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Abstract: A multichannel Rayleigh wave (R-wave) measurement technique is proposed for 9 

evaluating concrete surface notches with different orientations. In this study, numerical 10 

simulations were first conducted to examine the propagation of R-waves in steel-reinforced 11 

concrete comprising of surface notch inclining at 30°, 90° and 150° against the horizontal 12 

plane. The change of R-wave amplitude was obtained through analysis by wavelet transform 13 

(WT) and fast Fourier transform (FFT) for determining theirs correlations with the notch 14 

depth-to-wavelength ratio. Experimental measurements on concrete samples were then 15 

carried out to validate the proposed technique and its performance, particularly for cases 16 

where notch depth is greater than R-wave wavelength. Good agreement was found between 17 

the experimental results and the numerical calculations, offering good possibility for using R-18 

waves to assess vertical and inclined surface notches in reinforced concrete with the proposed 19 

technique for R-waves acquisition and analysis.  20 

 21 
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1.  Introduction 1 

Concrete structures deteriorate over time as a consequence of pro-longed exposure to 2 

various environmental factors for instance the mechanical loading, extreme weather and other 3 

forces of nature. Surface cracking is one of the most common defects found in concrete 4 

structures. It is the result of the combined effect of drying shrinkage, thermal variation, 5 

restraint (external or internal) to shortening, subgrade settlement or mechanical actions like 6 

fatigue and overloading [1, 2]. Strategic monitoring and assessment on the condition and 7 

health of these structures are needed to prevent further deterioration in the structures which 8 

will lead to fracture or even collapse due to the loss of structural integrity.  Non-destructive 9 

testing (NDT) is a wide group of non-invasive analysis methods which is able to provide 10 

information about the internal condition of concrete. Elastic waves methods are amongst 11 

some of the popular NDT techniques used for detecting defects and damages in concrete 12 

structures. Surface Rayleigh wave (R-wave) that propagates along the surface of the structure 13 

had been used in the study and evaluation of the integrity of concrete structures. For example, 14 

strength gain evaluation of early-age concrete exposed to different curing conditions [3]; 15 

investigation of the relationship between R-wave velocity and porosity in dry and fully 16 

saturated mortar and porosity estimation in concrete cover from ultrasonic measurements [4]; 17 

aggregate segregation detection in asphaltic concrete based on the phase velocity and 18 

attenuation of R-wave by wedge generation technique along with an air-coupled receiving 19 

transducer with a finite-size aperture [5]; examination of concrete blocks, including 20 

subsurface cracks with different depths by ultrasound method [6]; honeycomb inspection in 21 

early-age concrete by ultrasonic surface wave [7]; application of Second Harmonic 22 

Generation (SHG) in R-waves to quantify microstructural changes and microcracks in mortar 23 

and concrete [8];  feasibility study of defects detection inside reinforced concrete (RC) 24 
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structures by using elastic-wave based multi-directional Synthetic Aperture Focusing 1 

Technique (SAFT) [9]. 2 

 3 

Many efforts make use of characteristics of R-waves such as scattering and 4 

attenuation in the application of surface cracks detection and estimation. For example, non-5 

contact, air-coupled surface wave transmission and the effects of sensor locations were 6 

investigated for partially or fully closed surface breaking crack by [10-14]. In addition, a two 7 

sensor-array methodology was implemented by [15] for effective in-place crack depth 8 

estimation based on the study of concrete specimens with vertical slits of different depths. 9 

Apart from that, Rayleigh wave dispersion and energy dissipation were analyzed to determine 10 

the locations and the depths of surface cracks in concrete beams [16]. Besides, surface crack 11 

depth estimation and the evaluation of repair effect for deteriorated concrete piers were 12 

analytically and experimentally investigated using Rayleigh waves by [17-20]. Despite these, 13 

most of the studies have been associated with estimating concrete cracks that are relatively 14 

shallow in depth and the propagation of R-waves in concrete containing an inclined crack has 15 

not been investigated in detail to the author's best knowledge. In a most recent effort, we 16 

performed multi-channel measurements of R-waves on concrete specimens with surface 17 

defects [21, 22]. With the previous numerical and experimental findings serving as the 18 

fundamental and knowing the potential of R-waves as an effective means for assessing 19 

concrete cracks [23, 24], the aim of this study is to establish an in-depth understanding and 20 

quantitative relations useful for characterizing the surface notch, e.g. depth and degree of 21 

inclination. A series of simulations for wave motions to examine the behavior of R-waves of 22 

varying excitation frequencies towards different depths and degree of inclinations of surface 23 

notch were carried out. The outcome of this study is considered to provide further insights on 24 

identifying the critical parameters (WT and phase velocity) for quantification of correlations 25 
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that lead towards establishing a reliable assessment method for concrete structures with 1 

similar defective conditions. The simulated R-waves results for different notch depths and 2 

inclination angles were then verified through experimental measurements.   3 

 4 

2.  Numerical Simulations 5 

The simulations were conducted by employing commercial software [25] that solves 6 

two dimensional (2D) elastic wave propagation problems by temporal acoustic interrogations 7 

based on the finite difference method in the plain strain case. The fundamental equation 8 

governing the two-dimensional propagation of stress waves in a perfectly elastic medium, 9 

ignoring viscous losses is as follows [25]:   10 

 
   
                                                                                                                              

where             is the time-varying displacement vector, ρ is material density, λ is first 11 

Lame constant, μ is second Lame constant,   is the gradient of operator,    is the divergence 12 

operator,   is the partial differential operator, t is the time.  Eq. (1) is solved at discrete points 13 

with respect to the boundary conditions of the model, which include the input source that has 14 

predefined time-dependent displacements at a given location and a set of initial conditions, 15 

while wave propagation in each distinct homogeneous phase is solved according to Eq. (1) as 16 

well [26, 27].   17 

 18 

 A two dimensional steel reinforced concrete model with a dimension of 500 mm 19 

(width) × 300 mm (depth) was proposed (see Figure 1). All materials were considered elastic 20 

without viscosity components. The mechanical properties of the concrete and steel 21 

reinforcement were configured as uniform throughout the whole study and produced 22 

longitudinal wave velocities of approximately 4300 m/s and 6099 m/s, for concrete and steel 23 

reinforcement, respectively. The source of wave was configured as excitations by impacts 24 
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(point source), which was located on the top surface and produced a full cycle elastic wave 1 

with different range of frequencies in order to estimate the effect of the different 2 

wavelengths. In the simulation, three sensors were placed on the left and right side of the 3 

inclined surface notch, respectively with spacing of 40 mm. The distance between the source 4 

and nearest sensor S1 was set to 170 mm to avoid significant the near and far field effects. 5 

From the simulation, the influence of notch on waveform distortion, reduction of amplitude 6 

and pulse velocity was assessed. For time sampling, the step was 0.0962 μs while the basic 7 

period of the highest frequency (150 kHz) was 6.67 μs, implying that a typical cycle was 8 

represented by almost 70 points, more than 10–20 points which are considered adequate. 9 

Table 1 tabulates the elastic properties of simulation model, which were obtained and 10 

calculated from laboratory testing and wave measurement of concrete specimen. The material 11 

and geometry of concrete medium set as uniform throughout the simulation work. In 12 

addition, the parameters of investigation such as angle of inclination, vertical depth, and 13 

frequency of excitation are provided in Table 2. 14 

 15 

Figure 1. Wave motion simulation model. 16 

 17 

 18 
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Table 1.  Properties of steel reinforced concrete model 1 

PARAMETER Concrete Model Reinforcing Steel 

Lambda, λm 15457 MPa 12482 MPa 

Mu, µm 14600 MPa 83590 MPa 

Density, ρm 2313 kg/m3 7850 kg/m3 

P-wave velocity, VP 4394.92 m/s 6099.28 m/s 

R-wave velocity, VR 2311.96 m/s 3219.95 m/s 

Wavelength of R-wave, λR 2.31 mm 3.22 mm 

 2 

Table 2. Characteristics of simulated notches 3 

Types of defect 
 

Depth, d 
(mm) 

Length, l 
(mm) 

Degree of inclination θ, 
(o) to the horizontal 
plane  

Frequency of 
wave, f (kHz) 

Surface notch 15, 30, 45, 

60, 75, 90, 

120, 150 

30 to 150 at 30 

mm increment 

30, 90, 150 10, 20, 30, 40, 50, 

60, 80, 100, 150 

 4 

 5 

3. Signal Processing and Waveform Analysis  6 

In this study, matched filtering of center of energy (MFCE) technique was employed 7 

in raw data signal processing.  It is understood that R-wave carries a higher amount of energy 8 

than body waves. The developed MFCE technique is useful for extracting R-wave component 9 

from the recorded waveforms, based on identification of wave amplitudes corresponding to 10 

R-waves. The MFCE technique could identify the location of the center of energy for R-wave 11 

and "zero pad" the amplitudes of other waves while keeping the one related to the arrival of 12 

R-wave, which was usually signified by a large increase in both the positive and negative 13 

phase in the waveform. After that, matched filtering on each processed signal was executed 14 

with respect to the processed signal obtained from the first sensor. The details of the 15 
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technique can be found in [23]. The windowed signals (R-waves) after the MFCE process 1 

were further analyzed by WT and FFT techniques. FFT was performed on the processed data 2 

and from the resulting frequency response, phase difference between first sensor and 3 

following sensors was calculated. Phase velocity component of R-waves for a particular 4 

frequency was the obtained using the following equation [28, 29]:   5 

        
      

                                                                                                                                    

where Vp is phase velocity, π is phi,   is wavelength, f is corresponding frequency,    is the 6 

distance between sensors and    is phase difference which defined as the difference between 7 

unwrapped angle for processed signals detected by each sensor. In addition, the continuous 8 

wavelet transform (CWT) based on the Gabor wavelets, which has been demonstrated to be 9 

very useful as a time-frequency analysis tool of wave signals in SHM [30-34], is used to 10 

calculate a dispersion-invariant maximum point in the processed signal. Theoretically, the 11 

CWT is defined as [35]: 12 

        
 
  

     
 

  
  

   
                                                                                                          

where  (t) is a mother wavelet with finite energy, a is a scale parameter,         is  a 13 

wavelet coefficient for a given time domain signal f(t). Any mother wavelet can be used for a 14 

wavelet transform, which is the major advantage of the wavelet transform. The mother 15 

wavelet used in study was Gabor wavelet based on the Gaussian function and its Fourier 16 

transform are given as [36] due to the similarity in shape to the raw waveforms and could 17 

lead to a more consistent results:  18 
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where,     is the center frequency,   = 2 ,   is a constant taken as   =  (2/ln 2)1/2. The 1 

identified frequency (corresponding to peak coefficient intensity) from sensor S1 was used to 2 

correlate with the rest of wavelet transforms. Generally, the information about standard time 3 

and frequency content and wavelet transform coefficient can be obtained from the algorithm. 4 

Meanwhile, the distribution of wavelet transform coefficient is shown in the form of a 5 

contour plot. Since the transform distributes the energy of a wave in time and frequency, 6 

hence it is possible to identify the occurrence of particular frequency content at a certain time.  7 

 8 

4.  Materials, sensors and excitation 9 

Four steel reinforced concrete block specimens of 300 × 300 × 500 mm were cast and 10 

the experimental set-up as shown in Figure 2. Among the specimens, one served as the 11 

control sample, while the rest consisted of an artificial notch inclining at 30°, 90° and 150°. A 12 

triangular shaped polystyrene foam board was employed to represent surface notch that has 13 

different "notch depths" along the transverse direction of the specimen. For experiment 14 

measurement, piezoelectric accelerometers (by ICP®) with frequency range of 0.005 kHz to 15 

60 kHz were used. As illustrated in Figure 2, six accelerometers were placed on the top 16 

surface of the specimen, in an arrangement similar to the one adopted in the simulation.  17 

Elastic wave excitations were made by dropping steel balls onto the concrete surface at 170 18 

mm away from the trigger sensor S1. Throughout the experiment, steel ball impacts were 19 

implemented by the same operator to minimize inconsistencies in the generation of stress 20 

waves. Steel balls with different sizes were used for the purpose of generation of R-waves 21 

with different dominant frequencies to investigate the relations between wavelength, notch 22 

depth, angle of inclination and change in amplitude as well as the velocity. It was known that 23 

as the diameter of the steel ball becomes smaller, the corresponding dominant frequency 24 

becomes higher [37]. In this study, wave excitations were conducted from both sides for the 25 
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Control specimen and the one with vertical notch to minimize the geometrical effect. On the 1 

other hand, for specimens with 30° and 150° inclined notches, excitation was carried out on 2 

concrete surface at both sides of the notch and the waveforms were stacked to enhance signal 3 

consistency and the sound-to-noise ratio. To ensure good coupling between sensor and 4 

concrete, electron wax was used for mounting the sensors.  5 

 6 

A waveform acquisition system (PXIe-4492 by National Instruments Co.) was used to 7 

conduct measurement and record waveform data with an interval of 5 µs for a period of 0.02 8 

seconds. The elastic waves consist of longitudinal, shear (spreading into the specimen with a 9 

spherical wavefront) and R-waves (confined near the surface (see Figure. 1)). The 10 

accelerometers can record the strongest Rayleigh mode and also the initial part of 11 

longitudinal wave which is the fastest type and arrives first at detection point.  12 

 13 

Figure 2. Photograph of accelerometer sensors arranged on the upper side of concrete 14 

specimen. 15 

 16 

5.  Results 17 

5. Waveforms and Signal Processing 18 

Figures 3 (a) and (b) show typical waveforms obtained from simulating models 19 

without notch, which were generated by excitation frequencies of 10 and 150 kHz. The strong 20 

burst in the waveform belongs to the Rayleigh mode was observed, which follows the weak 21 
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initial arrival of the P-wave, especially for higher excitation frequencies due to its lower 1 

velocity and slowest types. Simulated waveforms of various notched concrete models 2 

acquired from same excitation frequencies are also shown in Figures 3 (c) to (n). Distorted 3 

waveforms recorded by sensors S4, S5 and S6, located on the side after the notch indicated an 4 

abrupt decrease in amplitude (waveforms were magnified by a factor of 8 in Figures 3 (f), (j) 5 

and (n)) as compared to those obtained from the sensors of sound concrete model or the ones 6 

located before the notch (S1, S2 and S3), which are visible. A portion of the waves was 7 

reflected back when they impinged on the free surface of a notch, while the other portion 8 

passed through below the notch. The waves were then diffracted and scattered when they 9 

impinged on the tip of the notch [38]. In addition, the arrival of R-waves has obviously been 10 

delayed, especially in the deeper notch cases (150 mm). This reveals that less energy is 11 

transmitted through the notch for a longer pathway before reaching the corresponding 12 

sensors. Clearly, the depth of the notch has tremendous influence on the wave amplitude and 13 

the transit time of the signal as recorded by sensors after the notch. 14 

 15 

  16 

  17 
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  1 

  2 

  3 

  4 

  5 
       6 
 7 
Figure 3. Simulated waveforms collected from steel reinforced concrete model for sound 8 

concrete mode using (a) 10 kHz and (b) 150 kHz excitations; 15 mm 30° inclined notch using 9 

(c) 10 kHz and (d) 150 kHz excitations; for 75 mm 30° inclined notch using (e) 10 kHz and 10 

(f) 150 kHz excitations; for 30 mm 90° vertical notch using (g) 10 kHz and (h) 150 kHz 11 

excitations; for 150 mm 90° vertical notch using (i) 10 kHz and (j) 150 kHz excitations; for 12 

15 mm 150° inclined notch using (k) 10 kHz and (l) 150 kHz excitations; for 75 mm 150° 13 

inclined  notch using (m) 10 kHz and (n) 150 kHz excitations 14 
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Examples of raw and MFCE processed waveforms acquired from sensor S4 were 1 

presented in Figure 4. The R-wave peak is indicated by red circle, while the P-wave is 2 

marked by green cross to distinguish the arrivals of P- and R-waves. The window was applied 3 

around the center of energy of R-wave, while the rest of the waveform was zero-padded as 4 

can be seen in Figure 4. In order to comprise one full cycle of elastic wave components, the 5 

length of windows adopted in this study is set to at least 1.5 times greater than its excitation 6 

wavelength. The processed waveform resulted in a more clear-cut isolated component, 7 

indicating a characteristic peak arrival belonging to the R-wave. Moreover, the processed 8 

waveform was found to yield peak frequency very similar to the frequency of excitation, 9 

indicating that the this frequency could be regarded as the characteristic frequency of the R-10 

waves generated.  11 

  12 

 13 
 14 
Figure 4. Processing of waveforms using proposed matched filtering algorithm from sensor 15 

S4 for sound steel reinforced concrete model using (a) 10 kHz and (b) 150 kHz excitations 16 

 17 

Figure 5 shows the processed waveforms and the respective R-wave peak matched 18 

positions based on MFCE technique for sound and various notches concrete models with 19 

excitation frequencies of 10 kHz and 150 kHz, respectively. The variations of amplitude and 20 
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the delayed of R-wave peaks were almost identical and comparable to the raw data as shown 1 

in Figure 3, showing the performance of the proposed  MFCE algorithm in determination and 2 

extraction of R-wave components from raw waveform data. 3 

 4 

 5 

 6 

 7 

 8 
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 1 

 2 
 3 

Figure 5. Processed waveforms and the respective final R-wave peak matched positions 4 

based on MFCE method for sound concrete model using (a) 10 kHz and (b) 150 kHz 5 

excitations; for 15 mm 30° inclined notch using (c) 10 kHz and (d) 150 kHz excitations; for 6 

75 mm 30° inclined notch using (e) 10 kHz and (f) 150 kHz excitations; for 30 mm 90° 7 

vertical notch using (g) 10 kHz and (h) 150 kHz excitations; for 150 mm 90° vertical notch 8 

using (i) 10 kHz and (j) 150 kHz excitations; for 15 mm 150° inclined  notch using (k) 10 9 

kHz and (l) 150 kHz excitations; for 75 mm 150° inclined  notch using (m) 10 kHz and (n) 10 

150 kHz excitations 11 

 12 

Dispersion curve was utilized to explain the change of phase velocity of R-waves 13 

against the surface notch within the effective frequency bandwidth of excitation. The 14 

effective frequency bandwidth was determined based on the frequency domain function of 15 

the received signals and this bandwidth of frequencies containing most of the signal energy, 16 

which indicating a characteristic peak frequency belonging to the propagating R-waves by 17 

FFT and by Eq.2.  Examples of averaged dispersion curve of each sensor (S1)-sensor 18 

combination for sound and various surface notched concrete model cases are depicted in 19 
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Figure 6 for the data obtained from 10 kHz and 150 kHz excitations, respectively.  The 1 

dispersion curves for the sound concrete model were almost consistent throughout the 2 

bandwidth under consideration, giving an averaged value of 2295 m/s at 10 kHz and 2398 3 

m/s at 150 kHz frequencies, which was very close to that calculated by considering the arrival 4 

time of Rayleigh peaks. In contrary, the measured averaged phase velocity of model with a 5 

surface notch depth of 150 mm was only 1571 m/s at 10 kHz and 1236 m/s at 150 kHz, which 6 

were 31.5 % and 48.4 %, respectively, lower than that of the sound concrete model. Further, 7 

it can be seen that the respective dispersion curves have been translated to lower values and 8 

were less consistent throughout the bandwidth under consideration. The overall calculated 9 

dispersion curves are clearly delayed because of the presence of surface notch, and the curve 10 

shape was changed for the steel reinforced concrete models. It is worth to note that the 11 

frequency at source shows symmetric, Gaussian-like curve but frequency attenuation is likely 12 

to happen after propagating concrete. Therefore, the FFT for sensors may no longer be 13 

symmetric. The change of "intensity of frequency" (amplitude of each frequency component) 14 

across the indicated bandwidth could result in asymmetric distribution of phase velocity. The 15 

recorded phase velocities were used to calculate phase velocity index using equation:  16 

     
        

 
     

        
 
     

                                                                                                                            

where         
 
       and          

 
      are average of R-wave phase velocities from 17 

Sensor S1 to the other sensors, respectively, for model with notch and the sound model, 18 

respectively.  19 
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 1 
Figure 6. Dispersion curve computed for sound and various surface notched concrete models 2 

using (a) 10 kHz and (b) 150 kHz excitations 3 

 4 

Figure 7 shows the examples of 2D distribution of wavelet transform for 10 kHz and 5 

150 kHz excitations as well as for steel reinforced concrete models at sensor S4 (sensor after 6 

the surface notch). The wavelet transform diagram shows the magnitudes of wavelet 7 

transform auto scaled in rainbow colors, which lower magnitudes correspond to pink while 8 

peak magnitudes correspond to red.  The peak energy intensity or the arrival of the wave peak 9 

at each frequency component can be easily obtained. The identified peak intensity which is 10 

corresponding to the respective R-wave amplitude was recorded for further analysis and 11 

interpretation using: 12 

      
      

 
          

 
   

      
 
          

 
   

                                                                                                         

where WTn is R-wave WT coefficient in model with notch, WTs is R-wave WT coefficient  in 13 

sound model. The magnitudes of the wavelet transform (peak energy intensity) obtained from 14 

sensor S4 were significantly lower for both the 150 mm depth vertical and 75 mm inclined 15 

notch cases as compared to the one obtained from the sound reinforced concrete model. In 16 

addition, delayed of peak energy intensity was noticed as well, in particular for the deeper 17 

notch depth cases.  18 
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 3 

 4 
 5 

Figure 7. 2D wavelet transform contour diagram at the fourth sensors (S4) for steel 6 

reinforced concrete model using (a) 10 kHz and (b) 150 kHz; for 15 mm 30° inclined  notch 7 

model using (c) 10 kHz and (d) 150 kHz excitations; for 75 mm 30° inclined notch model 8 

using (e) 10 kHz and (f) 150 kHz excitations; or 30 mm 90° vertical notch model using (g) 10 9 

kHz and (h) 150 kHz excitations; for 150 mm 90° vertical notch model using (i) 10 kHz and 10 

(j) 150 kHz excitations; or 15 mm 150° inclined notch model using (k) 10 kHz and (l) 150 11 

kHz excitations; or 75 mm inclined 150° inclined notch model using (m) 10 kHz and (n) 150 12 

kHz excitations 13 
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5.2 Correlations 1 

The concrete notch depth and degree of inclination were divided by the major 2 

wavelength in order to offer a dimensionless relationship and provided a more general form 3 

that potentially suit any scale [16, 23, 24, 39-43]. The wavelength can be calculated using the 4 

common relation between velocity, wavelength, and dominant frequency. The dominant 5 

frequency, fD for each excitation frequency was computed based on the power spectrum 6 

density magnitude plot acquired from the FFT. Table 3 lists the calculated R-waves velocities 7 

and these values were used to compute the ratio between notch depth and wavelength, d/λ as 8 

well as degree of inclination and wavelength, θ/λ for each excitation frequency. 9 

Table 3. Velocity of R-waves generated by different excitation frequencies. 10 

Frequency of 
wave f, (kHz) 

R-wave velocity (Steel 
reinforced concrete 

model)(m/s) 
10 2281.3 
20 2361.2 
30 2370.1 
40 2375.7 
50 2378.2 
60 2381.3 
80 2383.7 
100 2390.0 
150 2392.6 

 11 

The power and logarithmic regressions derived from the plot of R-wave WT and 12 

phase velocity indices with respect to the ratio between notch depth and wavelength, d/λ 13 

show good correlations, as presented in Figures 8 and 9. It is also found that both the WT and 14 

phase velocity indices decreased as the d/λ increased with a slightly lower correlation 15 

compared to WT index. Taking WT analysis results of 10 kHz excitation as examples 16 

(concrete model with vertical 90° surface notch), the change of WT index with regards to d/λ 17 

was noticeable, which changes from 0.54 to 0.016 as d/λ increases from 0.13 to 0.67. 18 



20 
 

However, for d/λ values of greater than 1, the WT index change eventually reaches a plateau. 1 

From the analyses, it is revealed that higher excitation frequencies result in higher value of 2 

velocity or phase velocity. Similar findings were reported in previous studies, pointing that 3 

although higher frequency waves suffer from stronger attenuation than the lower frequency 4 

ones, their propagation velocity is faster in inhomogeneous media like concrete [44, 45]. 5 

When the excitation frequency is 10 kHz, 150 mm notch length seems to give the largest drop 6 

in R-wave velocity index, which was up to 21.3 %, 14.1 %, 18.4 %, 18.6 % and 15.2 % as 7 

compared to the one from sound concrete model for cases with vertical (90°) and inclined 8 

notches cases (30°, 60°, 120° and 150°), respectively. On the contraly, the smallest decrease 9 

of velocity index which is caused by the notch length of 30 mm, have marked a maximum of 10 

8.4 %, 4.3 %, 6.1 %, 5.0 % and 6.4 % dropped for the same cases as mentioned before. It is 11 

noteworthy that the velocity index decreases with the increase in notch depth, justifying the 12 

fact that the waves have to take longer time or longer path way to reach the other side of 13 

notch for deeper notches.  14 

 15 

The WT and phase velocity indices vs. θ/λ data are given in Figures 10 and 11. The 16 

WT and phase velocity indices exhibit power and logarithmic regressions, respectively, with 17 

respect to the ratio between notch angle and wavelength, with moderate correlation 18 

coefficients.  It is obvious that for higher frequency, the WT index becomes lower due to the 19 

higher tendency of high frequency components to lose energy through adsorption, scattering 20 

and distortion by the notch. Similar findings have been reported previously [18], in which the 21 

penetration depth of R-wave is believed to be equivalent to the excitation wavelength. It is 22 

assumed that the wave is propagating in a straightforward path below the notch when the 23 

wavelength is greater than the notch depth. On the other hand, the other mode of propagation 24 
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which involves reflection and scattering has occurred when the R-waves wavelength is 1 

smaller than the notch depth. 2 

 3 

The WT index seems to lose their sensitivity against deeper notch depths. There are 4 

few reasons for this behavior. Amongst, the penetration depth of R-wave which is considered 5 

as equal to one wavelength. According to Aggelis and Shiotani [18], the amplitude of R-wave 6 

at the depth of one wavelength is around 6 % of the surface amplitude for ideal non-7 

attenuative material with mechanical properties similar to concrete. However, the attenuation 8 

of concrete certainly has an effect in decreasing the penetration depth, something that is not 9 

fully accounted for in the numerical simulation of this study. Besides, the energy of the wave 10 

is not proportional to the amplitude but to the square of the amplitude. This implies that the 11 

majority of R-wave energy propagates in shallower zone. Hence, despite the fact that the 12 

wavelength can be larger than the notch, still the energy passing below the notch is 13 

insignificant and therefore, the waveform readings for the larger notches do not show much 14 

discrepancy [19]. 15 

 16 
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 1 

 2 
 3 

Figure 8. WT index versus d/λ for steel reinforced concrete model with (a) 30° inclined notch 4 

cases, (b) 60° inclined notch  cases, (c) vertical notch (90° ) cases, (d) 120° inclined notch  5 

cases and (e) 150° inclined notch  cases 6 

 7 
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 2 
  3 

Figure 9. Phase velocity index versus d/λ for steel reinforced concrete model with (a) 30° 4 

inclined notch cases, (b) 60° inclined notch  cases, (c) vertical (90°) cases, (d) 120° inclined 5 

notch cases and (e) 150° inclined notch  cases 6 

 7 
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Figure 10. WT index versus θ/λ for steel reinforced concrete model with (a) 30 mm notch 4 

length cases, (b) 60 mm notch length cases, (c) 90 mm notch length cases, (d) 120 mm notch 5 

length cases and (e) 150 mm notch length cases 6 

 7 
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  1 

 2 
 3 

 4 
Figure 11. Phase velocity index versus θ/λ for steel reinforced concrete model with (a) 30 5 

mm notch length cases, (b) 60 mm notch length cases, (c) 90 mm notch length cases, (d) 120 6 

mm notch length cases and (e) 150 mm notch length cases 7 

 8 

5.3 Experimental Results 9 

Five different diameters of steel balls (19 mm, 14 mm, 12 mm, 10 mm and 9 mm) 10 

were employed as impact sources in the experimental measurements, which exhibit  11 

consistent and broad spectral content of forcing function with dominant frequencies of 11.5 12 

kHz, 13.1 kHz, 14.6 kHz, 18.2 kHz and 19.5 kHz, respectively. Examples of waveforms in 13 

steel reinforced concrete specimens obtained from tapping a 19 mm steel ball (dominant 14 

frequency of 11.7 kHz) against the face of concrete are depicted in Figure 12. Plotting the 15 

arrival time of R-wave obtained from each sensor with respect to distance, as seen in Figure 16 

12, yields the propagation velocity which is the slope of the line. The arrival of R-waves 17 
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arrival time is comparable to the one obtained from simulation. In addition, time domain 1 

traces measured at the same array arrangement for the specimen with inclined 30° (notch 2 

depth of 15 mm and 75 mm), and on vertical notch 90° (notch depth of 30 mm and 150 mm) 3 

as well as on inclined 150° (notch depth of 15 mm and 75 mm) depicted in Figures 13 (a) to 4 

(f) as well. Further, the processed experimental waveforms by MFCE for the same cases are 5 

showed as in Figure 14. As can be seen from the figure, the delay of Rayleigh peaks between 6 

S3 and S4 becomes longer when the depth of surface notch is increased. In addition, major 7 

reduction of amplitude is observable when compared the amplitude recorded from sensors 8 

after the notch to those recorded from sensors before the notch. The propagation of elastic 9 

wave may not be 'straight and direct' underneath the notch along the measurement array but it 10 

might traveled in other shorter paths in concrete medium and been diffracted by the notch tip.  11 

           12 
 13 

Figure 12. Experimental waveforms collected for (a) sound concrete specimen and (b) their 14 

corresponding R-waves propagation distance against arrival time. Excitations were done by 15 

19 mm steel ball impact.  16 

 17 

0 500 1000 1500 2000 2500

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)
Rayleigh Peak

P - wave

R² = 0.9963 

0

50

100

150

200

250

300

950 1,000 1,050 1,100 1,150 1,200

Di
st

an
ce

 (m
m

) 

Time (μs) 

Sound Model

0 500 1000 1500 2000 2500

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh Peak
P - wave

0 500 1000 1500 2000 2500

Am
pl

itu
de

 

S1

S2

S3

S4

S5

S6

Time(µs) Rayleigh Peak  P - wave 

Sound 

30°-15 mm  30°-75 mm  

(a) (b) 

(a) (b) 



27 
 

 1 

 2 
 3 

Figure 13. Experimental waveforms collected for (a) 15 mm 30° inclined notch,  (b) 75 mm 4 

30° inclined notch, (c) 30 mm 90° vertical notch, (d) 150 mm 90° vertical notch, (e) 15 mm 5 

150° inclined notch and (f) 75 mm 150° inclined notch. Excitations were done by 19 mm 6 

steel ball impact.  7 
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 1 
   2 

Figure 14. Processed experimental waveforms and the respective final R-wave peak matched 3 

positions based on MFCE method for (a) sound, (b) 15 mm 30° inclined notch, (c) 75 mm 4 

30° inclined notch, (d) 30 mm 90° vertical notch, (e) 150 mm  90° vertical notch, (f) 15 mm 5 

150° inclined notch and (g) 75 mm 150° inclined notch. Excitations were done by 19 mm 6 

steel ball impact.  7 

 8 

 The estimation results (based on the correlations established earlier) from experiment 9 

measurements were plotted against the actual notch depths and degree of inclinations for 10 

comparison, as shown in Figure 15. The actual values are indicated as scatter lines without 11 

marker, while the estimation values are represented by scatter lines with marker. The 12 

maximum and minimum discrepancies between the actual and estimated values for WT and 13 

phase velocity indices were given in Table 4.  The notch depth estimation is found to be more 14 

accurate than the degree of inclination estimation. Apart from that, the performance of WT 15 

index is also more satisfactory than the phase velocity index with lower discrepancies. This 16 

can be explained by their higher R2 values in the correlations established between the indices 17 

with the ratio of notch depth-to wavelength as well as with the degree of inclination.  From 18 

the numerical estimation results, fluctuations were noted especially for the cases of notch 19 

depths of 120 mm and 150 mm and degree of inclinations of 120° and 150°.  20 
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 1 

 2 

Figure 15. Surface notch depth and degree of inclination estimations based on (a) WT index 3 

(b) phase velocity index. 4 
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Table 4. Discrepancy between actual and estimation values for surface notch  1 

Index Discrepancy between actual and estimated values (%) 
Depth Angle 

Max. Min. Max. Min. 
WT 17.8 2.1 21.4 -3.2 
Average 8.8 11.7 
Phase velocity 19.8 -3.6 -19.9 -3.3 
Average 9.8 12.8 
*a negative value indicates over-estimation and vice versa 2 

 3 

6.  Conclusions 4 

In the present work, the behavior of R-waves propagating reinforced concrete with a 5 

surface notch is investigated both numerically and experimentally in a more systematic 6 

manner. The study is focused on the WT coefficient and phase velocity changes of the R- 7 

waves and their dependence on depth and inclination. Multichannel acquisition procedure 8 

was developed in the study to record the propagating elastic waves, extract and analyze for 9 

the R-wave components. Correlations between the specific R-wave parameters with the ratios 10 

of notch depth, degree of inclination and wavelength were established. The accuracy of the 11 

correlations was verified through experimental measurements on concrete specimens induced 12 

with surface notch. In general measurement results gave satisfactory agreement between the 13 

proposed WT and phase velocity indices and notch depth as well as its degree of inclination, 14 

making them reliable parameters for quantifying and characterizing concrete surface notch, 15 

particularly when the wavelength is greater than the notch depth. The proposed R-wave 16 

measurement and assessment methodology can possibly be refined for enhanced reliability 17 

and practicality. Its feasibility for in-situ applications could be justified through methods such 18 

as coring. Future work will be focused on confirming the addition effect by a real crack as 19 

compared to a notch. Additional parameter or factor may be proposed to the correlations to 20 

cater for this effect. In addition, a more steady study should also be conducted on developing 21 
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classification method to characterize surface notch depth and orientation simultaneously, 1 

such as the artificial neural network.  2 
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Figure 1. Wave motion simulation model. 
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Figure 2. Photograph of accelerometer sensors arranged on the upper side of concrete specimen. 

 

 

Figure
Click here to download Figure: Figure 2.docx



 

  

  

  

  

  

  

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

 

S1

S2

S3

S4

S5

S6

Time(µs) Rayleigh Peak  

P - wave Sound-10 (kHz) 

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

 

S1

S2

S3

S4

S5

S6

Time(µs) Rayleigh Peak  

P - wave 

Sound-150 (kHz) 

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

30°- 15 mm (10 kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

30°- 15 mm (150 kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

30°-75 mm (10 kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

30°- 75 mm (150 kHz)

magnified by 8

magnified by 8

magnified by 8

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

90°- 30 mm (10kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

90° - 30 mm (150 kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

90°- 150 mm (10 kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

90° - 150 mm (150 kHz)

magnified by 8

magnified by 8

magnified by 8

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

150°- 15 mm (10 kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

150°- 15 mm (150 kHz)

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 

Figure
Click here to download Figure: Figure 3.docx



  
       
 
Figure 3. Simulated waveforms collected from steel reinforced concrete model for sound 

concrete mode using (a) 10 kHz and (b) 150 kHz excitations; 15 mm 30° inclined notch using (c) 

10 kHz and (d) 150 kHz excitations; for 75 mm 30° inclined notch using (e) 10 kHz and (f) 150 

kHz excitations; for 30 mm 90° vertical notch using (g) 10 kHz and (h) 150 kHz excitations; for 

150 mm 90° vertical notch using (i) 10 kHz and (j) 150 kHz excitations; for 15 mm 150° inclined 

notch using (k) 10 kHz and (l) 150 kHz excitations; for 75 mm 150° inclined  notch using (m) 10 

kHz and (n) 150 kHz excitations 

 

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh PeakP - wave

150°- 75 mm (10 kHz)

0 50 100 150 200 250 300 350 400

Am
pl

itu
de

S1

S2

S3

S4

S5

S6

Time(µs)Rayleigh Peak
P - wave

150°- 75 mm (150 kHz)

magnified by 8

magnified by 8

magnified by 8

(m) (n) 



  

 
 
Figure 4. Processing of waveforms using proposed matched filtering algorithm from sensor S4 

for sound steel reinforced concrete model using (a) 10 kHz and (b) 150 kHz excitations 
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Figure 5. Processed waveforms and the respective final R-wave peak matched positions based 

on MFCE method for sound concrete model using (a) 10 kHz and (b) 150 kHz excitations; for 15 

mm 30° inclined notch using (c) 10 kHz and (d) 150 kHz excitations; for 75 mm 30° inclined 

notch using (e) 10 kHz and (f) 150 kHz excitations; for 30 mm 90° vertical notch using (g) 10 

kHz and (h) 150 kHz excitations; for 150 mm 90° vertical notch using (i) 10 kHz and (j) 150 kHz 

excitations; for 15 mm 150° inclined  notch using (k) 10 kHz and (l) 150 kHz excitations; for 75 

mm 150° inclined  notch using (m) 10 kHz and (n) 150 kHz excitations 
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Figure 6. Dispersion curve computed for sound and various surface notched concrete models 

using (a) 10 kHz and (b) 150 kHz excitations 
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Figure 7. 2D wavelet transform contour diagram at the fourth sensors (S4) for steel reinforced 

concrete model using (a) 10 kHz and (b) 150 kHz; for 15 mm 30° inclined  notch model using (c) 

10 kHz and (d) 150 kHz excitations; for 75 mm 30° inclined notch model using (e) 10 kHz and 

(f) 150 kHz excitations; or 30 mm 90° vertical notch model using (g) 10 kHz and (h) 150 kHz 

excitations; for 150 mm 90° vertical notch model using (i) 10 kHz and (j) 150 kHz excitations; or 

15 mm 150° inclined notch model using (k) 10 kHz and (l) 150 kHz excitations; or 75 mm 

inclined 150° inclined notch model using (m) 10 kHz and (n) 150 kHz excitations 
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Figure 8. WT index versus d/λ for steel reinforced concrete model with (a) 30° inclined notch 

cases, (b) 60° inclined notch  cases, (c) vertical notch (90° ) cases, (d) 120° inclined notch  cases 

and (e) 150° inclined notch  cases 
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Figure 9. Phase velocity index versus d/λ for steel reinforced concrete model with (a) 30° 

inclined notch cases, (b) 60° inclined notch  cases, (c) vertical (90°) cases, (d) 120° inclined 

notch cases and (e) 150° inclined notch  cases 
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Figure 10. WT index versus θ/λ for steel reinforced concrete model with (a) 30 mm notch length 
cases, (b) 60 mm notch length cases, (c) 90 mm notch length cases, (d) 120 mm notch length 
cases and (e) 150 mm notch length cases 
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Figure 11. Phase velocity index versus θ/λ for steel reinforced concrete model with (a) 30 mm 

notch length cases, (b) 60 mm notch length cases, (c) 90 mm notch length cases, (d) 120 mm 

notch length cases and (e) 150 mm notch length cases 
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Figure 12. Experimental waveforms collected for (a) sound concrete specimen and (b) their 

corresponding R-waves propagation distance against arrival time. Excitations were done by 19 

mm steel ball impact.  
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Figure 13. Experimental waveforms collected for (a) 15 mm 30° inclined notch,  (b) 75 mm 30° 

inclined notch, (c) 30 mm 90° vertical notch, (d) 150 mm 90° vertical notch, (e) 15 mm 150° 

inclined notch and (f) 75 mm 150° inclined notch. Excitations were done by 19 mm steel ball 

impact.  
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Figure 14. Processed experimental waveforms and the respective final R-wave peak matched 

positions based on MFCE method for (a) sound, (b) 15 mm 30° inclined notch, (c) 75 mm 30° 

inclined notch, (d) 30 mm 90° vertical notch, (e) 150 mm  90° vertical notch, (f) 15 mm 150° 

inclined notch and (g) 75 mm 150° inclined notch. Excitations were done by 19 mm steel ball 

impact.  
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Figure 15. Surface notch depth and degree of inclination estimations based on (a) WT index (b) 

phase velocity index. 

 


