction and glomerular loss are common to both aging and CKD 

despite differences in causation and natural history.  Similarities are also seen 

in the behaviour of the chronically damaged and the aged kidney including 

their heightened susceptibility to further injury and deficient repair.13   

 

Declining Glomerular Filtration Rate (GFR) 

Population GFR declines with age with longitudinal studies differing in their 

reported rates of decline.14,15 While the MDRD study suggested renal function 

declined at a rate of 3.8ml/min/year/1.73m2, rates as low as 0.4 

ml/min/year/1.73m2 in the Netherlands have been described.16–19 A Japanese 

cohort study suggests the rate of GFR decline increases with advancing 

age.20 

 

Studies of robustly phenotyped Kuna Indians with minimal prevalence of 

hypertension and cardiovascular disease demonstrate comparable declines in 

renal function over time, suggesting that there is a true age related decline, 

rather than the cumulative effects of cardiovascular disease.21 How a 

significant minority of individuals apparently remain free of nephrosclerosis 

and GFR loss remains poorly understood and merits further study. 
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Decreased Tubular Function 

Aging is characterised by progressive tubular dysfunction, decreased sodium 

reabsorption, potassium excretion and urine concentrating capacity potentially 

contributing to an increased susceptibility to AKI.22–24 Elderly patients 

demonstrate decreased trans-tubular potassium gradients and fail to increase 

distal tubule potassium excretion when hyperkalaemic or in response to 

fludrocortisone.25 Decreased potassium excretion correlates with decreasing 

GFR, and may reflect a degree of reduced sodium and chloride delivery to the 

distal convoluted tubule.26 

 

Vascular Changes  

There are important changes to blood vessel structure and function in the 

aging kidney. There is increased extracellular matrix (ECM) deposition, 

increased intimal cell proliferation in pre-glomerular arterioles and increased 

intrarenal shunting and capillary bypassing predominantly affecting the 

cortex.27 

 

Increased renal sympathetic tone increases vasoconstriction whilst aortic 

baroreceptor attenuation of sympathetic tone decreases with age.28,29  Renal 

vasodilators such as atrial natriuretic peptide, nitric oxide (NO) and amino 

acids become less effective.30–32 Human studies demonstrate decreased NO 

production and platelet responsiveness,33 with accumulation of the NO 

synthase inhibitor asymmetric dimethylarginine in elderly individuals.34 In 

particular, aging males become increasingly NO dependent to maintain renal 

plasma flow.35 
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Biological Processes and Mediators Implicated in Experimental Aging  

 

Most rodent experimental models of renal disease are undertaken in young 

animals, potentially affecting their relevance to the aging kidney. There is 

limited or no data available regarding the response of the aged rodent kidney 

to experimental glomerulonephritis, AKI, ureteric obstruction, diabetic 

nephropathy, 5/6th nephrectomy, adriamycin nephropathy or renal 

transplantation.  Some aspects of renal aging may be studied in vitro but 

others require study in vivo in aged mice or other experimental animals (Table 

1). 

 

Studies have demonstrated increased susceptibility of the aged kidney to 

ischemia reperfusion injury (IRI) or toxic AKI.36,37 Aged mice exhibit increased 

mortality, AKI severity and chemokine/cytokine responses in a model of 

uterine sepsis.38 Furthermore, aged mice exhibited increased mortality, 

prolonged injury, reduced regeneration, increased scarring and microvascular 

rarefaction following renal IRI compared to young mice.39 

 

The biology of aging is complex involving diverse changes to cells, tissues, 

organs and the surrounding microenvironment (Figure 2). Many of these 

processes and mediators are discussed below but the reader should 

appreciate that this list is not exhaustive.    
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A) Signalling pathways and oxidative stress in the aging kidney 

 

Falling Klotho levels 

Klotho is a transmembrane protein strongly expressed in the kidney and a co-

receptor for fibroblast growth factor-23 (FGF-23). Whilst its exact physiological 

role in aging remains incompletely understood Klotho has a role in modulating 

diverse aging associated pathways. These include calcium and phosphate 

metabolism with implications for vascular calcification, hypoxia, cellular 

regeneration and senescence. Indeed, homozygous transgenic Klotho 

knockout mice demonstrate arteriosclerosis and vascular changes as part of 

their aging phenotype.40 Similarly, FGF-23 knockout mice display high serum 

phosphate and increased renal phosphate reabsorption in addition to their 

aging like phenotypes.41,42 It may be that these vascular changes contribute 

directly to the aging phenotype we observe.  

 

Klotho’s effects on tissue function, autophagy and fibrosis could contribute to 

abnormal healing and possibly nephrosclerosis.43,44 Importantly, Klotho 

deficient mice exhibit reduced lifespan, skin and muscle atrophy, osteoporosis 

and ectopic calcification.45 Conversely, mice overexpressing Klotho have a 

longer mean lifespan.43   

 

Klotho decreases epithelial senescence in response to oxidative stress, 

reduces binding of nuclear factor kappa-B (NFκB) and increases cell survival 
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in experimental uremia.46 Klotho also represses insulin and insulin-like growth 

factor 1 (IGF1) signalling, likely contributing to reduced oxidative stress in 

mice and in vitro models employing Klotho overexpression.43,45,47  Importantly, 

Klotho supplementation in a rat UUO model attenuated renal fibrosis.48   

 

Increasing Wnt Activation 

Mechanisms for the anti-fibrotic effects of Klotho include suppression of 

fibroblast growth factor and modulation of Wnt signalling.49–51 Wnt is a 

conserved signalling pathway activated post injury which promotes pro-fibrotic 

gene expression.52 As Klotho levels fall during aging Wnt signalling increases 

promoting fibrosis and vascular calcification53 though further experiments are 

required to clarify causality.  Wnt activation promotes renal fibrosis in murine 

models and is a target for inhibition54,55 with antagonism of Wnt and its 

downstream targets ameliorating experimental renal fibrosis.56,57  The 

interplay between potentially causative pathways is illustrated by studies 

demonstrating that renin-angiotensin-aldosterone signalling is Wnt mediated 

with experimental blockade protecting mice from post-injury fibrosis and 

proteinuria.58   

 

Declining Peroxisome Proliferator-activated Receptor gamma (PPARγ) 

levels 

PPARγ is a nuclear receptor whose activity decreases with age in 

experimental rodent models, whilst PPARγ agonists increase Klotho 

expression.59,60 The PPARγ pathway protects against oxidative stress and 

improves vascular function in vitro and in aging rats61–63 with PPARγ agonists 
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protecting human fibroblasts against features of aging and oxidative stress in 

vitro.64 PPARγ agonism by pioglitazone or baicalin improves age related 

vascular oxidative stress or renal inflammation respectively, providing a 

potential therapeutic strategy for elderly patients with reduced PPARγ 

activity.60,65 

 

Angiotensin II 

Angiotensin II (AT2) is increased in aged rats compared to young controls,66 

driving increased fibrosis, glomerular cell growth and ECM accumulation,67 

altered mitochondrial redox function and cytoplasmic oxidative stress in the 

aging kidney.66,68,69  Angiotensin I receptor activation simulates the pro-fibrotic 

β-catenin/Wnt pathway mentioned above.70  Treating aging rats with captopril 

reduces TGF-β activity and attenuates renal fibrosis.71,72 AT2 antagonism via 

ACEi/ARB improves mitochondrial number and function in rats and further 

studies are warranted.73   

 

Oxidative Stress 

A balance exists in tissues between reactive oxygen species(ROS) generation 

and oxidant scavenging and defence mechanisms. When this balance is 

disturbed, either by increased generation of ROS, decreased detoxification or 

both, then oxidative stress may occur. It has been hypothesised that oxidative 

stress leads to tissue damage and contributes to the aging phenotype. 

Certainly, there is evidence in murine and human studies, of both increased 

ROS generation and altered oxidant removal in aging.74–76 
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There is a continuous generation of oxidative species through various 

mechanisms, including mitochondrial oxidative phosphorylation, which 

increases within the aging kidney.76,77Studies in aged rat kidneys support the 

theory there is also reduced oxidant defence demonstrating decreased 

antioxidative capacity and reduced levels of Cu/Zn-SOD, catalase and GSH 

reductase.78,79 This overall increased oxidative load may contribute to chronic 

cellular stress and mitochondrial injury77 as well as apoptosis and possibly 

inducing tubular cell damage.80,81  

 

Contributing to this increased oxidative stress, it has been noted that sirtuins 

(important antioxidant molecules) are diminished with age. Sirtuins protect 

against renal inflammation, fibrosis and apoptosis while improving 

autophagy.82,83 Thus, defective ability to respond to cell stress in aged kidneys 

may contribute to the aged phenotype.84 Mouse models of reduced SIRT-1 

expression demonstrate increased apoptosis and fibrosis following UUO.85 

Additional Sirtuin functions include histone deacetylation and regulation of 

transcription factors controlling cellular stress and survival.86,87 Altered Sirtuin 

levels in aging may contribute to aging phenotypes by altering the kidneys 

capacity to respond to oxidative stress and thus suffer increased oxidative 

DNA damage. 88,89 Interestingly, angiotensin-II (AT2) downregulates SIRT-3 in 

vitro, suggesting that the damaging effects of raised AT2 levels and low 

Sirtuin levels may be related in the aging kidney.90 

 

B) Cell cycle progression in the aged kidney 
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Aged animals have reduced proliferative responses after experimental IRI. 

Tubular epithelial cells in aged mice express higher levels of zinc-alpha (2)-

glycoprotein (AZGP1), limiting proliferation following IRI.91 Whilst reduced 

proliferation might be expected to delay recovery, AZGP1 knockout mice 

displayed worsened fibrosis after IRI with AZGP1 administration being 

protective, implicating control of proliferation as a mechanism limiting fibrosis 

with aging.92  Studies in several CKD models demonstrate G2/M arrest in 

tubular epithelial cells promotes renal fibrosis, but no studies have examined 

G2/M arrest in aging kidneys.93 

 

Cellular senescence, defined as a state of permanent cell cycle arrest, is a 

key anti-proliferative response to aging and injury. This crucial process shuts 

down damaged cells, protects against malignant transformation and limits 

excess fibrosis at both baseline and following injury.94 

 

Senescence may occur as a result of repeated cell division and telomere 

shortening (‘replicative senescence’) or following factors such as oxidative 

stress or genotoxic injury (‘stress induced premature senescence’ [SIPS]) 

(Figure 3).95 Increased numbers of senescent cells accumulate in multiple 

organs including the kidney with advancing age (identified by p16INK4a or 

senescence-associated β-galactosidase expression). 

 

Cell senescence limits fibroblast proliferation in tissue wounds however there 

is increasing interest in the role of the Senescence Associated Secretory 

Phenotype (SASP) in promoting fibrosis.94 SASP promotes fibrosis and organ 
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dysfunction in aging via release of factors including Interleukins-6 and 8, 

Wnt16B and GROα.96–98 Studies in murine renal transplantation showed that 

renal p16INK4a deletion reduced pathologic changes and interstitial fibrosis post 

ischemia reperfusion injury, supporting clinical findings that cellular 

senescence contributes to adverse long-term allograft outcomes.99  Cell 

stress is known to induce SIPS, and consistent with this porcine models have 

shown that renal p16INK4a expression increases after IRI.100  Interestingly, 

p16INK4a knockout mice exposed to experimental renal injury show improved 

recovery after IRI but worsened fibrosis after UUO.101,102  These superficially 

inconsistent findings may reflect the different pathological processes at play, 

with p16INK4a deficiency leading to less cell death and enhanced regenerative 

proliferation in AKI, but the lack of p16INK4a induced senescence inducing an 

exaggerated, maladaptive fibroblast response to ongoing injury in UUO. 

 

Recent seminal studies used transgenic animals to induce specific depletion 

of p16INK4a expressing senescent cells and demonstrated reduced markers of 

aging in multiple organs including the kidney and increased overall lifespan.103  

Other work has used Bcl2/xL inhibitors to deplete senescent cells in non-

transgenic animals.104  Whilst these findings open up exciting new therapeutic 

avenues for the selective targeting of senescent cells to prolong healthy 

lifespan, further studies focusing upon the aging kidney required. 

 

Telomere Shortening 

Telomeres are nucleotide sequences which act as a defensive “cap”: limiting 

activation of DNA repair pathways, protecting genetic material and minimising 
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background cellular stress response.105,106 Although telomere length declines 

with age, it remains controversial whether this is a primary process or a by-

product of aging.105,107 As telomeres shorten with aging and oxidative stress, 

chromosome instability ensues, leading to cellular instability, senescence and 

subsequent apoptosis.108 

 

Increased telomere shortening in telomerase deficient mice is associated with 

increased tubular injury and reduced tubular proliferation after renal IRI with 

reduced tubular cell autophagy implicated in the limited regenerative 

response.109,110 This implies a potential causal role for telomere shortening in 

some of the vulnerability of aging kidneys to injury and it is noteworthy that 

experimental elongation of shortened telomeres resulted in partial reversal of 

aged organ degeneration.111 

 

C)  Hypoxic Damage and Disordered Repair. 

Under physiological conditions, the kidney is supported by a network of 

resident mononuclear phagocytes and pericytes contributing to tissue 

homeostasis and vascular stability.  Renal oxygen delivery and the functional 

status of resident and recruited cells in the kidney have been shown to alter in 

aged and injured experimental animals. 

 

Hypoxia 

Whilst the healthy kidney has areas of low oxygen tension, reduced capillary 

density and increased hypoxia is recognised as a potential driver of CKD, and 

its role in normal aging is being explored. In experimental CKD, the expected 
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angiogenic response to hypoxia fails, instead resulting in fibrosis.112 Increased 

renal hypoxia has also been demonstrated throughout aged rat kidneys, most 

prominently in the cortical zones, as detected by use of the hypoxia sensitive 

marker pimonidazole.113 Aged rat kidneys demonstrate decreased VEGF 

globally and increased anti-angiogenic thrombospondin-1, resulting in 

capillary loss with increased glomerular sclerosis.114 Recently reported 

techniques to quantify subtle changes in the renal vasculature have potential 

to yield new information on the evolution of renal circulatory changes and 

hypoxia with advancing age.115  

 

Leukocytes 

Changes in leukocyte function promoting inflammatory activation occur with 

aging, though whether this is a cause or effect of aging remains unclear.116 

Increased inflammatory signalling and macrophage infiltration,117 with 

alterations in inflammasome components such as NOD-like receptor P3 

(NLRP3), NLRC4, pro-caspase-1, NFκB and cytokines including IL-1β and IL-

18 occur in aging.118 Aged murine macrophages demonstrate impaired 

autophagy and reduced nitrate release and phagocytosis.119 Healthy aged 

mice have increased glomerular macrophage numbers with increased 

macrophage infiltration evident post injury, with renal IRI models showing an 

increased influx of macrophage and T lymphocytes.39,120 Additionally, aged 

mice show defective upregulation of the cytoprotective enzyme 

hemoxygenase-1 after IRI, with pharmacological macrophage 

hemoxygenase-1 induction protecting against subsequent IRI.36 Finally, aged 

macrophages express reduced anti-inflammatory IL-10 during tissue repair in 
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non-renal injury models.121 Given the importance of IL-10, and the negative 

prognostic role of macrophage infiltrates in human renal disease, these aging-

associated changes potentially contribute to the increased rates of injury and 

maladaptive repair seen in aged kidneys.  

 

Further evidence for the importance of the aging immune system in renal 

aging comes from young-old bone marrow transplant (BMT) studies 

demonstrating that aged animals receiving BMTs from young mice exhibited 

reduced renal fibrosis and cellular senescence.122  

 

Pericytes  

Although important for microvascular health pericytes are also recognised as 

key cells in renal fibrosis.123,124 In aged mice renal pericytes decline in number 

and adopt a pro-fibrotic phenotype,125 implicating them in aging related fibrotic 

changes. Pericyte-endothelial detachment under pathological conditions and 

their differentiation into myofibroblasts promotes microvascular rarefaction, 

hypoxia and fibrosis.126,127 Proposed mediators of this pericyte-endothelial 

cross talk include VEGF and PDGF128 and blocking this pericyte-endothelial 

interaction attenuates microvascular damage and interstitial fibrosis.129,130  

 

Disordered Repair. 

The normal enzymatic equilibrium is disturbed in aging and the balance of 

metalloproteinases (MMP) shifts towards fibrosis potentially via upregulation 

of tissue inhibitor of metalloproteinase-1 and increased leukocyte 

recruitment,51 a pattern likely to result in increased collagen deposition.  
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Longitudinal studies of aging mice show increased Collagen I, III and TGF-

β151 whilst aging rat kidneys exhibit increased ECM deposition and TGF-β3 

expression and decreased MMP1 activity suggesting altered collagen 

production and processing.131 Further non-inflammatory pathways may 

contribute to histological changes seen, including pathways driven by Wnt and 

AT2 as mentioned.55 

 

The Aging Human Kidney 

The clinical implications of renal aging in man extend beyond changes in 

glomerular and tubular function. Although data generated by animal studies 

implicate multiple pathways of potential importance for human renal aging 

(Figure 4), data supporting their involvement in man is currently sparse, with 

further studies required.  

 

A) Signalling pathways and oxidative stress in the aging kidney 

 

Falling Klotho levels 

Klotho and FGF-23 are present in human kidneys.132 Klotho levels decline 

with age, and are implicated in accelerated age-related CKD and 

atherosclerosis.133,134 Conversely, patients with increased functional Klotho 

expression are reported to have increased lifespan.135 As Klotho falls, FGF-23 

levels increase, and alter phosphate and calcium homeostasis. Clinical 

studies in dialysis and CKD patients show that higher FGF-23 levels associate 

with increased mortality.136 
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Increasing Wnt activation 

Whilst direct evidence of Wnt activation in human aging is lacking, several 

Wnt antagonists are now undergoing Phase I clinical trials for cancer therapy 

in man.137 If effective, these agents offer new therapeutic options for aging 

associated or fibrotic renal disease. 

 

Declining PPARγ levels 

Agonists of PPARγ are used clinically as anti-diabetic agents. Retrospective 

reviews of renal outcomes in clinical practice suggest that augmented PPARγ 

activity opposes proteinuria in these patients.138 A meta-analysis of PPARγ 

use has also demonstrated that they associate with reduced rates of 

cerebrovascular disease, supporting a role in delaying age-associated 

pathology.139  There is a need for prospective trials assessing their effects on 

renal function. 

 

Angiotensin II 

Despite decreased plasma renin activity in the elderly serum angiotensin II 

levels do not fall and hypersensitivity to angiotensin II develops in the renal 

vasculature.140,141  Whilst ACEi and ARB drugs are in widespread use, there 

is a lack of human data on the impact of AT2 blocking treatments on normal 

renal aging and outcomes at present. 

 

Oxidative Stress 
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As discussed, oxidative stress represents a disruption of the balance of 

oxidant handling in tissues. In man longitudinal studies demonstrate increased 

oxidative stress in normal aging and CKD.74,142 Research has focused on 

advanced glycation end products as drivers of oxidative stress in aging. 

These molecules accumulate with age and are associated with increased 

arterial stiffness, inflammation, oxidative stress and declining renal function.143 

One pharmacological attempt to modify anti-oxidant status in patients with 

diabetic nephropathy showed no impact on proteinuria despite increased 

circulating antioxidant levels.144  Whether an alternative, longer term treatment 

approach in the healthy aged population might have efficacy remains 

untested. 

 

 

B) Cell cycle progression in the aged kidney 

The presence of increased numbers of senescent cells has been noted in 

chronic allograft nephropathy and have been proposed as drivers of the 

progressive fibrosis seen.145 Recent advances in our understanding of the 

roles of aging and stress in inducing the detrimental SASP phenotype adds to 

the importance of senescence cells found in both aged and disease affected 

human renal biopsies.146–148 In humans, senescence is maximal in the 

medulla, potentially reflecting increased oxidative and cellular stress and 

relative hypoxia resulting from the vascular changes discussed previously.149  

 

Telomeres 
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Telomeres shorten in human kidneys at a rate of 0.25% length per year.150 

While telomere shortening provides an elegant explanation of cellular aging, 

currently no data exists to link shorter telomeres to any histological or 

functional measure of renal aging.  Shorter telomeres associate with CKD and 

worse cardiovascular outcomes and are shorter in diabetic nephropathy 

where they associate with rates of disease progression.151,152 Furthermore, 

studies of hemodialysis patients show increased rates of telomere attrition 

suggesting they shorten in response to the physiological stress.153 Although 

intriguing, the importance of telomere shortening in human aging remains to 

be elucidated. 

 

C)  Hypoxia, inflammation and nephrosclerosis in the aged kidney 

Due to the inherent risks of renal biopsy, samples of healthy aged kidney are 

seldom available for assessment of levels of nephrosclerosis, and there are 

no time course studies available to chart the temporal relationships of the 

histological findings in the aged kidney. Ongoing progress in imaging 

technology should enable serial non-invasive assessment of renal perfusion, 

vascular resistance, hypoxia, inflammation and atrophy in healthy young and 

aged volunteers. 

 

Renal Hypoxia 

The clinical use of BOLD MRI imaging has demonstrated a lower pO2 in older 

kidneys compared to younger subjects.154 As intrarenal vascular disease 

contributes to increased glomerular sclerosis in aged biopsies it is possible 
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that subclinical disease leads to hypoxia before marked macroscopic changes 

occur.155 

 

Inflammation 

Inflammation is increased within the aging kidney in man, with pro-

inflammatory cytokines detectable in the serum correlating with age related 

renal disease.156,157 

 

Future Research 

Reviewing the current evidence base in clinical and experimental renal aging 

it is clear that more work is required to understand which pathways are 

dispensable and which represent ‘master regulators’ of the aging phenotype. 

Studies in aged animals should allow characterisation of both the importance 

and interdependence of factors predisposing aged kidneys to injury, fibrosis 

and maladaptive repair, with subsequent validation in man.  Due to the time 

and cost constraints inherent in using aged animals, establishing whether 

models of genetically accelerated aging such as the BubR1 progeroid mouse 

represent useful models of renal aging will be of value.158 BubR1 mice have a 

shortened lifespan and exhibit a variety of age related phenotypes, including 

sarcopenia, cataracts, fat loss, cardiac arrhythmias, arterial wall stiffening and 

impaired wound healing. Specific to kidney research, BubR1 deficient mice 

also demonstrate higher senescence-associated beta-galactosidase activity in 

kidney sections than aged matched controls.159 Whether they truly manifest a 

renal aging phenotype is yet to be determined. 
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Circulating factors 

Heterochronic parabiosis with aged and young mice sharing a common 

circulation has provided evidence in non-renal models that circulating factors 

may modulate features of aging including impaired regeneration and 

increased fibrosis.160–162 Proposed factors include β2-microglobulin and 

growth differentiation factor 11 and reversal of changes in the brain, cardiac 

and skeletal muscle has been shown.163–165 Debate continues as to the 

significance of individual factors.166–170 Whether such factors impact the 

function of the aged kidney remains completely unknown. 

 

Novel experimental species 

Undertaking studies of experimental renal disease in aged mice is challenging 

and other organisms may be of use.  Zebrafish have been used as a model 

for AKI and nephron regeneration and exhibit aging associated 

abnormalities.171–173 Thus the use of genetically manipulated zebrafish in 

renal aging studies may be informative. 

 

Novel therapeutic strategies  

Many pathways implicated in the aging process are the target of interventions 

to improve the aging phenotype in experimental mice (Figure 5).  Klotho 

agonists are under investigation via repurposing of established agents 

including PPARγ agonists, ACEI and ARB drugs.  The importance of 

maintaining a normal renal microvasculature and pericyte pool is increasingly 

understood174 and developing strategies to quantify microvascular function 

and to promote endothelial and pericyte health is a pressing clinical need.115  
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Drugs targeting cellular senescence (‘senolytics’) include siRNA therapies, the 

experimental agent navitoclax and the licenced drugs dasatinib and 

quercetin.175 In experiments these agents demonstrate selective toxicity to 

senescent cells, and their potential utility in animal models and man merits 

further study.  

 

Genetics 

Genome wide association studies (GWAS) have identified upregulation of 

several genes with aging. Whilst cumulative damage may well influence much 

of the elderly genetic milieu, candidate genes have declared themselves as 

being consistently highly expressed in aged kidneys.176–178 Despite the utility 

of GWAS in identifying disease specific pathways, it has proved difficult to 

discover any canonical aging pathways with GWAS.179  

 

The most promising genes encode for modulators of the glomerular filtration 

barrier, fibrosis and inflammatory mediators although difficulty arises when 

identified candidate genes do not match the experimental observations or 

models.180,181 Transcriptomic analysis identified 427 genes strongly 

associated with renal aging, including mortalin-2, a heat shock protein which 

may counteract cell senescence and IGF receptor, a target of Klotho.182–184 

 

GWAS remains however, a promising tool as whole genome analyses of 

GWAS data suggest that over 80 % of the heritability of aging is explained by 

common genetic variants.185 Future GWAS will continue to generate 
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meaningful results as more advanced statistical techniques develop, and 

researchers increase statistical power by increasing samples number, 

combining studies using meta-analytical techniques, multicentre 

collaborations and including more extreme phenotypes in the data.185–188 

 

Epigenetics 

Epigenetics is the study of genome changes that do not alter DNA sequence. 

Epigenetic changes in aging include methylation and deacetylation of histone 

lysine residues, chromatin changes and increased transcriptional noise.179,189 

Interestingly, similar changes in DNA methylation and histones are associated 

with CKD disease progression.190–192 The role of microRNA expression in 

modifying gene expression and nephrosclerosis is of interest,193  with data in 

other organs suggesting an influence on aging.194  

 

Conclusion 

Renal aging is complex and remains incompletely understood. Decreased 

protective factors, hypoxia and microenvironmental stress drive increasingly 

disordered inflammation and renal fibrosis. The resulting fibrosis, senescence 

and microvascular rarefaction exacerbate damage and promote progression. 

The future of treating renal aging likely lies in understanding the key initiating 

events and the common downstream pathways present in kidney aging that 

may be shared with CKD. This knowledge should allow the development of 

therapies capable of arresting the key mechanisms early to preserve kidney 

function throughout life. 
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Figure 1 -  Functional and structural changes in the aging kidney  

With increasing age there are alterations in the function of the kidney.  These 

are accompanied by both macroscopic and microscopic changes and result in 

an alteration in the response of the kidney to diverse insults. 
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Figure 2 – Alterations in cellular and physiological pathways in the 

aging kidney 

Diverse physiological, cellular and gene expression alterations occur in the 

aging kidney, impacting on homeostasis, function and the response to renal 

injury  
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Figure 3 - Cell cycle progression in the aged kidney   

Cell cycle arrest in G1/S phase becomes more prevalent with age and results 

in p16INK4a positive senescent cells expressing multiple cytokines promoting 

autocrine and paracrine changes in aged kidneys.  Whilst studies are lacking 

in aged animals, increased G2/M cell-cycle arrest in response to injury 

promotes maladaptive repair in murine kidney injury with raised G2/M counts 

correlating with fibrosis.93,195 G2/M cell-cycle arrest may have variable effects 

in different cell types, being profibrotic in renal tubular cells, but preventing 

intimal hyperplasia in young smooth muscle cells.196  
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Figure 4 - Age related pathways contributing to altered renal outcomes 

in the elderly  

Multiple pathways interact to produce the changes of renal aging and ↓GFR.  

Black text indicates implicated upstream effectors of aging, whilst red text 

reports the functional and histological changes found in the aged kidney 
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Figure 5 - Potential pathways and therapeutic targets for the treatment 

of renal aging  

Proposed aging associated pathways (left side), and potential interventions to 

address these, coded by current use in patients (green), experimental use in 

models of renal disease/aging (orange) or potential for future study in the	

kidney (red). 
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Table 1 - Studies of putative aging pathways in vitro, in vivo and in man 

Changes in activity of various signalling pathways and mechanisms implicated 

in the response of kidney to increasing age.  Column 1 indicates cellular 

changes observed in vitro, column 2 reports effects seen in experimental 

models of renal aging and injury, and column 3 shows any reported effects in 

human aging and renal disease. 
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Aging factor In vitro studies Experimental studies Human studies 

Telomere 
shortening 

Shown in cells to reduce 
with length of passage.  
Critical shortening leads to 
senescence106. 

Reduced in mice with age108.  
Impaired regeneration after 
IRI109 

Reduced with age, with 
oxidative stress, CKD 
and HD150,152.  Risk 
factor for CVD151. 

Klotho 
signaling 

Klotho opposes signaling 
of IGF-1 and insulin43 in cell 
lines in vitro. 

Klotho deficiency decreases 
lifespan.45 Overexpression 
reduces IGF-1 and Wnt 
signaling and increases 
lifespan43 

Reduced with age132.  
Reduction associated 
with calcification and 
vascular disease136  

Wnt 
signaling 

Promotes profibrotic genes 
e.g. Snail, PAI1, MMP752.  

Levels increase with injury 
and in response to falling 
Klotho with aging53.  
Mediates renal RAAS 
signalling58 

Increases seen in CKD 
& linked to organ 
fibrosis197 

PPARγ 
levels 

Reduces oxidative 
stress/senescence in 
human fibroblasts64 

Reduced activity with age59,60.  
Agonists reduce renal 
inflammation/injury65 

Studies of PPARγ 
agonists suggest 
reduction in rates of 
proteinuria in 
diabetics138 

Antioxidant 
capacity 

 Aged rats have reduced renal 
antioxidant capacity, and 
enhanced renal injury79.  
Reduced oxidative stress 
lessens renal injury198 

Higher levels of 
oxidative stress in 
human aging and in 
CKD74. AGE 
accumulates with 
age142. 

Fibrosis ATII promotes fibrosis of 
glomerular cells and 
promotes reduction of 
SIRT-390 

Collagen I, III and TGF-β 
upregulated in aging mice51 
and rats66.  G2/M arrest is 
implicated in post injury 
renal fibrosis93. 

Nephrosclerosis a 
feature of aging and of 
hypertensive renal 
disease11,12.  Fibrosis 
and ATII 
hypersensitivity seen 
in aged kidneys141 

Senescence/ 
G1 Arrest 

Human and animal cells 
undergo senescence in 
vitro in response to stress 
or prolonged culture.95  
p16INK4a KO epithelial 
cells convert to 
mesenchyme more 
readily102 

p16INK4a and SA-beta-gal 
are markers for senescent 
cells and increased in aged 
animals and post-injury. 
G2/M arrest seen in scarred 
kidneys in response to 
injury93.    

Increased numbers of 
senescent renal cells 
correlate with 
increased injury and 
reduced transplant 
function146,147. 

Vascular 
changes 

Aged mice aortas have 
increased G2/M phase cell 
cycle arrest in vitro199 

Reduced renal capillary 
density in aged mice125  & in 
response to severe IRI115  

Increased renal 
vascular tone and 
vascular stiffening with 
age200. Loss of efficacy 
of vasodilators201  

Pericyte 
behavior 

Pericytes (but not 
myofibroblasts) stabilize 
endothelial cell cultures in 
vitro174  

Reduction of interstitial 
pericytes with aging125.  
Increased myofibroblasts in 
response to UUO and IRI 
injury202 

Comparative studies in 
aged humans (±CKD) 
have not been 
undertaken 


