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Abstract 

Various models have been proposed to link partial gas saturation to seismic attenuation and 

dispersion, suggesting that the reflection coefficient should be frequency-dependent in many 

cases of practical importance. Previous approaches to studying this phenomenon have 

typically been limited to single interface models. Here we propose a modelling technique 

which allows us to incorporate frequency-dependent reflectivity into convolutional modelling. 

With this modelling framework, seismic data can be synthesized from well logs of velocity, 

density, porosity and water saturation. This forward modelling could act as a basis for 

inversion schemes aimed at recovering gas saturation variations with depth. We present a 

Bayesian inversion scheme for a simple thin layer case and a particular rock physics model, 

and show that although the method is very sensitive to prior information and constrains, gas 

saturation and layer thickness can both theoretically be estimated in the case of interfering 

reflections. 
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Introduction 

Estimating gas saturation from seismic data is a fundamental problem in reservoir 

characterization (e.g. Batzle and Wang 1992; Avseth et al. 2005; Bachrach 2006; Chen et al. 

2007). The importance of the problem for CO2 monitoring has also become increasingly 

apparent in recent years (Xue and Ohsumi 2004; Carcione et al. 2006; Daley et al. 2008; 

Ivanova et al. 2012). Amplitude variation with offset (AVO) analysis from pre-stack seismic 

reflection data has been an important tool for fluid and lithology detection (Ostrander 1984; 

Rutherford and Williams 1989; Castagna and Backus 1993; Russell et al. 2003; Foster et al. 

2010; Simm and Bacon 2014). During AVO analysis, Gassmann’s equations (Gassmann 

1951; Biot 1956) are often used to simulate changes in bulk and shear moduli from changing 

pore fluid. It is well known that the presence of gas in a reservoir often reduces P-wave 

velocity abruptly. However, in many cases only the first few percent of gas can be detected 

since further change of gas saturation brings small variations to P-wave velocity (Domenico 

1976; González et al. 2003). This kind of velocity insensitivity is modelled by Gassmann’s 

theory which predicts that bulk modulus is insensitive to gas saturation over a significant 

range. As a result, AVO often cannot be used to determine gas saturation. 

Partial gas saturation is known to lead to seismic attenuation and dispersion (White 1975), 

and a vast literature exists on methods to accurately describe the phenomenon at different 

scales. This includes discussion of “bubble” effects (Dutta and Odé 1979; Carcione et al. 

2003; Quintal et al. 2008; Rubino and Holliger 2012) as well as scale and frequency 

dependent transition between “patchy” and “uniform” saturation effects (Mavko and Mukerji 

1998a; Lebedev et al. 2009;  Müller et al. 2010). Laboratory measurements by Murphy 

(1982), Murphy (1984), Tisato and Quintal (2013), Amalokwu et al. (2014) and Tisato et al. 

(2015) also show that attenuation tends to be sensitive to partial gas saturation. 



The relationship between bulk modulus and gas saturation can therefore be frequency 

dependent, which is not accounted for by Gassmann’s theory. In principle, attenuation may 

be sensitive to gas saturation (Dasgupta and Clark 1998). However, the difficulty in 

measuring attenuation from seismic data and the uncertainty in the underlying rock physics 

have hindered the application of this technique (Dasgupta and Clark 1998; Reine et al. 2009).  

Increasing attention has been paid to the potential for dispersion and attenuation to produce a 

frequency-dependent reflection coefficient. Dutta and Odé (1983) considered reflections from 

the interface between poroelastic materials saturated with water and gas, and predicted 

modest effects on the reflection coefficient at seismic frequencies. Their study was based on 

the Biot (1956) theory, which predicted small dispersion at seismic frequencies. Later work 

by Pride et al. (2004) showed how a sequence of saturated poroelastic layers can lead to 

significant dispersion effects. Since then, authors have analyzed similar problems using 

models which do show significant gas-related dispersion at seismic frequencies, and have 

concluded that frequency-dependent reflectivity could be potentially important (Chapman et 

al. 2006; Odebeatu et al. 2006; Ren et al. 2009; Innanen 2011). Wu et al. (2014) proposed a 

method for inverting pre-stack reflection data for gas saturation based on frequency-

dependent reflectivity and rock physics theory. The method involves forward modelling of 

the reflection coefficient using frequency-dependent rock physics theories, applying spectral 

decomposition and balancing to seismic data to obtain the spectral amplitudes of reflection 

coefficients at varying angles of incidence, and making comparison between the observed 

data and model responses to perform a Bayesian inversion for water saturation. The technique 

was shown to have the potential of being able to differentiate full gas saturation, partial gas 

saturation and full water saturation under apparently reasonable assumptions.  

Despite the progress from Wu et al. (2014), a number of limitations underlie the technique: 

there has to be only one interface in the reservoir and dispersion only occurs in the lower half 



space as the upper layer is assumed to be elastic. A key weakness of the single-interface 

assumption is that the results from spectral decomposition can be corrupted by closely spaced 

interfering reflections from a thin layer in the circumstance where the reservoir consists of 

multiple layers. In this case, it is not likely to obtain an accurate estimation of gas saturation 

by using current Frequency-dependent AVO analysis. 

In this paper, we address these limitations by investigating the possibility of recovering both 

gas saturation and thickness of a thin-layer reservoir. We develop an approach to calculating 

synthetic seismograms from well logs of P-wave velocity, S-wave velocity, density, porosity 

and water saturation. We show how this forward seismic model can act as a basis for a 

Bayesian inversion scheme that estimates gas saturation and layer thickness with suitable 

prior information. Our results from a thin layer study show that with sufficient prior 

geological knowledge, we can handle interfering reflections and the quantitative gas 

saturation estimation method by Wu et al. (2014) can be effectively extended to the thin-layer 

case. 

We start from a brief review of the underlying physics theory we will use and then explain 

how the frequency-dependent reflection coefficient in partially saturated rocks is calculated 

from Zoeppritz equations generalized by Schoenberg and Protazio (1992). We then propose a 

generalized convolutional model for frequency-dependent reflectivity series, from which 

synthetic seismograms can be generated from well logs in multi-layer fluid saturated 

reservoir in time domain. The forward model can then be used to perform the Bayesian 

inversion for the recovery of water saturation and reservoir thickness. Finally, we 

demonstrate a numerical example, which is based on a thin layer model embedded between 

two half spaces, to show the potential application of this method.  

 

 



Frequency-dependent rock physics theory 

We base our study of frequency-dependent reflectivity on a poroelastic rock physics model 

by Chapman et al. (2002), which is a squirt-flow theory considering fluid exchange between 

pores and cracks, as well as between cracks of different orientations due to wave propagation. 

The model assumes an idealized microstructure consisting of thin cracks and spherical pores, 

and models velocity dispersion and attenuation arising due to wave-induced fluid flow. 

Chapman et al. (2002) gave expressions for the frequency-dependent bulk and shear moduli 

of a fluid saturated porous rock: 
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where 𝜔 is the angular frequency, 𝜇 and 𝜆 are the shear modulus and the Lamé parameter of 

the non-porous matrix. 𝜀 is the crack density, 𝑟 is the crack aspect ratio, 𝜙 is the total porosity, 

and 𝜏 is a timescale parameter that controls the frequency range of dispersion. 

𝐴(𝜔) and 𝐵(𝜔) are frequency-dependent constants defined by 
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where 𝛾 and 𝛾′ are non-dimensional parameters: 

𝛾 =
9𝜙(𝜆+𝜇)(1+𝐾𝑝)

16𝜀(𝜆+2𝜇)(1+𝐾𝑐)
,                                                      (5) 
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.                                                     (6) 

𝐾𝑐 is called the crack-space compressibility parameter, and can be expressed as 

𝐾𝑐 =
𝜋𝜇(𝜆+𝜇)𝑟

𝐾𝑓(𝜆+2𝜇)
,                                                            (7) 



where 𝐾𝑓 is the fluid bulk modulus. Similarly, the pore-space compressibility parameter 𝐾𝑝 is 

given by 

𝐾𝑝 =
4𝜇

3𝐾𝑓
.                                                               (8) 

In the case where the reservoir is saturated by water and gas, 𝐾𝑓 can be estimated by Wood’s 

equation (Wood 1955) 

𝐾𝑓 =
1

1−𝑆𝑤
𝐾𝑔

+
𝑆𝑤
𝐾𝑤

,                                                           (9) 

where 𝑆𝑤 is water saturation, 𝐾𝑤 and 𝐾𝑔 are the bulk moduli of water and gas respectively. In 

this paper, 𝐾𝑤 has the value of 2.0 GPa, and 𝐾𝑔 is chosen to be 0.2 GPa. 

The timescale parameter 𝜏 is proportional to fluid viscosity and inversely proportional to the 

permeability. That is to say, its reciprocal actually plays the role of fluid mobility, which is 

the ratio of permeability to fluid viscosity. Wu et al. (2014) has discussed the practical 

implementation of these equations by relating the effective bulk and shear moduli with 

reference P-wave velocity, S-wave velocity and density. We can then calculate the frequency-

dependent reflectivity from Zoeppritz equations generalized by Schoenberg and Protazio 

(1992).  

 

Reflectivity from materials exhibiting dispersion and attenuation 

The exact calculation of the amplitudes of reflected and transmitted plane waves from both 

incident P- and S-waves at an interface between two elastic media is given by Zoeppritz 

equations (Zoeppritz 1919). The original form of Zoeppritz equations is too complicated to 

directly interpret the variation of reflection coefficient with rock properties. There have been 

some simplifications developed to better solve elastic problems (Aki and Richards 1980; Fatti 

et al. 1994; Shuey 1985; Smith and Gidlow 1987). The corresponding viscoelastic case has 

been studied by Borcherdt (2009). 



Wu et al. (2014) calculated frequency-dependent reflectivity for an elastic layer overlying a 

dispersive and attenuative lower layer. The elastic behaviour of the upper layer allowed them 

to construct solutions in which the slowness vector in the upper medium was real, and only 

the vertical components of slowness in the lower layer were complex – a substantial 

simplification. 

In this paper, we assume that the horizontal components of slowness are all real, which may 

correspond to flat layers and the source being placed in an elastic layer. 

Assuming that the isotropic medium has a mirror plane of symmetry parallel to the 𝑋1 − 𝑋2 

plane, let 𝑋3 = 0 be the horizontal interface. When waves propagate in the vertical 𝑋1 − 𝑋3 

plane, the displacement is given by 

𝐮 = [
𝑒1

𝑒3
] exp iω(𝑠1x1 + 𝑠3x3 − 𝑡),                                          (10) 

where 𝑒1 and 𝑒3 represent polarizations, 𝑠1 is horizontal slowness, and 𝑠3 is vertical slowness. 

The wavefield in the upper medium includes incident and reflected P- and S-waves while the 

lower medium only has transmitted waves. The displacement field in the upper layer can be 

written as 

[
𝑣1

𝑣3
] = 𝑖𝑝 [

𝑒𝑝1

𝑒𝑝3
] exp iω𝑠3𝑝

x3 + 𝑟𝑝 [
𝑒𝑝1

−𝑒𝑝3
] exp −iω𝑠3𝑝

x3 

+𝑖𝑠 [
𝑒𝑠1

𝑒𝑠3
] exp iω𝑠3𝑠

x3 + 𝑟𝑠 [
𝑒𝑠1

−𝑒𝑠3
] exp −iω𝑠3𝑠

x3,                        (11) 

where 𝑖𝑝, 𝑟𝑝, 𝑖𝑠, and 𝑟𝑠 are amplitudes of the incident P-wave, reflected P-wave, incident S-

wave and reflected S-wave respectively. 𝑠3𝑝
, 𝑠3𝑠

, 𝑒𝑝1, 𝑒𝑝3, 𝑒𝑠1 and 𝑒𝑠3 are vertical slowness 

and polarizations for P- and S-waves. ω is the frequency of the incident strain wave. In the 

case where there is only incident P-wave, we can set 𝑖𝑠 to be zero. 

The lower medium only has transmitted P- and S-waves, making the displacement field be 

given by 



[
𝑣1′

𝑣3′
] = 𝑡𝑝 [

𝑒𝑝1′

𝑒𝑝3′
] exp iω𝑠3𝑝

′x3 + 𝑡𝑠 [
𝑒𝑠1′

𝑒𝑠3′
] exp iω𝑠3𝑠

′x3,                       (12) 

where 𝑡𝑝 and 𝑡𝑠 are amplitudes of the transmitted P- and S-waves, and all the other primed 

parameters have the same meanings as the unprimed ones in equation (11). 

It is clear that the key to calculating the reflection coefficient is to obtain the vertical 

slowness as well as the polarizations of the ray. We do this with the help of the Christoffel 

equation, which from a given horizontal slowness allows us to calculate the vertical 

slownesses and corresponding polarization vectors. 

With both horizontal and vertical slowness, as well as the polarizations of the wave at 

frequency 𝜔  from each layer being achieved, Schoenberg and Protazio (1992) solved 

Zoeppritz equations by introducing two impedance matrices 

𝐗 = [
𝑒𝑝1 𝑒𝑠1

−(𝑐1133𝑠1𝑒𝑝1 + 𝑐3333𝑠3𝑝
𝑒𝑝3) −(𝑐1133𝑠1𝑒𝑠1 + 𝑐3333𝑠3𝑠

𝑒𝑠3)], 

𝐘 = [
−𝑐1331(𝑠1𝑒𝑝3 + 𝑠3𝑝

𝑒𝑝1) −𝑐1331(𝑠1𝑒𝑠3 + 𝑠3𝑠
𝑒𝑠1)

𝑒𝑝3 𝑒𝑠3
],                      (13) 

where in our case 𝑐1133 , 𝑐3333  and 𝑐1331  are frequency-dependent elastic moduli of the 

stiffness tensor with bulk modulus 𝐾𝑒𝑓𝑓(𝜔) and shear modulus 𝜇𝑒𝑓𝑓(𝜔) determined from 

Chapman et al. (2002) squirt model.  

Let the upper layer be characterized by impedance matrices 𝐗  and 𝐘 , as are shown in 

equation (13), and the lower layer be associated with  𝐗′ and 𝐘′, which have the same form as 

equation (13) but with the elements being primed parameters, the frequency-dependent 

reflection matrix is calculated to be 

𝐑 = (𝐘′−1
𝐘 + 𝐗′−1

𝐗)
−1

(𝐘′−1
𝐘 − 𝐗′−1𝐗).                                    (14) 

The P-to-P reflection coefficient at frequency 𝜔 is given by R11 from the solution of equation 

(14). In this case, the P-to-P reflection coefficient is frequency dependent and complex. 

 



Numerical modelling 

In our model, the effect of attenuation and velocity dispersion is illustrated in Figure 1, with 

the model parameters chosen from the lower layer in Table 1. The relationship between water 

saturation and attenuation is peaked with a maximum around 80% water saturation. In 

general, the level of water saturation leading to the highest attenuation is model dependent, 

but it usually occurs within the range of 50% to 90% in our modelling framework (Wu et al. 

2014). With appropriate value of relaxation time, which functions as fluid mobility in the 

rock physics model, P- and S-wave velocities are seen to increase with frequency in the 

seismic range. 

Figure 2a shows the amplitude of the frequency-dependent reflection coefficient varying with 

angle of incidence from the Class IV AVO model in Table 1. Figure 2b displays the 

corresponding phase variation, which is determined by the ratio of the real and imaginary 

parts of the complex reflection coefficient. A detailed interpretation of phase variation in 

dispersive medium has been presented by Wu et al. (2015). 

Having studied the effect of velocity dispersion to seismic reflection from rock physics, we 

propose and implement a forward modelling strategy that calculates synthetic angle-domain 

seismic traces from dispersive media with multiple layers. The method assumes the 

availability of well logs of P-wave velocity, S-wave velocity, density, porosity and water 

saturation in the two-way time domain. As is known, conventional synthetic seismic traces 

can be generated by the convolution of seismic source with reflectivity time series. When 

seismic dispersion occurs, reflection coefficient becomes frequency dependent, making it 

difficult to apply convolution in time domain. Below we propose a solution to this problem. 

We first sample the target reservoir into finite layers separated by different interfaces at time 

depth of 𝑡0, 𝑡1, 𝑡2, … 𝑡𝑘, where 𝑘 is the total number of interfaces.  

We then define the unit reflectivity 𝑖𝑡 at 𝑛th interface as 



𝑖𝑡
𝑛 = 𝛿(𝑡 − 𝑛∆𝑡),                                                            (15) 

where 𝑡 is the time depth, ∆𝑡 is the sampling interval. 

In a reservoir consisting of multiple layers, each interface along with the neighbouring fluid 

saturated media contributes to the calculation of frequency-dependent reflectivity series, 

which are distributed along the time depths of the interfaces. 

For a certain angle of incidence 𝜃, the forward model of frequency-dependent seismic trace is 

derived as 

𝑥𝑡(𝜃) = ∑ 𝑖𝑡
𝑛 ∗ ℱ−1[𝑊(𝜔) ∙ 𝑅𝑛(𝜃, 𝜔)]𝑘

𝑛=1 ,                                     (16) 

where 𝑊(𝜔) is the incident wavelet 𝑤(𝑡) in frequency domain, 𝑅𝑛(𝜃, 𝜔) is the frequency-

dependent reflection coefficient at time depth 𝑡𝑛, ∙ denotes multiplication, ℱ−1 denotes the 

inverse Fourier transform, and ∗ denotes convolution. 

The idea behind the derivation is to calculate the reflected waveforms at different time depths 

by multiplication of the source with complex reflection coefficient in the frequency domain 

before transforming them back to time domain and stacking all the corresponding waveforms 

to generate the full seismic trace. Attenuation and dispersion effects on transmission have 

been neglected during this derivation. Transmission effects are cumulative, and become 

important as the ray path through the attenuating layer increases. The potential impact of 

these transmission effects depends on the magnitude of the dispersion and the thickness of the 

transmitting layer. Chapman et al. (2006) and Odebeatu et al. (2006) have discussed the 

relative importance of these effects with reference to typical models.  

Figure 3 illustrates the calculated synthetic zero-offset (𝜃 = 0°) seismic trace for the single-

interface Class IV model. In this paper, we used a Ricker wavelet with peak frequency of 40 

Hz as the source 𝑤(𝑡). Compared with the elastic case, where fluid-induced dispersion is not 

considered, the frequency-dependent waveform is reshaped and shifted due to velocity 

dispersion. 



Since the frequency-dependent reflection coefficient 𝑅𝑛(𝜃, 𝜔)  is directly related to 

parameters such as 𝑉𝑃, 𝑉𝑆, 𝜌, 𝜙 and 𝑆𝑤, our derived forward model has the ability to generate 

seismic traces from well logs of the target reservoirs that consist of multiple layers exhibiting 

velocity dispersion. Below we show examples of synthetic seismic traces by using a single 

layer model embedded between two half spaces in Table 2, of which the well logs are 

displayed in Figure 4. According to Rutherford and Williams (1989) and Castagna and Swan 

(1997), the first and second horizons of this model give Class I and Class IV AVO responses, 

respectively. 

Figure 5 displays the pre-stack angle-domain seismic trace from well logs in Figure 4a, with 

the reservoir thickness being 94.5 meters. The vertical axis is the two-way time (TWT) of the 

profile, and the horizontal axis is the angle of incidence. In this case, our 40 Hz Ricker 

wavelet and P-wave velocity of 3150 m/s would correspond to a conventional tuning 

thickness of approximately 19.7 meters (Widess 1973). 

In the frequency-independent case, which is illustrated in Figure 5a, polarity change has been 

observed in the recorded waveforms from the first horizon. As the angle increases, the 

amplitude of the waveform gradually reduces to zero, at which the polarity of reflection 

changes abruptly from positive to negative as the angle continues to increase. The seismic 

response from the second horizon obeys the characteristics of the Class IV AVO, where there 

is a continuous slight decrease in amplitude as the angle increases. 

The introduction of dispersion and attenuation results in significant differences in the seismic 

traces. Figure 5b displays the frequency-dependent pre-stack seismic profile. Apart from the 

reshaped waveform, as described in Figure 3, the most significant difference lies in the 

behaviour with regard to polarity change. Firstly, the amplitude of reflected waveform never 

reduces to zero; Secondly, the frequency-dependent seismic trace from the first horizon is 



seen to have a gradual variation in both amplitude and phase, which is in contrast to the 

abrupt polarity change from the elastic case. 

In the circumstance where the reservoir thickness of the model in Table 2 is decreased to 31.5 

m, interfering reflections occur. Figure 6 displays this thin layer effect calculated from well 

logs in Figure 4b.  

By varying the reservoir thickness linearly from 94.5 m to 15.75 m, a wedged model in 

Figure 7 is used to better demonstrate the interfering reflections. The comparison between the 

zero-offset gathers shows small differences between the elastic and frequency-dependent 

cases. By changing the incidence to a certain angle, e.g. 20 degrees in Figures 7c and 7d, we 

can observe differences in terms of amplitude and phase variation between these two cases. 

The forward seismic modelling can therefore generate seismic profiles consisting of multiple 

dispersive or elastic layers with arbitrary thickness, and the effects of frequency-dependent 

reflectivity on the waveforms are visible on synthetic seismograms. 

 

Bayesian inversion scheme for water saturation and reservoir thickness 

Statistical inversion is a popular approach for inferring rock properties from seismic data 

(Mavko and Mukerji 1998b; Buland and Omre 2003; Spikes et al. 2007). Bachrach (2006) 

presented a Bayesian scheme for joint estimation of porosity and saturation. Our proposed 

approach is a Bayesian inversion of pre-stack seismic data to estimate water saturation 𝑆𝑤 

and reservoir thickness ℎ in a thin layer model where all other parameters are considered to 

be known. We construct the thin layer model by embedding the partially saturated reservoir 

between two shale half spaces, which is enough to simulate the interfering reflections. The 

Bayesian inversion equation for this problem is given by 

𝑃(𝑆𝑤, ℎ|𝑑) =
𝑃(𝑑|𝑆𝑤,ℎ)𝑃(𝑆𝑤,ℎ)

𝑃(𝑑)
,                                              (17) 



where 𝑃(𝑆𝑤, ℎ) is the prior information of 𝑆𝑤 and ℎ, 𝑃(𝑑) is a constant given that the data 

has been acquired. 𝑃(𝑑|𝑆𝑤, ℎ) is the likelihood function that exponentially relates to the 

misfit between the model response at (𝑆𝑤, ℎ) and the observed data 𝑑. As long as all these 

terms are acquired, the posterior probability 𝑃(𝑆𝑤, ℎ|𝑑) can be solved. 

The inversion scheme is as follows: 

(i) We begin by considering that the confounding background parameters are known, which 

allows us to forward model the seismic trace 𝑓(𝑆𝑤, ℎ), as is rewritten from equation (16), for 

various values of water saturation 𝑆𝑤 and thickness ℎ. In a real application, representative 

values or probability distributions for these parameters would have to be estimated from well 

log data.  

(ii) The misfit ∆𝐸 is calculated by summarizing the L2-norm of the difference between the 

observed data 𝑑 and forward model response at (𝑆𝑤, ℎ): 

 ∆𝐸 = ∑‖𝑑 − 𝑓(𝑆𝑤, ℎ)‖2.                                                (18) 

(iii) The likelihood function 𝑃(𝑑|𝑆𝑤, ℎ), which measures the probability of data 𝑑 given that 

the hypothesis is (𝑆𝑤, ℎ), is calculated by 

𝑃(𝑑|𝑆𝑤, ℎ) = 𝑎 ∙ exp (−𝑏 ∙ ∆𝐸),                                         (19) 

where 𝑎 is the normalizing coefficient, and 𝑏 is a constant. Equation (19) is motivated by the 

analysis of Ulrych et al. (2001), Mavko and Mukerji (1998b) and Kirkpatrick et al. (1983). 

Ulrych et al. (2001) and Mavko and Mukerji (1998b) theoretically explain how the 

determination of 𝑏 can be related to the standard errors of observations, while Kirkpatrick et 

al. (1983) interprets equation (19) as an empirical relationship. In this paper, we determine 

the value of 𝑏 to be 30 for illustration purposes in the following synthetic example. 

(iv) The prior information 𝑃(𝑆𝑤, ℎ) can be derived from well-log analysis, assumption or 

seismic interpretation (Avseth et al. 2005). 𝑃(𝑑) , the probability of data, is set to be a 



constant that ensures the final probability distribution integrates to one along with the 

normalizing coefficient 𝑎 from equation (19). 

Finally, the posterior probability of inversion targets 𝑆𝑤 and ℎ of the reservoir under observed 

data 𝑑 can be calculated by equation (17). 

 

Synthetic example 

Here we present a synthetic study by using model parameters in Table 3. Figure 8 shows the 

pre-stack observed data from reservoirs containing 20% and 80% water saturation, which are 

generated by adding 10% Gaussian noise to the synthetic traces calculated by equation (16). 

We first derive the forward seismic model as a function of 𝑆𝑤 and ℎ from given confounding 

parameters in Table 3. We then scan through the combinations of 𝑆𝑤 and ℎ to calculate the 

misfits between observed data and model responses, from which the likelihood function 

𝑃(𝑑|𝑆𝑤, ℎ) is transformed and displayed in Figure 9. 

A uniform distribution of 𝑆𝑤 is assumed given that there is no prior information on water 

saturation. A normal distribution N(30, 2.5) of ℎ is assumed as the prior reservoir thickness. 

Figure 10 shows the corresponding prior probability distribution 𝑃(𝑆𝑤, ℎ) . The posterior 

probability 𝑃(𝑆𝑤, ℎ|𝑑) is therefore calculated by equation (17) by choosing appropriate value 

of 𝑃(𝑑) that normalizes the final probability distribution. 

Figure 11 displays the posterior probability of 𝑆𝑤 and ℎ. For the 20% water case, the inverted 

ℎ is about 30 m and 𝑆𝑤 is around 20%. For the 80% water case, ℎ is inverted to be 30 m and 

𝑆𝑤 is estimated to be 80%. The water saturations for both cases are accurately estimated, and 

it is clear that commercial gas is well distinguished from fizz water.  

However, in practice, errors will always be present in the confounding parameters. As a result, 

the derived rock physics model may be different from the true one. Therefore, we introduced 



errors to the well-log P-wave velocity as well as the rock physics parameter crack density, 

and repeated the inversion procedure to find out the impact of errors to the inversion quality. 

Figure 12 and Figure 13 show the posterior probability of 𝑆𝑤 and ℎ under different P-wave 

velocities. The actual velocity is 3.0 km/s, and we consider errors within a range of 0.1 km/s. 

In the case of 20% water saturation, the estimated 𝑆𝑤 decreases as P-wave velocity increases. 

In contrast, when water saturation is 80%, the estimated 𝑆𝑤 increases with P-wave velocity. 

Nevertheless, the 20% water saturation can still be clearly distinguished from the 80% one. 

Further expanding the errors to a wider range leads to unstable estimated results. It is noticed 

that for the 20% water case, as velocity increases, another local maximum posterior 

probability of 𝑆𝑤 and ℎ occurs and could result in a very high water saturation estimation. In 

this example, the inversion would break down when P-wave velocity is greater than 3.05 

km/s, as is indicated by Figure 12f. The comparison between Figure 12 and Figure 13 

indicates that differences still exist between the two cases since there is no such local maxima 

for the reservoir saturated by 80% water. Figure 14 shows the curves of the estimated 𝑆𝑤 

under varying P-wave velocities with errors within a range of 0.2 km/s. It is suggested from 

this example that the estimation provides reasonable results when the P-wave velocity errors 

are  0.05 km/s. 

Figure 15 displays the likelihood function of 𝑆𝑤  and P-wave velocity at fixed reservoir 

thickness of 30 meters. The results show that estimation of water saturation will potentially 

be more accurate if we can effectively constrain the layer thickness. 

The impact of crack density turns out to be similar to that of P-wave velocity. In the case of 

20% water saturation, Figure 16 shows that as crack density increases, two local maximum 

posterior probabilities of 𝑆𝑤 and ℎ can occur. The estimation of 𝑆𝑤 can be inaccurate when 

crack density increases to 0.13 (true value is 0.1). In the case of 80% water saturation, Figure 

17 shows that the estimation tends to have a more stable increasing trend as crack density 



increases. The maximum probability curve in Figure 18 suggests that the estimation provides 

reliable results when crack density errors are less than around 20%.  

 

Discussion 

Studies of frequency-dependence on partially gas-saturated rock have been performed for 

many years, with Dutta and Odé (1979) being an important reference. Recently, Wu et al. 

(2014) has studied the potential use of frequency-dependent AVO analysis for the estimation 

of gas saturation from partially saturated reservoir. However, one of the key weaknesses of 

their technique is failing to handle interfering reflections in a thin layer. We address this 

problem by developing an efficient multi-layer frequency-dependent AVO modelling scheme 

that calculates synthetic seismic traces from well logs of velocity, density, porosity and water 

saturation. Instead of spectrally decomposing seismic data, which leads to corrupted results 

under interfering reflections, we perform the inversion by directly focusing on seismic 

waveforms simulated by the derived forward modelling. Our results suggest that the 

technique by Wu et al. (2014) can, at least in theory, be extended to a wider application. 

Our paper is not meant to imply that we believe the forward problem of predicting dispersion 

and attenuation from the saturation is solved; it is not. We have based our calculations on 

only one model and, while we believe that many alternative models would give similar 

results, the applicability of this or any model is open to debate. Of course, the forward 

modelling could be repeated with a range of other models which consider different 

mechanisms. However, we do believe that application of the modelling framework we 

propose, in which seismic data can be synthesized from the saturation logs, could provide a 

novel test of the underlying theories and proposed dispersion mechanisms. If our approach 

does not match seismic data better than conventional convolution modelling then it may be 

rejected.  



It is well known that single interface reflection coefficient based models can be unrealistic, 

and the thin layer model we used for our inversion is open to the same criticism. Our forward 

modelling scheme accepts full velocity, density, porosity and saturation well logs, so we 

could attempt to recover all these values as a function of depth through inversion. This is an 

important problem which we will address in future. The current inversion scheme, in 

combination with that of Wu et al. (2014), is offered simply as a minimal set of assumptions 

which will allow us to begin the process of setting up blind tests for the prediction of 

saturation from field data. Judgement on the applicability of the techniques must await the 

results of such field tests. 

Our study generalizes convolutional modelling and so neglects lateral heterogeneity. This 

approach is fast enough to allow us to perform inversion, but in particular cases it may be 

advantageous to compare to finite difference modelling – particularly when the reservoir 

thickness is such that effects of attenuation and dispersion on transmission become important. 

Recognition of the impacts of dispersion and attenuation in seismic data has implications 

beyond improved rock and fluid identification. In particular, we believe that the offset-

dependent phase variations may have implications for application of seismic velocity analysis 

as there may be an ambiguity between moveout and phase. 

In our numerical example, we only considered the simple thin layer case, which is a single 

layer model embedded between two half spaces. In practice, some cases will require a more 

complex starting model. Future research will focus on creating appropriate regularization 

strategies for such cases. For the rock physics model used in this paper, the relationship 

between velocity and gas saturation is controlled by the timescale parameter 𝜏 and crack 

density 𝜀. When it comes to field data, successful application would depend on calibrating 

these parameters from the available well, as discussed by Wu et al. (2014).  

 



Conclusion 

We have proposed a method to incorporate frequency-dependent reflectivity into 

convolutional modelling. The method allows us to compute synthetic seismic traces from 

well logs of velocity, density, porosity and water saturation. Comparison with elastic 

modelling indicates that effects of the frequency-dependent reflectivity on the waveforms are 

visible on the synthetic seismograms for simple models based on sand-shale sequences. Such 

modelling provides a possible basis for inversion of gas saturation, and we tested the 

feasibility of such inversions using a simplified thin layer model and a Bayesian inversion 

scheme. The results indicated that, although the method is very sensitive to prior information 

and constrains, gas saturation and layer thickness can both theoretically be estimated in the 

case of interfering reflections.  
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Figure captions 

Figure 1. Attenuation and velocity dispersion for the lower layer in Table 1. (a) P-wave and 

S-wave attenuation (1/Q) variation with frequency. (b) P-wave attenuation (1/Q) versus water 

saturation. (c) P-wave velocity dispersion. (d) S-wave velocity dispersion. 

 

Figure 2. Reflection coefficients at the interface for the Class IV AVO model in Table 1. (a) 

Amplitude of the frequency-dependent reflection coefficient versus angle of incidence. (b) 

The corresponding phase of reflection coefficient versus angle of incidence. 

 

Figure 3. Synthetic zero-offset trace for the Class IV AVO model in Table 1. The amplitude 

is rescaled to 1. The horizontal red line indicates the interface. The vertical red line is the 

reference for comparison of the waveforms. In the elastic case, where dispersion is not 

introduced, the waveform is in accord with the source Ricker wavelet. In the frequency-

dependent case, the waveform is reduced in the upper layer and is amplified in the lower 

layer. The location of the peak is also shifted due to phase variation at different frequencies. 

 

Figure 4. Well logs of P-wave velocity, S-wave velocity, density, porosity and water 

saturation for the model in Table 2. (a) Reservoir thickness is 94.5 m. (b) Reservoir thickness 

is 31.5 m. 

 

Figure 5, Pre-stack angle-domain seismic gather for the laminated model in Table 2, with the 

reservoir thickness being 94.5 m. (a) Frequency-independent case. (b) Frequency-dependent 

case.  

 



Figure 6, Pre-stack angle-domain seismic gather for the laminated model in Table 2, with the 

reservoir thickness being 31.5 m. (a) Frequency-independent case. (b) Frequency-dependent 

case.   

 

Figure 7. Seismic gather for the wedge model in Table 2, with reservoir thickness varying 

from 15.75 m to 94.5 m. (a) Zero-offset frequency-independent case. (b) Zero-offset 

frequency-dependent case. (c) 20-degree frequency-independent case. (d) 20-degree 

frequency-dependent case. 

 

Figure 8. Pre-stack seismic traces from reservoirs containing (a) 20% water saturation and (b) 

80% water saturation. Model parameters are listed in Table 3. 10% Gaussian noise is added 

to synthetic traces calculated by equation (16) as the observed data. 

 

Figure 9. Likelihood functions of reservoir thickness ℎ and water saturation 𝑆𝑤 for (a) 20% 

water case and (b) 80% water case. The true value of ℎ (30m) and 𝑆𝑤 (20% / 80%) is marked 

with white circle. 

 

Figure 10. Prior information of reservoir thickness ℎ and water saturation 𝑆𝑤. ℎ is assumed to 

be normally distributed with mean value of 30 m and variation of 2.5; 𝑆𝑤 is assumed to be 

uniformly distributed. 

 

Figure 11. Posterior probability of reservoir thickness ℎ and water saturation 𝑆𝑤 for (a) 20% 

water case and (b) 80% water case. The true value of ℎ (30m) and 𝑆𝑤 (20% / 80%) is marked 

with white circle. 

 



Figure 12. Posterior probability of ℎ and 𝑆𝑤  at varying well-log P-wave velocities for the 

reservoir saturated by 20% water. The true value of ℎ (30m) and 𝑆𝑤 (20%) is marked with 

white circle. 

 

Figure 13. Posterior probability of ℎ and 𝑆𝑤  at varying well-log P-wave velocities for the 

reservoir saturated by 80% water. The true value of ℎ (30m) and 𝑆𝑤 (80%) is marked with 

white circle. 

 

Figure 14. 𝑆𝑤 with maximum posterior probability versus varying well-log P-wave velocities. 

The 20% water saturation case is indicated by blue circle, and the 80% water saturation case 

is labelled with red triangle. The true P-wave velocity is 3 km/s. 

 

Figure 15. The likelihood function of water saturation 𝑆𝑤  and P-wave velocity at fixed 

reservoir thickness of 30 meters.  (a) 20% water case.  (b) 80% water case. 

 

Figure 16. Posterior probability of ℎ  and 𝑆𝑤  at varying rock physics parameter crack 

densities 𝜀 for the reservoir saturated by 20% water. The true value of ℎ (30m) and 𝑆𝑤 (20%) 

is marked with white circle. 

 

Figure 17. Posterior probability of ℎ and 𝑆𝑤 at varying rock physics parameter crack densities 

𝜀  for the reservoir saturated by 80% water. The true value of ℎ  (30m) and 𝑆𝑤  (80%) is 

marked with white circle. 

 



Figure 18. 𝑆𝑤 with maximum posterior probability versus varying crack densities. The 20% 

water saturation case is indicated by blue circle, and the 80% water saturation case is labelled 

with red triangle. The true crack density is 0.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Parameters for a water & gas saturated single-interface Class IV AVO model 

Layers 

Vp 

(km/s) 

Vs 

(km/s) 

Density 

(g/cm3) 

Thickness 

(s) 

Crack 

density 

Porosity Sw 

Upper 3.200 1.620 2.49 0.03 0.1 0.3 10% 

Lower 3.100 1.450 2.29 half space 0.1 0.3 90% 

𝐾𝑔 = 0.2 𝐺𝑃𝑎; 𝐾𝑤 = 2.0 𝐺𝑃𝑎 

Table 2. Parameters for a water & gas saturated model 

Layers 

Vp 

(km/s) 

Vs 

(km/s) 

Density 

(g/cm3) 

Thickness 

(s) 

Crack 

density 

Porosity Sw 

Top 3.100 1.400 2.30 0.05 0.1 0.16 90% 

Reservoir 3.150 1.600 2.50 

(a) 0.06 

(b) 0.02 

0.1 0.2 10%  

Bottom 3.060 1.580 2.33 half space 0.1 0.15 100% 

𝐾𝑔 = 0.2 𝐺𝑃𝑎; 𝐾𝑤 = 2.0 𝐺𝑃𝑎 

Table 3. Parameters for a water & gas saturated thin layer model (the synthetic example) 

Layers 

Vp 

(km/s) 

Vs 

(km/s) 

Density 

(g/cm3) 

Thickness 

(s) 

Crack 

density 

Porosity Sw 

Top 

shale 

3.200 1.500 2.40 0.04    

Reservoir 3.000 1.600 2.30 0.02 0.1 0.16 

(a) 20% 

(b) 80% 

Bottom 

shale 

3.180 1.520 2.36 half space    

𝐾𝑔 = 0.2 𝐺𝑃𝑎; 𝐾𝑤 = 2.0 𝐺𝑃𝑎 

 



 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 1. Attenuation and velocity dispersion for the lower layer in Table 1. (a) P-wave and 

S-wave attenuation (1/Q) variation with frequency. (b) P-wave attenuation (1/Q) versus water 

saturation. (c) P-wave velocity dispersion. (d) S-wave velocity dispersion. 

 

 

 

 



 

 

 

 

 

 

  

(a) (b) 

Figure 2. Reflection coefficients at the interface for the Class IV AVO model in Table 1. (a) 

Amplitude of the frequency-dependent reflection coefficient versus angle of incidence. (b) 

The corresponding phase of reflection coefficient versus angle of incidence. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3. Synthetic zero-offset trace for the Class IV AVO model in Table 1. The 

amplitude is rescaled to 1. The horizontal red line indicates the interface. The vertical red 

line is the reference for comparison of the waveforms. In the elastic case, where dispersion 

is not introduced, the waveform is in accord with the source Ricker wavelet. In the 

frequency-dependent case, the waveform is reduced in the upper layer and is amplified in 

the lower layer. The location of the peak is also shifted due to phase variation at different 

frequencies. 

 

 

 

 

 



 

 

 

 

 

 

 

  

(a) (b) 

Figure 4. Well logs of P-wave velocity, S-wave velocity, density, porosity and water 

saturation for the model in Table 2. (a) Reservoir thickness is 94.5 m. (b) Reservoir thickness 

is 31.5 m. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

  

(a) (b) 

Figure 5. Pre-stack angle-domain seismic gather for the laminated model in Table 2, with the 

reservoir thickness being 94.5 m. (a) Frequency-independent case. (b) Frequency-dependent 

case.   

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

  

(a) (b) 

Figure 6. Pre-stack angle-domain seismic gather for the laminated model in Table 2, with the 

reservoir thickness being 31.5 m. (a) Frequency-independent case. (b) Frequency-dependent 

case.   

 

 

 

 

 

 

 

 



 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 7. Seismic gather for the wedge model in Table 2, with reservoir thickness varying 

from 15.75 m to 94.5 m. (a) Zero-offset frequency-independent case. (b) Zero-offset 

frequency-dependent case. (c) 20-degree frequency-independent case. (d) 20-degree 

frequency-dependent case. 

 

 

 



 

 

 

 

 

 

 

 

  

(a) Sw=20% (b) Sw=80% 

Figure 8. Pre-stack seismic traces from reservoirs containing (a) 20% water saturation and 

(b) 80% water saturation. Model parameters are listed in Table 3. 10% Gaussian noise is 

added to synthetic traces calculated by equation (16) as the observed data. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

  

(a) Sw=20% (b) Sw=80% 

Figure 9. Likelihood functions of reservoir thickness ℎ and water saturation 𝑆𝑤 for (a) 20% 

water case and (b) 80% water case. The true value of ℎ (30m) and 𝑆𝑤 (20% / 80%) is marked 

with white circle. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 10. Prior information of reservoir thickness ℎ and water saturation 𝑆𝑤. ℎ is assumed 

to be normally distributed with mean value of 30 m and variation of 2.5; 𝑆𝑤 is assumed to 

be uniformly distributed.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

  

(a) Sw=20% (b) Sw=80% 

Figure 11. Posterior probability of reservoir thickness ℎ and water saturation 𝑆𝑤 for (a) 20% 

water case and (b) 80% water case. The true value of ℎ (30m) and 𝑆𝑤 (20% / 80%) is marked 

with white circle. 

 

 

 

 

 

 

 



 

  

(a) Sw=20% Vp=2.95 km/s (b) Sw=20% Vp=3.00 km/s 

  

(c) Sw=20% Vp=3.02 km/s (d) Sw=20% Vp=3.04 km/s 

  

(e) Sw=20% Vp=3.05 km/s (f) Sw=20% Vp=3.06 km/s 

Figure 12. Posterior probability of ℎ and 𝑆𝑤 at varying well-log P-wave velocities for the 

reservoir saturated by 20% water. The true value of ℎ (30m) and 𝑆𝑤 (20%) is marked with 

white circle. 

 



  

(a) Sw=80% Vp=2.95 km/s (b) Sw=80% Vp=3.00 km/s 

  

(c) Sw=80% Vp=3.02 km/s (d) Sw=80% Vp=3.04 km/s 

  

(e) Sw=80% Vp=3.05km/s (f) Sw=80% Vp=3.06 km/s 

Figure 13. Posterior probability of ℎ and 𝑆𝑤 at varying well-log P-wave velocities for the 

reservoir saturated by 80% water. The true value of ℎ (30m) and 𝑆𝑤 (80%) is marked with 

white circle. 

 

 



 

 

 

 

 

 

 

 

 

Figure 14. 𝑆𝑤 with maximum posterior probability versus varying well-log P-wave 

velocities. The 20% water saturation case is indicated by blue circle, and the 80% water 

saturation case is labelled with red triangle. The true P-wave velocity is 3 km/s. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

  

(a) Sw=20% (b) Sw=80% 

Figure 15. The likelihood function of water saturation 𝑆𝑤 and P-wave velocity at fixed 

reservoir thickness of 30 meters.  (a) 20% water case.  (b) 80% water case. 

 

 

 

 

 

 

 

 



 

  

(a) Sw=20% 𝜀=0.07 (b) Sw=20% 𝜀=0.09 

  

(c) Sw=20% 𝜀=0.10 (d) Sw=20% 𝜀=0.11 

  

(e) Sw=20% 𝜀=0.12 (f) Sw=20% 𝜀=0.13 

Figure 16. Posterior probability of ℎ and 𝑆𝑤 at varying rock physics parameter crack 

densities 𝜀 for the reservoir saturated by 20% water. The true value of ℎ (30m) and 𝑆𝑤 

(20%) is marked with white circle. 

 



 

  

(a) Sw=80% 𝜀=0.07 (b) Sw=80% 𝜀=0.09 

  

(c) Sw=80% 𝜀=0.10 (d) Sw=80% 𝜀=0.11 

  

(e) Sw=80% 𝜀=0.12 (f) Sw=80% 𝜀=0.13 

Figure 17. Posterior probability of ℎ and 𝑆𝑤 at varying rock physics parameter crack 

densities 𝜀 for the reservoir saturated by 80% water. The true value of ℎ (30m) and 𝑆𝑤 

(80%) is marked with white circle. 

 



 

 

 

 

 

 

 

 

 

Figure 18. 𝑆𝑤 with maximum posterior probability versus varying crack densities. The 

20% water saturation case is indicated by blue circle, and the 80% water saturation case is 

labelled with red triangle. The true crack density is 0.1. 

 


