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Release of neuroactive substances by exocytosis from dendrites is 

surprisingly widespread and is not confined to a particular class of 

transmitters: it occurs in multiple brain regions, and includes a range of 

neuropeptides, classical neurotransmitters and signaling molecules 

such as nitric oxide, carbon monoxide, ATP and arachidonic acid. This 

review is focused on hypothalamic neuroendocrine cells that release 

vasopressin and oxytocin and midbrain neurons that release dopamine. 

For these two model systems, the stimuli, mechanisms and 

physiological functions of dendritic release have been explored in 

greater detail than is yet available for other neurons and neuroactive 

substances.  

 

Introduction 

The dendrites of many neural populations transmit information back to 

their synaptic inputs by releasing neuroactive substances (89, 99, 128). 

Indeed, modulation of neuronal function by dendritic transmitter release is a 

widespread phenomenon and is specific neither to a localized part of the brain 

nor to a particular subtype of signalling molecule. In addition to membrane-

permeant substances such as carbon monoxide, arachidonic acid and nitric 

oxide, classical transmitters can be released from dendrites to signal in a 

retrograde fashion. For example, somatodendritic release of dopamine, which 

is the exemplar small molecule transmitter emphasized in this review, 

modulates the firing rate and excitability of midbrain dopamine neurons. In 



addition, the amino acids GABA and glutamate act as retrograde transmitters 

in the olfactory bulb, hippocampus, cortex and cerebellum (90, 119, 226, 266). 

However, the most numerous class of signalling molecules in the brain is the 

neuropeptides and there is ample evidence for their dendritic release. There is 

convincing evidence for somatodendritic release of the neurohypophysial 

peptides, oxytocin and vasopressin, in the hypothalamus (111, 116, 120, 

127), which are the exemplar peptides covered in this this review. Notably, 

there are also reports for this mode of release for other peptides, including 

dynorphin, enkephalin and cholecystokinin (19, 46, 216).   

 

 

The hypothalamo-neurohypophysial peptide system 

Oxytocin and vasopressin (antidiuretic hormone, ADH) enter the 

circulation following exocytotic release from magnocellular neurosecretory 

cells (MCNs), components of hypothalamic supraoptic (SON) and 

paraventricular nuclei (PVN) that project into the posterior pituitary gland. 

Oxytocin is required for milk ejection, and produces uterine contractions, and 

so has a role in parturition and lactation (4, 19, 81, 114, 202), whereas 

vasopressin is involved in the regulation of water excretion and blood 

pressure. In addition, both peptides have effects on behavior (see below). 

Both are released at axonal synapses, but also from the somata and 

dendrites of MCNs (99, 111, 116, 120, 127, 128, 155, 168). The cell bodies 

and dendrites of MCNs form densely packed and homogeneous nuclei, 

whereas their axons project into the posterior pituitary gland. As there is no 

blood-brain barrier in the posterior pituitary, peptide secretion from axons 

swiftly enters the bloodstream. The dendrites of adult rat MCNs are 

characteristically smooth (aspiny), thick and varicose, with little branching, 

and are often associated in bundles (147, 221). Most of the neuropeptides 

expressed in the SON and PVN are stored within MCN dendrites. Dendritic 

release can be studied in these regions by push-pull perfusion or 

microdialysis (150, 256). Importantly, these methods can be used to study 

dendritic release independently of axonal release, because re-entry of 

peripherally released peptide into the brain is prevented by the blood-brain 

barrier.  



 Although the SON contains only MCNs, the PVN contains both MCNs 

and many other morphologically and functionally distinct cell types. 

Parvocellular neurosecretory neurons make axonal contact with the median 

eminence and they release hypophysiotropic hormones that regulate 

functions of the anterior pituitary and the major hypothalamo-pituitary axes. 

Parvocellular preautonomic neurons modulate sympathetic and 

parasympathetic outflow to several organs, including the heart, the peripheral 

vasculature and the kidneys (31, 223, 262), through long descending 

projections into sympathetic and parasympathetic centers in the brainstem 

and spinal cord. Some neurons within the PVN also project into other limbic 

areas, including the central amygdala, and have recently been shown to 

modulate fear-conditioned (103).  

 Because of these features, the PVN is a particularly useful system for 

studying communication within and between different neuronal populations in 

the brain (218, 220), and particularly the role of neuropeptides in this process. 

 

The nigrostriatal and mesolimbic dopamine systems 

Another transmitter system that relies on somatodendritic release is 

dopamine, which is released from midbrain dopamine neurons. Dopamine 

neurons of the substantia nigra pars compacta (SNc) give rise to the 

nigrostriatal dopamine pathway, which is essential for motor learning and 

motor control. Indeed, loss of dopamine in this system impairs neuronal 

output from the basal ganglia (76), leading to the motor impairments that 

characterize Parkinson’s disease (1, 24, 134, 251). In addition, dopamine 

from this pathway, and from the ventral tegmental area (VTA), also in 

midbrain, influences a number of other brain functions including reward, 

emotion, cognition and memory (25, 181, 193).  

 Dopamine neurons of the SNc and VTA send axon projections that 

densely innervate the striatal complex in the forebrain (139): the nigrostriatal 

dopamine pathway projects from the SNc preferentially to the dorsal striatum 

(caudate-putamen, CPu), whereas the mesolimbic dopamine pathway 

projects from the VTA preferentially to the ventral striatum (nucleus 

accumbens, NAc). In addition, VTA dopamine neurons project via the 

mesocortical pathway to the prefrontal cortex, hippocampus and amygdala 



(80, 246).  

 Like that of all catecholamines, the synthesis of dopamine originates 

from the amino acid precursor L-tyrosine, which is transported across the 

blood brain barrier into dopamine neurons. Tyrosine is converted to L-

dihydroxyphenylalanine (L-DOPA) by the rate-limiting enzyme tyrosine 

hydroxylase (TH) and then to dopamine by L-aromatic amino acid 

decarboxylase (Fig. 1B). Notably, unlike many transmitters/neuromodulators 

that are synthesized in the cell body and transported to distant release sites in 

axons, TH protein expression in dopamine neurons can be seen throughout 

the soma, dendrites and axons (254). Moreover, regulation of TH activity by 

phosphorylation occurs in both somatodendtic compartments and terminal 

fields, thereby indicating that dopamine is synthesized locally for either 

somatodendritic or axonal release (209). 

The release of dopamine from axonal sites is fairly well characterized. 

However, dopamine release from the somata and dendrites of midbrain 

dopamine neurons in the SNc and VTA remains incompletely understood, 

despite extensive research over decades (9, 10, 17, 26, 29, 32, 40, 69, 74, 

169, 184, 196, 198). Because the somata and dendrites are intermingled in 

these regions, their individual contributions to dopamine release cannot be 

distinguished easily, so the term “somatodendritic” is used to describe non-

axonal evoked dopamine release in SNc and VTA. Mechanistic studies of 

somatodendritic dopamine release have been conducted primarily in the SNc, 

in which dopamine release is exclusively somatodendritic (95, 249). In 

contrast, the VTA has collaterals from its own axons, as well as from those 

that arise in the SNc (7, 56). 

 

Experimental methods used to study somatodendritic release 

 

Oxytocin and vasopressin 

    Ideally, experimental methods to study somatodendritic release of 

oxytocin and vasopressin should have sufficient resolution to define the 

location and time course of release. Although the number of techniques that 

meet these criteria is limited, the use of hypothalamic explants containing the 

SON, sometimes with the pituitary gland attached (217), has provided insights 



into the regulation of somatodendritic release by steroids, changes in 

intracellular Ca2+ concentrations, the activation of autoreceptors and second 

messenger pathways (33, 105, 121, 129, 204, 206, 252). 

    The most widely used approach is to monitor changes in neuropeptide 

concentrations in the plasma, through the use of sensitive chemical assay 

techniques such as radioimmunoassay (RIA) and enzyme-linked 

immunosorbent assay (ELISA). RIA, in particular, offers the high sensitivity 

required for the quantification of neuropeptides collected in vivo using push-

pull perfusion (110, 150, 160) and microdialysis (98, 256). With these 

methods, samples can be collected from the extracellular space of defined 

brain structures in unrestrained animals, with timescales of minutes to days 

(62, 110, 255). Other in vivo sampling techniques have also been employed, 

including the simultaneous detection of hormones secreted into the blood, 

using specialized microdialysis probes (166) or chronically implanted jugular 

venous catheters (257). In anesthetized animals, simultaneous 

electrophysiological recording has been combined with microdialysis (126). 

Other approaches for measuring neuropeptides in microdialysates 

include immunosensing with microdialysis probes containing antibody-based 

electrodes and capillary liquid chromatography combined with electrospray 

ionization-mass spectrometry (37, 131). Although these techniques have 

comparable sensitivity to that of RIA they have not yet been widely applied. 

 

Dopamine 

 The first studies of somatodendritic dopamine release involved either 

the measurement of 3H-dopamine overflow from in vitro midbrain slices (74) 

or in vivo measurements in midbrain using push-pull perfusion (32, 169). 

Subsequently, microdialysis coupled with electrochemical detection was used 

for in vivo studies of dopamine release (11, 13, 61, 83, 97, 199, 211). The use 

of microdialysis offered the advantage of a separation step, enabling 

dopamine, its metabolites and in some cases other neurotransmitters to be 

assayed simultaneously. A problem with this or any in vivo method, however, 

is that systemically or locally applied drugs may affect regulatory processes, 

which could be mediated by extended pathways; because of this, in vitro cell 

culture preparations and midbrain slices have been used in most recent 



mechanistic studies of somatodendritic dopamine release, with dopamine 

overflow in culture typically measured by HLPC or RIA (70, 143).  

In slices, the approaches primarily used to detect somatodendritic 

dopamine release are fast-scan cyclic voltammetry (FCV) and amperometry 

with carbon-fiber microelectrodes. These methods permit the quantification of 

changes in extracellular dopamine concentration ([DA]o) with high temporal 

and spatial resolution, on scales of milliseconds and micrometers, 

respectively (146, 183). This is crucial for the rapid detection of release 

evoked in small discrete regions of the brain, including the SNc and VTA ((29, 

40, 69, 184, 196, 198). In these methods, the target molecule (dopamine) is 

oxidized at the surface of the carbon-fiber microelectrode with a suitable 

applied potential, and the resulting current, which is directly proportional to the 

rate of oxidation of transmitter molecules, is recorded. With FCV, the applied 

potential is ramped up and down, enabling identification of released dopamine 

from its characteristic voltammogram (26, 196). The release of dopamine can 

also be verified by the effects of pharmacological agents; for example the 

response is increased by inhibitors of the plasma membrane dopamine 

transporter (DAT) (29, 42) and decreased by inhibitors of the vesicular 

monoamine transporter (VMAT2) (198).  

In amperometry, a potential is applied at a constant value that is 

sufficient to oxidize dopamine. This method has been used to examine 

quantal release of dopamine from neuronal somata (91, 102). One drawback 

of voltammetric and amperometric methods is the possibility of signal 

contamination by contributions from other endogenous electroactive 

substances. For example, in FCV studies of somatodendritic dopamine 

release in the substantia nigra of some rodent species, including rats and 

mice, the voltammetric signal is heavily contaminated by locally released 

serotonin (5-hydroxytryptamine, 5-HT). Given that microdialysis studies 

include a chemical separation step, that technique avoids this lack of 

specificity. Interestingly, this is not a concern when detecting dopamine 

release in the VTA because the VTA of mice, rats and guinea pigs lack 5-HT 

innervation and thus the voltammetric signal arises exclusively from dopamine 

(26, 38, 42, 93).  

Most recently, Williams and colleagues applied electrophysiological 



techniques to detect somatodendritic dopamine release. By using whole-cell 

voltage-clamp recording from midbrain dopamine neurons, it is possible to 

record D2 dopamine autoreceptor-dependent inhibitory currents (D2ICs) to 

monitor evoked dopamine release in the SNc and VTA (9, 10, 38, 68, 69).  

 

Vasopressin and oxytocin are released by exocytosis 

    Vasopressin and oxytocin are stored in and released from large 

dense-cored vesicles (LDCVs). Classical morphological evidence for 

somatodendritic release was provided by electron-microscopic studies on 

hypothalamic neurons, which showed LDCVs within the dendrites and somata 

of MCNs, together with omega-shaped fusion profiles at the plasma 

membrane (189). Exocytosis from the dendrites of oxytocin and vasopressin 

neurons was also demonstrated by treatment of hypothalamic tissue with 

tannic acid to fix exocytosed peptide granules (155, 157, 189). Since peptide 

release from MCNs is not restricted to any particular region of the plasma 

membrane (157, 189), regulation of exocytosis may occur simply by 

controlling the access of vesicles to the sites of fusion (151). In classical 

neuroendocrine cells, control of this type is exerted by cytoskeletal elements, 

and such control may also occur in MCNs, as their cell bodies contain an actin 

network proximal to the plasma membrane, usually referred to as cortical F-

actin. In neuroendocrine cells, this network surrounds the secretory vesicles.  

 The actin network undergoes rapid, transient and reversible 

depolymerization during exocytosis, and F-actin is depleted close to fusion 

zones. The cortical F-actin network has long been proposed to restrict the 

movement of secretory vesicles to fusion zones on the plasma membrane 

(57, 245). The subcortical regions of somata and dendrites in MCNs contain 

polymerized F-actin (238, 248), which is rapidly and reversibly depolymerized 

when secretion is stimulated, and drugs that depolymerize F-actin stimulate 

dendritic peptide release. Thus, evoked release of peptides from the dendrites 

requires the depolymerization of F-actin (Fig. 1A) (238). 

    However, although cortical F-actin has historically been viewed as a 

barrier that restricts the movement of LDCVs to the plasma membrane, it 

might also have an enabling role in exocytosis, either by providing ‘tracks’ for 

LDCV movement to fusion zones, or by constraining some components of the 



fusion machinery. This would suggest that during secretion the F-actin 

network is not simply disassembled, but reorganized to allow the access of 

LDCVs to fusion sites and to provide or assemble the molecular machinery 

necessary for membrane fusion and exocytosis (57). In MCNs, F-actin 

remodeling appears to be involved in the trafficking of functionally mature, 

release-competent vesicles to fusion sites, and it may therefore be critical in 

the differential control of release from different parts of the cell. However, in 

contrast to release from neuronal synapses, vesicle fusion in both the 

somata/dendrites and axon terminals in MCNs does not appear to occur at 

morphologically distinct fusion zones (157). In summary, actin filaments may 

have several roles in exocytosis, including functions in LDCV trafficking and 

tethering, acting as a barrier to fusion, and transporting membrane fusion 

machinery (238). 

 Exocytosis of vesicles is a multi-step process, involving a network of 

interacting proteins at various locations (Fig. 1A), including on the LDCVs 

themselves and at the active zones of the plasma membrane, where 

membrane fusion occurs (229). Exocytosis of both LDCVs and synaptic 

vesicles involves the soluble N-ethylmaleimide-sensitive factor attachment 

receptor (SNARE) complex, which opens the fusion pore and catalyzes the 

fusion of the vesicle membrane with the plasma membrane, resulting in the 

release of its cargo into the extracellular space. There is also evidence for the 

involvement of SNARE proteins in dendritic release, much of the data coming 

from work on dopamine cells in the substantia nigra (12, 180, 254) (see 

below). Studies of other brain regions, including the hippocampus (132, 133), 

olfactory bulb (140), cerebellum (59) and neocortex (266) also indicate the 

requirement for SNARE variants in dendritic transmitter release. 

 Clostridial neurotoxins, after binding to peripheral neurons and 

undergoing reverse axonal transport, are the precursors of zinc proteinases 

that specifically cleave components of the SNARE complex. Tetanus toxin 

(TeTX) cleaves VAMP-2 (synaptobrevin 2, an intrinsic protein component of 

LDCV membranes and part of the SNARE complex). Sensitivity of 

somatodendritic release to TeTX has been described in isolated MCNs (53), 

implying involvement of VAMP-2 in dendritic release of oxytocin and 

vasopressin, as well as in transmitter release at synapses. Although many 



SNARE proteins have already been identified in the terminals of the posterior 

pituitary (96, 263), immunofluorescence studies have failed to detect core 

proteins, including VAMP-2 and SNAP-25, in the somata and dendrites of the 

SON. Somatodendritic peptide release from MCNs thus appears to occur 

without all of the machinery that is needed for regulated exocytosis in other 

cell types (235), but it is probable that the functions of the missing protein 

components are fulfilled by other variants. 

 

Does somatodendritic dopamine release occur by exocytosis?  

  Studies of the subcellular anatomical characteristics of dopamine 

neurons have raised questions about the mechanism and regulation of 

somatodendritic dopamine release.  

First, dopamine axons in the striatum contain abundant clusters of 

vesicles near the plasma membrane at presumed release sites (171, 185). 

Although early anatomical studies also observed vesicle clusters in dopamine 

somata and dendrites within the SNc (253), subsequent studies, including 

those using immunogold labeling of VMAT2 profiles, concluded that SNc 

dopamine somata generally lack such clusters (170). as do dopamine 

dendrites within the substantia nigra pars reticulata (SNr) (79, 249, 253). 

Nonetheless, evidence for exocytosis is provided by reports of quantal 

dopamine release from somata in the SNc, the estimated quantal size being 

14,000 molecules per vesicle (91), which is of similar magnitude to that seen 

in adrenal chromaffin granules (117) and axonal varicosities of dopamine 

neurons in culture (188, 219).  

Second, although some dopamine is stored in small electron-lucent 

vesicles (ELVs) and in LDCVs (170), somatic dopamine in both SNc and VTA 

appears to be mainly stored in 'tubulovesicles', saccules of smooth 

endoplasmic reticulum (SER) that express VMAT2 (Fig. 1B) (170, 253). In 

addition, VMAT2 can be visualized on the outer membranes of organelles that 

may be involved in recycling vesicular membrane proteins (170). Whether 

dopamine is released directly from tubulovesicles or whether they can provide 

a rapid on-demand source of vesicles for release is not currently known. 

Inhibitors of VMAT2 block dopamine release, confirming the importance of 

dopamine uptake and storage, but not necessarily the involvement of 



exocytosis per se. Third, although dendro-dendritic dopamine synapses are 

present in both SNc and VTA, they are also rare (79, 170, 249, 253), and are 

virtually absent from the dopamine-dendrite rich SNr (79).  

 Studies using botulinum toxins to target specific SNARE proteins 

suggest that somatodendritic dopamine release occurs primarily by exocytosis 

(13, 70, 180). However, immunohistochemical studies indicate that TH-

positive somata and dendrites in the substantia nigra lack some typical 

intrinsic vesicle membrane proteins, including synaptophysin, the sv2a and 

sv2b isoforms of synaptic vesicle protein 2, and the Ca2+-sensors 

synaptotagmin 1 and 2 (254). These findings are consistent with the relative 

absence of conventional synaptic vesicles in dopamine neurons. Moreover, 

several of the conventional SNARE proteins involved in vesicle docking, 

including the vesicle membrane protein VAMP-1 (synaptobrevin 1) and the 

plasma membrane protein syntaxin 1a, are also absent. On the other hand, 

SNAP-25 and some non-conventional SNARE protein isoforms, including 

VAMP-2 and the plasma membrane protein syntaxin 3b, are expressed 

throughout dopamine somata (143, 254).  

Overall, the molecular organization involved in dopamine release in the 

SNc appears to differ markedly from that of conventional synaptic vesicular 

release, with the SNARE triad having the unusual composition of VAMP-2, 

SNAP25 and syntaxin 3b (Fig. 1B). Importantly, although dopamine somata 

and dendrites in the SNc lack synaptotagmin 1 and 2 (143, 254), which are 

low-affinity isoforms of the vesicular Ca2+-sensors found at fast synapses 

(259), they do possess two isoforms with higher Ca2+-affinity, namely 

synaptotagmin 4 and 7 (143), which may play a role in the high Ca2+ 

sensitivity of somatodendritic release (28). It should be noted, however, that 

the dopamine neurons express mRNA for synaptotagmin 1, presumably 

because synaptotagmin 1 is involved in axonal dopamine release in the 

striatum. Indeed, consistent with the notion that synaptotagmin 4 and 7, but 

not synaptotagmin 1, are involved in somatodendritic dopamine release, 

down-regulation with siRNA of synaptotagmin 4 and 7, but not of 

synaptotagmin 1, decreases dopamine release from cultured midbrain 

neurons (143).  



 Despite the presence of SNARE complex components (syntaxin 3b, 

SNAP-25 and VAMP2) throughout dopamine somata and dendrites, levels of 

VMAT2 and V-ATPase, the vacuolar-type H+-translocating ATPase that 

generates the transmembrane electrochemical proton potential gradient 

required for active amine uptake through VMAT2, decrease from somata to 

distal dendrites of dopamine neurons (254). This suggests that release and 

storage mechanisms for dopamine may differ between cell bodies and 

proximal dendrites in the SNc and those in distal dendrites in the SNr. As 

discussed further below, the regulation of dopamine release by intracellular 

Ca2+ stores may also differ between these locations: dopamine dendrites in 

the SNr have low levels of the sarco/endoplasmic reticulum Ca2+-ATPase 

(SERCA), which translocates cytosolic Ca2+ into the ER, and also low levels 

of regulatory inositol 1,4,5-triphosphate receptors (IP3Rs) and ryanodine 

receptors (RyRs) in the ER (184).  

 These data, together with the limited number of dendro-dendritic 

synapses and the small population of 'classical' LDCVs (79, 145, 170, 249, 

253), suggest that some somatodendritic dopamine release might occur by 

mechanisms other than exocytosis, including release from the cytoplasmic 

pool by reverse transport through the plasma membrane DAT (60, 63, 79, 

170, 177). Cytoplasmic dopamine concentrations are normally too low for 

DAT reversal, unless enhanced by displacement of dopamine from vesicles 

by pharmacological agents such as amphetamine (118, 230). However, 

dopamine storage in tubulovesicles introduces the possibility that dopamine 

leakage from these organelles might raise the cytoplasmic dopamine 

concentration sufficiently for DAT reversal and release into the extracellular 

space (Fig. 1B). Importantly, given that evoked increases in [DA]o are usually 

enhanced, rather than abolished, by DAT inhibitors (10, 29, 40), this cannot 

be the primary release mechanism in the SNc. Furthermore, release by direct 

transport through the plasma membrane cannot account for the observed 

quantal transmitter release in the SNc recorded by amperometry (91). In 

contrast, release from distal dendrites in the SNr is abolished by inhibition of 

DAT when stimulated by glutamate released from subthalamic nucleus 

afferents (63), and has been proposed to occur by activation of metabotropic 



glutamate receptors (mGluR1), with subsequent PKC-induced reversal of the 

DAT (63, 177).  

 

Ca2+ dependence of somatodendritic release  

 

Somatodendritic oxytocin and vasopressin release 

As described above, release of neurotransmitters from presynaptic 

terminals and of neuropeptides from neuroendocrine cells occurs by the 

ubiquitous process of Ca2+-dependent exocytosis. Like the release of oxytocin 

and vasopressin from axonal terminals in the neurohypophysis (65), dendritic 

release of these neuropeptides depends on a local increase in intracellular 

free Ca2+ concentration ([Ca2+]i) (53, 167, 215).  

 In classical synapses the patterns of neurotransmitter release depend 

critically on the spatio-dynamics of the [Ca2+]i transients (142), which are 

themselves determined by the origin of Ca2+ and its proximity to the release 

machinery, as well as by the various intracellular Ca2+ buffering mechanisms 

that control the amplitude and duration of [Ca2+]i transients. The Ca2+ that 

triggers the dendritic release of oxytocin and vasopressin from MCNs can 

originate from a number of extracellular and intracellular sources (Fig. 1A). 

 

Ca2+ channels 

  Voltage-gated Ca2+ channels (VGCCs) (65, 247) are responsible for the 

entry of much of the extracellular Ca2+ that triggers dendritic neuropeptide 

release. MCNs express several types of VGCCs (67). Despite the fact that the 

Ca2+ current carried by N-type channels is small compared to those of the 

other types of VGCC or to the whole-cell Ca2+ current in the somata of MCNs 

(94, 236), N-type channels appear to be particularly important for dendritic 

release, as release of oxytocin from SONs is most sensitive to blockade of N-

type channels, N-type channels in both in somatodendritic and in axonal 

compartments can be opened in response to the depolarization evoked by 

action potentials (65). However, some signaling molecules, including oxytocin 

and vasopressin, can trigger dendritic peptide release without increasing the 

electrical activity of the neurons, via their receptors on oxytocin and 

vasopressin neurons (71). These peptides act at their respective receptors to 



produce a cell-type specific rise in intracellular Ca2+ concentration that can 

promote transmitter release. Vasopressin-dependent vasopressin secretion 

depends on Ca2+ influx through VGCCs, particularly of the L-, N- and T-types 

(205). Similarly, Ca2+ entry, mainly through L- and N-type channels, is also the 

trigger for somatodendritic release of other transmitters, including dynorphin 

(216), dopamine (101, 143), serotonin (241) and pituitary adenylate cyclase 

activating polypeptide (PACAP) (215). 

 

NMDA receptors  

Extracellular Ca2+ can also enter neurons through Ca2+-permeable 

ionotropic glutamate receptors, including N-methyl-D-aspartate receptors 

(NMDARs). In MCNs NMDARs influence overall MCN excitability and are also 

involved in the control of burst-firing of these cells, which optimizes hormonal 

release from neurohypophysial terminals (66, 86, 162, 173). Opening of 

NMDARs results in Ca2+ entry and in large increases in dendritic [Ca2+]i in 

MCNs (218, 222), with consequent dendritic release of both oxytocin (51) and 

vasopressin (218). Consistent with this, functional NMDARs with unique 

molecular and functional properties have been found at extrasynaptic, as well 

postsynaptic, sites (113, 207) in MCNs. Extrasynaptic NMDARs are also 

coupled to other Ca2+-dependent signaling mechanisms, including voltage-

gated K+ channels and ionotropic gamma-aminobutyric acid (GABAA) 

receptors (162, 186, 187), unlike synaptic NMDARs. However it is not yet 

known whether dendritic release of neuropeptides is differentially regulated by 

synaptic versus extrasynaptic NMDARs. 

 

Intracellular Ca2+ stores 

As well as being triggered by the entry of extracellular Ca2+, dendritic 

neuropeptide release can be evoked by Ca2+ release from intracellular stores 

(Fig. 1A). An example of this is the autocrine release of oxytocin, in which 

binding of oxytocin to its receptors on oxytocin neurons causes Ca2+ to be 

released from its major intracellular store in the endoplasmic reticulum (ER) 

(107). The increase in [Ca2+]i triggers the release of oxytocin from dendrites, 

without inducing release from nerve terminals or affecting the firing of neurons 

(129). Through this autocrine mechanism, dendritic peptide release, once 



triggered, can become self-sustaining and thus long-lasting (129). Other 

agents that mobilize intracellular Ca2+ can also evoke dendritic release of 

neuropeptides. One example is thapsigargin, an inhibitor of SERCA, which 

can inhibit uptake of Ca2+ into the ER, raising cytoplasmic [Ca2+] and thereby 

triggering Ca2+-induced Ca2+ release from the ER, through ryanodine 

receptors (RyRs) (121, 129, 237). 

 

Ca2+ buffering mechanisms 

Intracellular Ca2+-buffering mechanisms influence the amplitude and 

duration of cytoplasmic Ca2+ transients. Various mechanisms of Ca2+ buffering 

and clearance mechanisms operate in MCNs, including Ca2+-translocating 

ATPases both in the ER and in plasma membranes, the mitochondrial Ca2+-

uniporter (221) and Ca2+-binding proteins such as calbindin and calretinin (50, 

148). The operation of these buffering and transport systems damps [Ca2+]i 

transients in MCNs (50, 105, 214, 222), whereas their blockade prolongs the 

transient rise in [Ca2+]i that accompanies depolarization by K+, and thereby 

enhances somatodendritic vasopressin release (105). Interestingly, the 

repertoire of Ca2+-homeostatic systems differs between the somatodendritic 

and axonal compartments of MCNs (50, 105), providing further evidence to 

support independent regulation of neuropeptide release by these two 

compartments.  

 

Ca2+-dependent priming of dendritic release 

As well as triggering the final membrane-fusion step in exocytosis, 

elevation of intracellular free [Ca2+] also primes vesicular stores of peptides 

within the dendrites, rendering them 'release-ready' and available for 

subsequent Ca2+-dependent fusion (Fig. 1A) (129). Spike activity in oxytocin 

or vasopressin neurons in vivo is not itself sufficient to trigger dendritic peptide 

release unless the stores have been primed, but agents that deplete 

intracellular Ca2+-stores, such as thapsigargin or cyclopiazonic acid (SERCA 

inhibitors), or some peptides, including oxytocin itself and alpha melanocyte-

stimulating hormone (α-MSH), consistently induce dendritic release directly 

(129, 204). It is possible that any signal that mobilizes Ca2+ from intracellular 

stores might prime dendritic secretion. Moreover, exposure to agents that 



mobilize Ca2+ from intracellular stores greatly stimulates the peptide release 

evoked by many stimuli such as electrical or osmotic stimulation and K+-

induced depolarization. In vitro, such priming persists for at least 90 min. 

During priming, neuropeptide-storing vesicles become competent to respond to 

the fusion trigger that will arrive at some point in the future, in other words, 

priming increases the size of the secretory pool available for rapid release in 

response to a future trigger of the target cell. One mechanism by which 

vesicles in MCNs leave the reserve pool and enter the release-ready pool 

(237) may be the remodeling of actin. Priming also involves the recruitment of 

VGCCs to the plasma membrane, suggesting that stimuli that increase 

secretory responsiveness on a relatively slow time scale (30-90 min) may act 

by stimulating the recruitment of N-type Ca2+ channels to release sites, where 

they potentiate the secretory response subsequent depolarizations (236). This 

priming of exocytosis appears not to require either gene transcription or de 

novo protein synthesis (234). 

 

Somatodendritic dopamine release  

In the very first report of somatodendritic dopamine release, Geffen 

and colleagues proposed that, in a manner similar to axonal dopamine 

release, dopamine release in the SNc occurs by exocytosis of storage 

vesicles (74). However, details of the precise release mechanism remain 

incomplete. Although the somata and dendrites of SNc dopamine neurons 

lack conventional synaptic structures, dopamine release from the 

somatodendritic compartment occurs by Ca2+-dependent exocytosis. 

Moreover, somatodendritic dopamine release requires Na+-dependent action 

potentials (29, 210), and is prevented by inhibitors of VMAT2 (10, 83, 198). 

However as mentioned above, the effect of VMAT2 inhibitors alone does not 

confirm that dopamine release occurs from conventional storage vesicles, as 

VMAT2 is also expressed by other subcellular organelles in dopamine 

neurons (170). 

 

Ca2+ entry  

The requirement for extracellular Ca2+ in somatodendritic dopamine 

release has become a matter of debate. Although somatodendritic release is 



prevented by the removal of extracellular Ca2+ (in Ca2+-free media containing 

the Ca2+-chelator EGTA) or by blocking Ca2+-channels in the plasma 

membrane with Cd2+ (28, 184, 196, 198), release can still occur at low 

(submillimolar) extracellular Ca2+ concentrations ([Ca2+]o) that do not trigger 

detectable axonal dopamine release, at least in guinea-pig SNc. Indeed, in 

studies using FCV to detect single-pulse evoked increases in [DA]o in guinea 

pig midbrain and striatal slices (28), the [Ca2+]o required for half-maximal 

release (EC50) is markedly lower in the SNc (0.3 mM) than in the CPu (2.3 

mM); similar differences were observed in the VTA versus NAc shell. It should 

be noted that although these studies were done in the presence of glutamate 

and GABA receptor antagonists, it is possible that EC50 values for the Ca2+ 

dependence for striatal dopamine release could be influenced by powerful 

regulation through ACh acting at nAChRs. However, when nAChRs are 

blocked the EC50 for calcium dependence in the CPu is remarkably similar 

(1.9 mM) (18). Furthermore, unlike in the striatum where axonal dopamine 

release is abolished by a cocktail of VGCC blockers, somatodendritic 

dopamine release in the SNc persists in the presence of these blockers (11, 

14, 27, 29, 60, 70, 85). The resistance of release to VGCC blockers 

presumably reflects the incomplete blockade of these channels, along with the 

minimal cytoplasmic Ca2+ concentration required to trigger exocytosis via the 

high Ca2+-sensitivity synaptotagmin isoforms involved in fusion. 

Somatodendritic dopamine release is therefore only weakly dependent on 

[Ca2+]o and Ca2+ entry. Interestingly, the dependence on [Ca2+]o for 

somatodendritic dopamine release has been reported to be stronger in rat and 

mouse than in guinea pig (38, 69).   

Which VGCCs are required for Ca2+ entry in somatodendritic dopamine 

release? N- and P/Q-type, but not L-type, channels appear to be involved in 

basal somatodendritic dopamine release measured by RIA in mesencephalic 

cultures (143). L- and T-type channels, but not N- or P/Q-type channels, are 

involved in K+-evoked dopamine release in the same preparation (60), as well 

as in K+-induced dopamine release detected by amperometry in dissociated 

dopamine cells (102). Therefore, the VGCC types involved in providing Ca2+ 

entry to trigger somatodendritic dopamine release appear to depend on the 

experimental conditions, including the species studied, the type of preparation 



and the stimulation procedure employed. These factors all contribute to the 

complexity of elucidating the precise mechanisms involved in somatodendritic 

dopamine release and its regulation. 

 

Intracellular Ca2+ stores  

The ability to detect evoked somatodendritic dopamine release with 

nominally zero [Ca2+]o raises the possibility that there may be mechanisms by 

which small increases in [Ca2+]i are amplified. An obvious mechanism is Ca2+-

induced Ca2+ release from intracellular ER stores (129, 184, 242), as 

discussed above for oxytocin and vasopressin. Within neurons, the ER forms 

a large network extending from the soma to dendrites and dendritic spines, 

and to axons and presynaptic release sites (244). In SNc dopamine neurons, 

this system propagates Ca2+ release from somatic ER stores to dendrites 

(34).  

Immunohistochemical studies have identified ER membrane proteins 

associated with Ca2+ mobilization from ER stores in SNc somata and proximal 

dendrites, including SERCA-2 and inositol tris-phosphate receptors (IP3R) and 

RyRs (184), which are ligand-gated Ca2+-channels. Each of these facilitate 

somatodendritic dopamine release evoked in the SNc by local pulse-train 

stimulation and detected by FCV (184). In dopamine neurons, RyRs assemble 

in clusters that are closely apposed to the plasma membrane, a location that 

maximizes their activation with the entry of extracellular Ca2+ through VGCCs 

(Fig. 1B). This enables somatodendritic dopamine release to be amplified at 

physiological [Ca2+]o. This amplification, however, is not necessary when Ca2+ 

entry is sufficiently large, as occurs with higher [Ca2+]o. In contrast, facilitation 

of SNc dopamine release by IP3Rs does not necessarily require Ca2+ entry 

through VGCCs but can occur downstream from metabotropic receptors, 

including mGluR1 (Fig. 1B) (184).  

    The role of intracellular Ca2+ stores in amplifying somatodendritic 

dopamine release is complex, and also can vary with the experimental 

conditions and rodent species used (38, 69, 143). Moreover, whether 

intracellular Ca2+ stores contribute to release in the VTA is not yet known. 

Exocytosis involves several Ca2+-dependent steps with proteins that exhibit 



different Ca2+ sensitivities. The final fusion event may require a very rapid 

elevation in [Ca2+]i close to the secretory vesicle to trigger release, whereas a 

slower, less localized increase in [Ca2+]i could enhance priming of secretory 

vesicles, as seen in the release of oxytocin from the dendrites of hypothalamic 

neurons (129), discussed above. Although most evidence suggests that 

dopamine release in the SN or the VTA is not primed by the SERCA inhibitor 

thapsigargin, the possible involvement of other intracellular Ca2+ stores 

remains unknown (12). Whether the differential expression of RyR at sites 

close to the plasma membrane and the cytoplasmic location of IP3R reflect 

these different functions also remains unresolved. 

 

Is somatodendritic release triggered by action potentials? 

 Action potentials are usually initiated at the junction between cell body 

and axon, the axon hillock. In the classical model of synaptic neurotransmitter 

release, the action potential is propagated down the axon to its terminal where 

it opens VGCCs, resulting in the fusion of synaptic vesicles with the pre-

synaptic plasma membrane. However, an action potential can travel in any 

direction from its point of initiation, and into dendrites if the electrical 

properties of the dendrite support this, as is the case in many neurons (39, 

227).  

    Exocytotic release of vasopressin and oxytocin from axonal terminals 

in the posterior pituitary gland is linked to electrical activity in the somata and 

is produced by the opening of VGCCs following depolarization of the terminals 

by invading action potentials (65). At classical fast, glutamatergic synapses, 

the available stores of small ELVs are maintained by endocytotic membrane 

recycling and are quickly reacidified by the V-type H+-ATPase and re-filled 

with neurotransmitter by secondary active transport mediated by H+-linked 

antiporters (190). However, unlike small neurotransmitters, neuropeptides are 

not taken up and repackaged after release – they must be synthesized in the 

rough ER and concentrated in LDCVs in the soma. Compared to ELVs, 

LDCVs require a more sustained increase in [Ca2+]i to trigger exocytosis. 

Consequently, LDCVs have longer latencies to release and require stronger 

stimulation for exocytosis, for example bursts of electrical activity. LDCVs also 

differ from ELVs in that the associated variants of synaptotagmin, the Ca2+-



sensor that triggers release, have a higher affinity for Ca2+, as discussed 

above for dopamine. Consequently it is not necessary for LDCVs to be 

located close to membrane Ca2+ channels to receive a Ca2+ pulse sufficient to 

produce exocytosis, and synaptic specializations are not necessary (2, 6, 135, 

136, 208). 

In many neurons, the properties of the dendritic membranes support 

the propagation of action potentials (227). However, dendritic release of 

vasopressin and oxytocin in MCNs can occur independently of action 

potentials (121, 129), even though action potentials can propagate into the 

dendrites (5). Accordingly, neuropeptide release from dendrites is not linked 

to release from terminals within the same neurons, and this uncoupling seems 

to be both stimulus-dependent and peptide-specific (127). An example of this 

is provided by the effects of alpha melanocyte-stimulating hormone (α-MSH): 

binding of α-MSH to melanocortin 4 receptors on oxytocin cells releases Ca2+ 

from intracellular stores, stimulating dendritic oxytocin release, but inhibits the 

electrical activity of the cell and so inhibits oxytocin release into the periphery 

(204). Dissociation of dendritic and axonal release patterns is also seen in the 

effects of increased plasma osmolality. Systemic hypertonic saline injection 

immediately increases vasopressin release from axon terminals, but dendritic 

release of vasopressin in the SON starts an hour later, when peripheral 

release is subsiding. In this case there is a separation in time between 

transmitter release from dendrites and terminals within the same neurons 

(124).  

In SNc dopamine neurons, the axon initial segment arises from a 

proximal dendrite rather than from the cell body; action potentials originate in 

the dendritic tree and single action potentials back-propagate into dendrites 

(82). However, during burst-firing of these neurons, and particularly if 

dopamine D2 receptors are activated, back-propagation of action potentials 

may not occur (75), suggesting that dopamine can influence the spread of 

action potentials, thereby down-regulating its own release from dendrites. 

Thus, burst-patterned firing, which promotes dopamine release from axon 

terminals, does not necessarily promote dendritic release (78). Consequently, 

dopamine release from distal dendrites is likely to be semi-independent of the 

electrical activity of the neuron. As mentioned above, dopamine release from 



distal dendrites has been proposed to be triggered through local glutamatergic 

activation of mGluRs (177). Interestingly, serotonin neurons in the dorsal 

raphe nucleus also exhibit somatodendritic release. Action potentials in these 

neurons also do not back-propagate very far; however, local activation of 

NMDARs can lead to dendritic release in the absence of action potentials 

(52). This is yet another example of the dissociation of dendritic release of 

monoamines from action-potential-dependent axonal release.  

 

Modulation of somatodendritic release by synaptic inputs 

 

Vasopressin and oxytocin 

    Vasopressin (and in the rat, oxytocin) is involved in the control of 

plasma electrolyte balance. Systemic injection of hypertonic saline stimulates 

vasopressin and oxytocin release from axon terminals in the neural lobe and 

from dendrites within the SON. Vasopressin neurons respond directly to the 

osmotic pressure of their environment (137, 176), but systemic osmotic stimuli 

also activate central receptors on cells that project, directly or indirectly, to the 

SON and PVN, including afferent neural pathways from the rostral forebrain 

anterior 3rd ventricle region (AV3V). The response to systemic osmotic 

stimulation is blocked by tetrodotoxin, which blocks voltage-gated Na+-

channels, and by lesions of the AV3V, suggesting that somatodendritic 

release is part of a cascade of events initiated by osmotic activation of 

synaptic pathways, rather than by the direct effect of hyperosmolarity on the 

MCNs (122, 123).  

The afferent pathways from the AV3V include an inhibitory GABA 

component (174) and excitatory components mediated by amino acids and 

several peptides, including angiotensin II (92). Intracerebroventricular (icv) 

administration of angiotensin increases both systemic and somatodendritic 

vasopressin release within the SON and PVN (152). While somatodendritic 

release is unaffected by retrodialysis of the GABA agonist muscimol into the 

SON, the GABAAR antagonist bicuculline increases somatodendritic release 

(109), suggesting tonic inhibition by endogenous GABA. Furthermore 

glutamate stimulates dose-dependent release of angiotensin II from isolated 

fragments of magnocellular dendrites (158) and also increases 



somatodendritic release when retrodialysed into the SON, whereas kynurenic 

acid, a glutamate antagonist, is inhibitory (109). 

 Somatodendritic release of vasopressin following acute osmotic 

stimulation is inhibited by salt loading but not by water deprivation, while the 

systemic response is unaffected (130), suggesting that somatodendritic 

release is regulated by afferent inputs from both osmo- and baro-receptors. 

The control of central peptide release by volume and pressor stimuli is also 

revealed by studies of hemorrhage and baroreceptor denervation; 

concentrations of vasopressin both in the plasma and in the PVN increase 

markedly in response to hemorrhage (179). Hemorrhage-induced decrease of 

arterial blood pressure stimulates vasopressin secretion through inhibition of 

baroreceptors and activation of chemoreceptors in the aortic arch and carotid 

body, while sinoaortic baroreceptor denervation increases the osmotically-

induced release of vasopressin and oxytocin from the posterior pituitary (159) 

and also increases somatodendritic vasopressin release stimulated by direct 

or peripheral hypertonic saline stimulation (22).  

 Systemic oxytocin release increases during parturition and lactation, in 

parallel with increased electrical activity involving the synchronous burst firing 

of oxytocin neurons. That oxytocin, but not vasopressin, is released within the 

SON and PVN in response to suckling has been demonstrated in push-pull 

perfusion studies in anaesthetized lactating rats (19) and microdialysis studies 

in conscious parturient and lactating animals (22). Somatodendritic suckling- 

or parturition-induced oxytocin release is inhibited by oxytocin antagonists 

infused into the SON, suggesting the receptor-mediated autoregulation of 

oxytocin release (163, 164).  

 The systemic secretion of oxytocin during suckling is also subject to 

noradrenergic regulation, arising mainly from the brainstem. Suckling 

increases both noradrenaline turnover and local oxytocin levels within the 

SON (47), and phentolamine, an -adrenergic antagonist, blocks oxytocin 

release into the SON and PVN during suckling, indicating that suckling 

stimulates noradrenaline release, with subsequent stimulation of 

somatodendritic oxytocin release through the action of -adrenergic receptors 

(8).  



 Systemic and somatodendritic peptide release are also controlled by 

other neurotransmitters released by nerve fibers terminating in the 

hypothalamic nuclei. GABA and glutamate have already been discussed. 

Acetylcholine is also involved in regulating systemic vasopressin release 

(217), and also stimulates somatodendritic vasopressin release in 

hypothalamic explants (excluding axon terminals) (138, 178). Both 

somatodendritic and systemic release of oxytocin appear to be regulated by 

noradrenaline (165), since systemic administration of cholecystokinin (CCK), 

which acts via the vagus nerve to excite the A2 noradrenergic brainstem 

projection to magnocellular oxytocin neurons (243), stimulates release. CCK 

may also directly regulate somatodendritic peptide release; intra-SON 

administration of CCK increases somatodendritic oxytocin and vasopressin 

levels (165), and also the expression of Fos in SON neurons (125).  

 Pituitary adenylate cyclase activating polypeptide (PACAP) receptor 

mRNA and PACAP-like immunoreactivity are present within the SON and 

PVN (161) and PACAP appears to participate in the regulation of the MCNs 

by opening VGCCs and increasing cytoplasmic [Ca2+], thereby stimulating the 

somatodendritic release of vasopressin in vitro (215). 

Dendritic oxytocin release from MCNs is inhibited by endogenous 

opioids in ovariectomized (87) and late-pregnant rats, although this inhibition 

does not occur during parturition (58, 163). In addition, in morphine-

dependent rats, the opioid antagonist naloxone, introduced into the SON 

either by systemic injection or by retrodialysis, increases somatodendritic 

oxytocin release (20, 203). This 'morphine withdrawal excitation' also involves 

somatodendritic oxytocin, the release of which is increased under these 

conditions, while icv administration of an oxytocin antagonist reduces this 

increase (20).  

    During late pregnancy, sex steroids promote oxytocin synthesis and 

storage within the dendrites of the MCNs (156), and steroids have also been 

proposed to exert direct, rapid, non-genomic effects on neurons (232).  

 

Dopamine  

    Synaptic input to midbrain dopamine neurons comes predominantly 

from glutamate and GABA, with GABAergic input dominating in the SNc and 



glutamatergic input dominating in the VTA (154, 197). Consequently, the net 

influence of excitatory versus inhibitory regulation of dopamine neurons differs 

between the SNc and VTA. In ex vivo midbrain slices, somatodendritic 

dopamine release evoked by a single stimulus pulse is unaltered by ionotropic 

glutamate or GABA receptor antagonists (27), suggesting the absence of 

tonic regulation by these transmitters in slices. However, during stimulation by 

multiple pulses, regulation by concurrently released glutamate and GABA is 

seen in both the SNc and VTA (30). In the SNc, dopamine release evoked by 

local pulse-train stimulation is inhibited by concurrently released glutamate 

acting on AMPA- and NMDA-receptors. This inhibition is prevented by GABA 

receptor antagonists, which is consistent with anatomical data showing 

AMPARs on inhibitory input to the SNc (182, 260), (30). In contrast, the 

increase in dopamine release produced by NMDA-receptor antagonists during 

pulse-train stimulation is unaffected by a cocktail of GABA receptor 

antagonists, suggesting the involvement of another inhibitory mediator. One 

possible candidate is endogenously generated H2O2, which has been shown 

to inhibit dopamine release in the SNc (26) and may be generated 

downstream from NMDAR activation.  

In the VTA, pulse-train evoked dopamine release is unaffected by 

blocking GABAA-, GABAB- or AMPA-receptors. By contrast, NMDA-receptor 

blockade suppresses evoked [DA]o, consistent with a glutamate-dependent 

facilitation of dopamine release (30). Importantly, however, blockers of either 

AMPA- or NMDA-receptors decrease evoked dopamine release when applied 

in the presence of GABA-receptor antagonists, thereby unmasking the 

conventional direct excitatory effect of glutamate input to VTA dopamine 

neurons.  

    Regulation by glutamate of somatodendritic dopamine release in the 

SNc also occurs through the metabotropic, G-protein coupled receptor 

mGluR1 (184). mGluR1α is highly expressed in dopamine neurons and, as 

described above, mGluR1 activation produces IP3R-mediated Ca2+ release 

from ER stores, which facilitates evoked dopamine release. However, with 

large increases in intracellular Ca2+, inhibition of dopamine neuron excitability 

and consequently dopamine release may occur from activation of Ca2+-

activated K+ channels (64, 153). Therefore, the net effect of dopamine release 



regulation by mGluR1s will depend on exogenous mGluR1 agonist 

concentration or on stimulus intensity for endogenous glutamate release (48, 

184). As already noted, activation of mGluR1s can also facilitate dendritic 

dopamine release in the SNr, possibly from elevated dopamine levels in the 

cytoplasm and subsequent DAT reversal (177).  

 

Possible role of co-released glutamate and GABA 

    The increasing recognition that dopamine neurons co-release multiple 

transmitters including glutamate and GABA provides a novel concept in the 

idea of “autoreceptor” regulation. Initial studies using cultured dopamine 

neurons established that they can both synthesize and release glutamate (36, 

55). In support of this, subsequent optogenetic methods using selective 

expression of channelrhodopsin (ChR2) in dopamine neurons have 

demonstrated that glutamate released from dopamine axons produces 

glutamate receptor-dependent excitatory post-synaptic currents in striatal 

neurons in slices (35, 106, 225, 228, 231, 240) and mediates behavioral 

effects in vivo (16). Similar approaches have been used to show co-release of 

GABA from dopamine axons; although these neurons synthesize GABA using 

a non-conventional enzyme, aldehyde dehydrogenase 1a1 (100), and they 

can also obtain GABA by uptake from the extracellular space (225, 240). 

Thus, if also co-released with dopamine from somata or dendrites, glutamate 

and/or GABA could autoregulate somatodendritic dopamine release. This 

possibility is supported by the presence of vesicular glutamate transporters 

(vGluT2) in VTA dopamine neurons (55, 84), and co-released GABA appears 

to be accumulated in secretory vesicles through VMAT2 (240), which is 

present in all midbrain dopamine cell bodies and proximal dendrites (170). 

 

Actions of dendritically released oxytocin, vasopressin and dopamine 

  

Autocrine effects  

    Dendritically released neurotransmitters exhibit autocrine effects on the 

neurons from which they are released, and also affect surrounding neurons 

and glia. These effects can change both the inputs to cells and the cellular 

response to these inputs. A good example of this occurs in oxytocin cells, in 



which dendritically released oxytocin enhances the milk ejection reflex, as 

described below.  

  More commonly, somatodendritic release is auto-inhibitory and thus 

self-limiting. Vasopressin neurons discharge in a characteristic phasic pattern 

that maximizes stimulus-secretion coupling at the nerve terminals, but this 

activity is modified by the inhibitory autocrine effects of vasopressin released 

from dendrites. Like oxytocin, vasopressin can also facilitate its own dendritic 

release (258), which may explain the temporal separation of peripheral and 

central release of vasopressin following a hyperosmotic stimulus. Osmotic 

stimulation is followed immediately by systemic secretion of vasopressin, 

whereas dendritic release is delayed and the response prolonged (124). 

Increase of extraneuronal vasopressin concentrations by retrodialysis inhibits 

vasopressin neurons, reducing their firing rate (126). Thus, dendritic 

vasopressin release may stimulate vasopressin release from adjacent 

dendrites until the local external concentration reaches a threshold sufficient 

to hyperpolarize the neuron or else to modulate inhibitory inputs, thereby 

limiting the extent of systemic vasopressin secretion following osmotic stimuli 

or volume depletion. 

Understanding of these autocrine effects is further complicated by the 

fact that within a single LCDV, several other peptides have been co-localized 

with either vasopressin or oxytocin. For example, the endogenous opioid 

dynorphin is co-localized with vasopressin in the same vesicles (250) and 

dendritic vasopressin release will therefore be accompanied by the release of 

dynorphin to provide feedback inhibition of vasopressin cell activity (21). In 

addition many other neuropeptides, such as galanin, apelin, PACAP and 

secretin, are synthesized in MCNs (54, 72, 77, 112). Accompanying receptor 

expression for these peptides on MCNs provides mechanisms for autocrine 

feedback regulation by these co-released neuropeptides (19). 

 Autocrine effects of somatodendritic dopamine release are central to 

the consequences of this process. Locally released dopamine binds to 

inhibitory D2 autoreceptors on dopamine neurons in the SNc and VTA, and 

thereby regulates the rate and pattern of firing of dopamine neurons (10, 73, 

75, 191, 265), which ultimately influences the level and pattern of axonal 

dopamine release in CPu and NAc (211). Somatodendritic dopamine release 



in SNc and VTA is also controlled by local feedback via D2 autoreceptors 

(41).  

 

 

Paracrine effects  

    Exogenously applied or endogenously released oxytocin also acts on 

afferent nerve endings. The SON does not contain presynaptic oxytocin 

receptors, suggesting that this paracrine action is indirect. One indirect 

mechanism involves oxytocin-dependent endocannabinoid release from 

oxytocin neurons (104, 175), mediated by the action of dendritically released 

oxytocin on oxytocin receptors, release of Ca2+ from intracellular stores and 

consequent ‘on-demand’ synthesis of endocannabinoids. Endocannabinoids 

are arachidonate-based lipids that are hydrophobic enough to diffuse 

passively through plasma membranes; their binding to presynaptic 

cannabinoid receptors (CB1) inhibits both GABAergic and glutamatergic 

afferents onto MCNs. Indeed, CB1 receptors have been found using 

immunohistochemistry on both excitatory and inhibitory axon terminals that 

innervate dendrites in the SON. In SON slices, cannabinoid agonists 

presynaptically inhibit spontaneous excitatory and inhibitory postsynaptic 

currents.  

 The milk-ejection reflex during suckling provides an interesting 

example of local paracrine control by oxytocin. Oxytocin neurons are 

continuously active under basal conditions but during parturition and in 

response to suckling in lactating animals, discharge brief, intense bursts of 

action potentials. These bursts release large boluses of oxytocin into the 

circulation, producing intense contractions of the pregnant uterus or milk 

ejection from the mammary glands. The bursts are blocked by administration 

of oxytocin antagonists into the SON, and facilitated by oxytocin agonists 

(108). Dendritic release of oxytocin is up-regulated during parturition and in 

lactation, and has an essential role in the generation of these intermittent 

synchronized bursts (201). Its effects are not restricted to the cell of origin, but 

are also exerted on the dendrites of other oxytocin cells, possibly to facilitate 

homotypic interactions 



 Dendritically-released vasopressin modulates the activity of 

neighboring presympathetic neurons within the PVN (218), providing another 

example of a long-distance, paracrine action of dendritically-released 

neuropeptides. Activity-dependent dendritic release of vasopressin from 

MCNs concomitant increases the firing activity of neurons projecting from the 

PVN to the rostroventrolateral medulla. This interpopulation crosstalk involves 

extracellular diffusion of released vasopressin to V1a receptors in 

presympathetic neurons. Consequently, unlike conventional synaptic 

transmission, the efficiency and strength of this diffuse paracrine action of 

vasopressin depends on the extracellular vasopressin concentration, which in 

turn depends on the average activity of the entire vasopressin neuron 

population. It also depends on the half-life of vasopressin in the extracellular 

space, as well as on the ability of vasopressin to reach relatively distant 

targets by diffusion (e.g. the tortuosity of the extracellular space). These 

examples illustrate the importance of dendritic release of vasopressin in the 

ability of the PVN to control the activity of distinct populations of neurons, and 

thus, to produce a multimodal homeostatic response (218, 220).  

 Given the structural characteristics of midbrain SNc and VTA dopamine 

neurons, somatodendritic dopamine release is likely to be at least partly non-

synaptic. Moreover, dopamine receptors and reuptake transporters on 

dopamine cell bodies and dendrites are largely extrasynaptic (171, 172, 213, 

261), as are D1 receptors on non-dopaminergic terminals in these regions 

(23, 261). Thus, somatodendritically released dopamine must act through 

volume transmission via the extracellular fluid (194, 195). Extracellular 

dopamine concentrations are in turn regulated by diffusion, by uptake through 

the DAT and by the (probably negligible) effects of enzyme-catalysed 

degradation (43, 195). Diffusion measurements in ex vivo guinea pig midbrain 

slices reveal that the extracellular volume fraction in the SNc, SNr and VTA is 

~50% larger that that in forebrain structures, including the striatum (43), which 

would lead to lower extracellular concentrations in midbrain than forebrain for 

a given number of molecules released. Of course, net [DA]o is also influenced 

by other regulators, especially uptake, which is greater in the striatum than in 

the midbrain, so that absolute concentrations in these regions do not differ as 

much as predicted by diffusion characteristics alone (195). Interestingly, DAT 



activity is greater in SNc than VTA, as well, leading to greater effects of DAT 

inhibitors on evoked increase in [DA]o in SNc than in VTA (40, 43).  

    In contrast to evidence for diffusion-based volume transmission of 

dopamine in the SNc and VTA from anatomical and voltammetric studies, 

evaluation of evoked D2ICs in dopamine neurons suggests that the actions of 

dopamine are not only largely diffusion-independent, but also synaptic (9, 10, 

38). These conclusions are based on several observations. First, the 

concentration of exogenous dopamine required to induce D2ICs of similar 

magnitude to those produced by endogenously released dopamine is in the 

micromolar range. This is in contrast to the nanomolar concentrations 

expected for D2 autoreceptors in the high-affinity state. Given that the 

external dopamine concentration declines sharply with distance from a site of 

release (38, 44, 195), an interpretation of this result is that the dopamine 

detected by D2 receptors is immediately post-synaptic, or at least peri-

synaptic. Synaptic dopamine release does occur in the VTA, given the 

presence of axon collaterals (7, 28). Second, the time-course of evoked 

D2ICs is relatively constant across stimulations, as might be expected for a 

postsynaptic response. However, the kinetics of the G-protein coupled, 

inwardly-rectifying K+ (GIRK) channel activated by dopamine are likely to be 

the rate-limiting factor in this autoreceptor-mediated process. Indeed, 

modeling studies of quantal dopamine release indicate that the peak 

concentration is reached ~10 ms after a release event, even at a distance of 5 

μm from the release site (43, 44, 195), whereas the D2 IPSC peak occurs 

several hundred ms after stimulation (38, 68). Thus, the debate about 

synaptic transmission vs. volume transmission for somatodendritic release of 

dopamine remains open (68, 195).  

 

Functional roles for somatodendritic oxytocin, vasopressin and 

dopamine and other diffusible messengers in the brain 

    Oxytocin and vasopressin exert specific behavioral effects: oxytocin is 

involved in maternal behavior and social bonding, while vasopressin has 

actions in the brain that affect social recognition and aggression (88, 168, 

224). The sites at which these behavioral effects are exerted show, in some 

cases, high levels of receptor expression but little innervation by peptide-



containing projections. Could dendritically released peptides exert long-lasting 

behavioral effects by acting on distant targets within the brain? Similar 

changes in neuropeptide concentrations often occur at widely separated sites, 

even though the absolute values vary between sites (127). Dendritic peptide 

release is not targeted specifically to synapses, but peptides may travel to 

their targets by bulk flow through the extracellular fluid and cerebrospinal fluid. 

The half-life of oxytocin in the CSF is about 20 min (144), in contrast with the 

typically subsecond lifetime of dopamine, which limits the range of its action 

after both axonal and somatodendritic release (38, 44, 195).  

Somatodendritic dopamine release also plays a role in animal 

behavior, including motor activity. The action of dendritically released 

dopamine on D1 dopamine receptors in the terminals of the striatonigral direct 

pathway enhances GABA release from axons in the SNr, thereby amplifying 

inhibition of the principal cells of the SNr (149, 192, 239). Through these 

pathways, somatodendritic, as well as axonal dopamine release regulates 

motor behavior (3, 15, 45, 56, 141, 200, 212, 233).  

    The paracrine or hormone-like actions of neuropeptides and dopamine 

can enable signaling between entire populations of neurons, some of which 

may be relatively distant from each other. Thus these transmitters act in a 

more diffuse, less spatially constrained manner – and on a longer time scale – 

than those involved in classical fast synaptic transmission. At chemical 

synapses, the “secrecy” of signal transmission is maintained by the structure 

of the synapse and by the surrounding network of reuptake transporters. In 

contrast paracrine transmission has evolved so as to maximize spillover, and 

its specificity depends only on that of the signal/receptor interactions. In 

addition to the transmitters that are the focus of this review, other biogenic 

amines and acetylcholine are released from en passant boutons on axonal 

segments (264). Extending this concept further are gaseous neurotransmitters 

such as nitric oxide and carbon monoxide (49). It is likely that all of these 

molecules transmit chemical signals not simply from one cell to another, but 

from one population of neurons to another (115, 116, 127), while maintaining 

signal specificity by actions at transmitter-specific receptors.  

 

Conclusions 



Somatodendritic oxytocin and vasopressin release from hypothalamic 

neurons provides paracrine signals that are critical in several key 

physiological events, including birth, milk let-down and social bonding. 

Somatodendritic release and volume transmission of neuropeptides 

represents a form of hormonal action. These neurohormones can act in a 

temporally coherent way at discrete brain sites to establish and co-ordinate 

complex behaviors. 

Somatodendritic dopamine release from midbrain dopamine neurons 

provides an autocrine signal that regulates dopamine neuron activity, and thus 

contributes to axonal release regulation in target regions. Equally importantly, 

dopamine released within these cell body regions contributes to the regulation 

of release of other transmitters, including GABA and glutamate. Through 

these actions, somatodendritic dopamine release contributes to motor 

regulation, as well as to plasticity in rewards circuits, including aberrant 

plasticity in response to drugs of abuse.   

Recent studies provide evidence about the mechanism and regulation 

of somatodendritic release of oxytocin, vasopressin and dopamine, including 

underlying commonalities and differences. There is no reason to believe that 

somatodendritic release is restricted to these systems, and study of this 

process in other neuronal types is likely to be fruitful. How well we can 

understand somatodendritic release in the healthy brain necessarily 

influences how well we can harness these processes to treat disorders 

involving these pathways. The goal of future work into the somatodendritic 

release of peptides, dopamine and related molecules will be to provide this 

understanding. 

 

 

 

Figure Legend 

Figure 1: Comparison of the mechanisms of somatodendritic release of 

oxytocin and vasopressin in the hypothalamus (A) and dopamine in the 

substantia nigra (B).  

A) Neuropeptides are synthesized and packaged in the soma and stored in 



dendrites in a reserve pool (RP) containing large numbers of large dense-

cored vesicles (LDCVs) in dendrites. Depolarization-induced Ca2+ entry 

through voltage-gated calcium channels (VGCCs) stimulates peptide release 

by exocytosis of LDCVs. This requires the depolymerization of F-actin to G-

actin. Furthermore, the stimulation of G-protein coupled receptors, such as 

the oxytocin receptor, stimulates the mobilization of Ca2+ from IP3-dependent 

intracellular stores and an increase in both the number of LDCVs and N-type 

VGCCs at the plasma membrane, thus priming the exocytosis machinery for 

subsequent activity-dependent release. Although some members of the 

SNARE family are detectable by immunocytochemistry, there appears to be a 

lack of VAMP, SNAP-25 and synaptotagmin-1 in the somata-dendrites, with 

their function presumably being replaced by other SNARE proteins. TG, 

thapsigargin; CPA, cyclopiazonic acid 

B).  Features of somatodendritic dopamine release. Dopamine is synthesized 

in the intracellular compartment from tyrosine via tyrosine hydroxylase (TH).  

This process generates L-DOPA which is converted to dopamine by aromatic 

amino acid decarboxylase (AADC). Synthesized dopamine is stored in 

tubulovesicular structures that are part of the endoplasmic reticulum (ER); 

these structures are the primary site of VMAT2, the vesicular monoamine 

transporter expressed in dopamine soma and proximal dendrites. Dopamine 

dendrites contain few vesicles, but those present appear to bud from 

tubulovesicles. Somatodendritic dopamine release is action potential 

dependent.  Release also requires Ca2+ entry via VGCCs, but is amplified by 

both ryanodine receptors (RyRs) and metabotropic glutamate receptor 

(mGluR)-dependent activation of IP3Rs that release Ca2+ from intracellular ER 

stores.  Immunohistochemical evidence suggests that a novel constellation of 

SNARE proteins may be involved in the release, including SNAP-25, VAMP2, 

and syntaxin3b.  Release from dendrites has also been suggested to involved 

reversal of the dopamine transporter (DAT). Released dopamine is taken up 

and recycled via the DAT. 
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