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ABSTRACT: Two series of structurally related alkoxy-tethered 

NHC iron(II) complexes have been developed as catalysts for the 

regioselective hydroboration of alkenes. Significantly, Markonikov 

selective alkene hydroboration with HBpin has been controllably 

achieved using an iron catalyst (11 examples 35-90% isolated 

yield) with up to 37:1 branched:linear selectivity. anti-Markovni-

kov selective alkene hydroboration was also achieved using HBcat 

and modification of the ligand backbone (6 examples, 44-71% 

yields). In both cases, ligand design has enabled activator-free low 

oxidation-state iron catalysis.  

Keywords: iron, catalysis, hydroboration, Markovnikov se-

lectivity, NHC ligands  

Boronic esters are ubiquitous in chemical synthesis due to the 

vast number of bond-forming reactions able to selectivity transform 

these stable reagents into a wide-range of functionalities.1–4 The 

hydroboration of alkenes using boranes is a well-established 

method for the synthesis of alkyl boranes, which can be converted 

to the bench-stable boronic esters in a straightforward manner.5,6 In 

contrast, the hydroboration of alkenes using boronic esters leads 

directly to the alkyl boronic esters, but requires the use of a precious 

metal catalyst, most commonly rhodium (Scheme 1). 

Although high chemoselectivity, regioselectivity and enantiose-

lectivity can be achieved using precious-metals,7–9 there is still lim-

ited precedent for the direct generation of bench-stable pinacol bo-

ronic esters by use of pinacol borane (HBpin),10–12 and precious 

metals suffer from inherent toxicity, cost and sustainability con-

cerns. To address these concerns, earth abundant metal species 

have been developed as potential alternatives.13,14 

A number of iron catalysts have been developed for the hydrob-

oration using HBpin, or formal hydroboration using B2Pin2 and an 

alkoxide, of alkene and alkynes to give the pinacol boronic esters 

directly (Scheme 1).15–24  In all cases these hydroboration reactions 

are either highly anti-Markovnikov selective or give the Markov-

nikov product as a mixture with the anti-Markovnikov product. Re-

cently reported by Webster and coworkers, the highest Markovni-

kov:anti-Markovnikov selectivity ranges from 60:40 to 70:30 for 

styrene derivatives.23 Thus, there is a clear need for earth abundant 

metal-catalyzed hydroboration reactions that proceeds with Mar-

kovnikov selectivity.25,26,27  

Scheme 1. The current state-of-the-art in metal-catalyzed 

alkene hydroboration reactions. 

 

To this end, we sought to develop a Markovnikov selective iron-

catalyzed hydroboration reaction. Ideally, this would be achieved 

using operationally simple conditions: easily handled reagents and 

without the need for an external activator. As part of our continuing 

research efforts on the development of novel activation modes for 

earth abundant metal pre-catalysts, and given that alkoxy-tethered 

NHC ligands have been reported for the hydrosilylation of carbonyl 

derivatives,28,29 we postulated that ligand assistance could be used 

to enable both pre-catalyst and boronic ester activation. 

Three aryloxy-functionalized imidazolinium salts were synthe-

sized,30 along with two alkoxy-functionalized imidazolium salts 

produced using a one-pot protocol.31 These were deprotonated and 

reacted with FeBr2 to give the five iron(II) complexes 1a-c and 2a, 

b, respectively (Scheme 2).32,33 It is worth noting at this point, that 

even with ligand synthesis, these iron catalysts were prepared in 2-

steps and at considerably less cost than even commercially availa-

ble Wilkinson’s catalyst.34  

Single-crystal X-ray analysis revealed that these bis-ligated 

complexes all adopted a similar distorted tetrahedral structure fea-

turing an anchoring iron-carbene bond and the potentially activat-

ing group in the Fe-O motif (see ESI for details). 



 

Scheme 2. Synthesis of novel Fe(II) complexes 1a-c and 2a,b. 

Molecular structure of 1a. 

 

50% probability ellipsoids; Hydrogen atoms and solvent molecules 

omitted for clarity; Grey = C, Blue = N, Red = O, Orange = Fe. 

CCDC 1487368-1487371 contains the supplementary crystallo-

graphic data for complexes 1a-c and 2a.  

Initial investigations into alkene hydroboration found success 

using catecholborane (HBcat). HBcat is known to perform alkene 

hydroboration at elevated temperatures, but the reaction proceeds 

only very slowly at room temperature (Table 1, Entry 1).35,36 In the 

presence of HBcat, complexes 1a-c were shown to be catalytically 

active for the linear hydroboration of terminal alkenes in THF at 

room temperature (Entry 2, see ESI for further details). Using 5 

mol% of aryloxy-tethered NHC-FeII complex 1a the anti-Markov-

nikov hydroboration product 4 was obtained, following oxidation 

to give the linear alcohol 6a,10 in 81% yield. Interestingly, variation 

of the electronic character of the aryloxy-substituent on the catalyst 

led to diminished hydroboration yields (see ESI for further details). 

Alkoxy-tethered NHC-FeII complexes 2a, b were considerably less 

active under these conditions (Entry 3, see ESI for further details). 

Initial testing of aryloxy- and alkoxy-tethered NHC-FeII com-

plexes 1a-c and 2a, b for alkene hydroboration using pinacolborane 

(HBpin) resulted in alkene isomerization and hydrogenation only 

(Table 1, entries 4 and 5, for full details see ESI). By performing 

the hydroboration of styrene derivatives with HBpin in the absence 

of solvent, mixtures of the secondary 5 and primary 4 alkylboronic 

ester products could be obtained (Entries 6-9, see ESI for further 

details). Significantly, the Markovnikov (branched) product was fa-

vored in all cases. Alkoxy-tethered NHC complex 2a gave the best 

Markovnikov selectivity and yield of the secondary hydroboration 

product 5 (Entries 7). Yields of the secondary boronic ester 5 could 

be increased for aryloxy-tethered NHC complex 1a, but only by 

performing the reactions in an excess of the styrene derivative (En-

try 8). This was not necessary for alkoxy-tethered NHC complex 

2a which gave synthetically useful isolated yields of the secondary 

boronic ester product using 1.25 equivalents of HBpin (Entry 9). 

Further variation of HBpin and catalyst loading gave no significant 

increase in yield (see ESI for full details). Application of HBcat to 

the neat reaction conditions using alkoxy-tethered complex 2a, led 

to formation of the linear hydroboration product (Entries 10 and 

11). These reaction mixtures were colorless and contained aggre-

gates and the product mixtures were indistinguishable from uncat-

alyzed control reactions. This suggests that the alkoxy-tethered 

complex 2a is decomposed by HBcat under these conditions, and 

that the background, anti-Markovnikov selective, reaction pro-

ceeds in this case. 

Table 1. Reaction optimization for the hydroboration of sty-

rene derivativesa 

aConditions: Boronic ester (equiv.), [Fe] (2.5 to 5.0 mol%) and al-

kene (1 equiv.) in THF (0.5 M), r.t.. bYields determined by 1H NMR 

relative to 1,3,5-trimethoxybenzene internal standard. cIsolated as 

the corresponding alcohols following oxidation with basic 

H2O2(aq). dConditions: neat. eConversions determined by integrals 

of benzylic product peaks in 1H NMR relative to the limiting rea-

gent. f4-tert-butylstyrene (5 equiv.).  

The scope of the Markovnikov selective hydroboration reaction 

was investigated using a range of electronically differentiated sty-

rene derivatives, alkoxy-tethered NHC-FeII 2a (2.5 mol%) and 

HBpin (1.25 equivalents) (Table 2). Styrene proved to be an excel-

lent substrate giving the secondary boronic ester 5a in 81% isolated 

yield, and a 24:1 branched:linear ratio, significantly increased regi-

oselectivity compared to those previously reported.23 Styrene de-

rivatives bearing alkyl- and trialkylsilyl-substituents reacted in 

good yields (5b-5d, 38-72%) and branched:linear selectivities (9:1 

to 30:1). Alkyl substituents could also be tolerated in the ortho po-

sition, with synthetically useful yields and branched:linear selec-

tivities achieved (5e). Styrene derivatives bearing electron-donat-

ing aryl-substituents underwent successful hydroboration in mod-

erate to good yields (35-72%) and selectivities (5:1 to 30:1) to give 

the branched boronic esters 5b-5g. Styrene derivatives bearing 

electron-withdrawing aryl-substituents including fluoro- and tri-

fluoromethyl groups gave the secondary alkyl-boronic esters 5h-5k 

in good yields (48-90%) and excellent branched:linear ratios (16:1 

to 37:1). Using 4-cyanostyrene resulted in only 7% of the alkene 

hydroboration product 5l, along with a mixture of alkene and nitrile 

hydrogenation products. Alkyl-alkenes, such as 4-phenyl-1-butene 

gave no conversion to the Markovnikov hydroboration product 5m 

under these conditions with only starting material and a mixture of 

alkene isomerization products recovered from these reactions. Sty-

rene derivates bearing substituents at the α- or β- position, such as 

Entry [Fe] R HBOR2 Yield (%)b 

 (mol%)  (equiv.) 4 5 

1c none PhCH2CH2 HBcat (1.5) 25 - 

2c 1a (5.0) PhCH2CH2 HBcat (1.5) 81 8 

3c 2a (5.0) PhCH2CH2 HBcat (1.5) 30 - 

4 1a (5.0) PhCH2CH2 HBpin (2.0) - - 

5 1a (2.5) 4-tBu-C6H4 HBpin (2.0) - 6 

6d 1a (2.5) 4-tBu-C6H4 HBpin (2.0) 5 26e 

7d 2a (2.5) 4-tBu-C6H4 HBpin (2.0) 3 25e 

8d,f 1a (2.5) 4-tBu-C6H4 HBpin (1.0) 2 67e 

9d 2a (2.5) 4-tBu-C6H4 HBpin (1.25) 8 70e 

10d 2a (2.5) 4-tBu-C6H4 HBcat (1.25) 37e - 

11d 2a (2.5) PhCH2CH2 HBcat (1.25) 65e - 



 

α-methylstyrene, β-methylstyrene, and indene were all unreactive 

under the developed conditions.  

Table 2. Iron-catalyzed Markovnikov selective hydrobora-

tion of styrene derivatives using 2a.a,b 

aConditions: HBpin (1.25 equiv.) added in a single portion to 2a 

(2.5 mol%), followed after ~15 s by alkene (1 equiv.), r.t., 4 h. bI-

solated yields following flash column chromatography. Conver-

sions in parentheses, and branched:linear ratios calculated from rel-

ative integrals of starting material and product peaks in 1H NMR, 

average of at least 2 runs. cProduct unstable on silica gel.37 

The substrate scope of the hydroboration to give primary alkyl-

boronic esters was next investigated with aryloxy-tethered NHC 

catalyst 1a (5 mol%), HBcat (1.5 equivalents) and various alkenes 

(Table 3). Successful catalysis was achieved for terminal alkyl- and 

aryl- alkenes to give the primary alcohol products 6a-6f, following 

oxidation with basic hydrogen peroxide. Alternatively, the cate-

chol-boronic esters could be transesterified with pinacol to give the 

primary alkyl- boronic ester products 4a and 4b. Styrene deriva-

tives bearing both electron-withdrawing and -donating arene sub-

stituents gave the primary alcohol products in roughly equal yields, 

albeit decreased from that obtained with alkyl-substituted alkenes. 

 

 

 

 

 

Table 3. Iron-catalyzed anti-Markovnikov selective hydrob-

oration of terminal alkenes using 1a.a,b 

 aConditions: HBcat (1.5 equiv.) was added in a single portion to a 

solution of 1a (5 mol%) and an alkene (1 equiv.) in THF (0.5 M), 

r.t., 5 h. Then an aqueous H2O2/NaOH solution was added in a sin-

gle portion, 0 °C, 0.5 h. bIsolated yields following flash column 

chromatography. cYield measured by 1H NMR of crude reaction 

product relative to 1,3,5-trimethoxybenzene internal standard. dIn-

stead of oxidation, pinacol (1 equiv.) was added, r.t., 18 h. 

 

In order to gain insight into the mechanism of the alkene hydrob-

oration with HBpin, deuterium labeling experiments were per-

formed. Catalytic hydroboration of d8-styrene with HBpin gave the 

mono-protio-boronic ester d8-5a exclusively with H incorporation 

at the terminal methyl group (Scheme 3, a). When DBpin was used 

for the hydroboration of styrene the mono-deuterated boronic ester 

d1-5a formed in a 3:1 mixture with the fully protio-boronic ester 5a 

accompanied by deutero-styrene dn-3a, (Scheme 3, b). This sug-

gests that hydrometallation precedes C-B bond formation. In addi-

tion, the returned deutero-styrene showed deuterium at both alkene 

carbons suggesting β-hydride elimination occurs following hydro-

metallation, as an alternative to B-C bond formation. This β-hy-

dride elimination accounts for the formation of fully protio-boronic 

ester observed when using DBpin.  

Scheme 3. Deuterium labeling studies of Marknovnikov se-

lective alkene hydroboration. Isolated yields following flash 

column chromatography. 

 

 Reaction monitoring by 11B NMR provided no evidence of any 

boron containing species other than the product and HBpin in the 

reaction mixtures. Oxidation of the branched hydroboration prod-



 

uct, followed by chiral HPLC analysis revealed no enantioenrich-

ment of the secondary alcohol products, despite the enantioen-

riched ligand (see ESI for details). 

To further probe the mechanism, and given the lack of any enan-

tioselectivity, the catalytic hydroboration of styrene with HBpin 

was performed in the presence of radical inhibitors TEMPO and 

galvinoxyl free radical. In both cases, increased loading of radical 

inhibitor was needed to considerably attenuate catalytic activity 

(see ESI for details). The formation of neither alkyl-TEMPO nor 

alkyl-galvinoxyl adducts were observed. Diminished yields in the 

presence of free radical additives may simply be due to reactions 

between the additive and the iron catalyst.38,39   

Having proposed that the alkoxy-tethered NHC ligands could act 

in conjunction with the FeII center to activate the boronic esters, 

investigation into the identity of the catalytic intermediates was 

paramount. ESI-MS was used to directly probe the reaction mix-

tures of both the anti-Markovnikov- and Markovnikov selective 

hydroboration of styrene 3g (Scheme 4).  

Scheme 4: In situ reaction monitoring by ESI-MS. 

Reactions of the anti-Markovnikov selective catalyst 1a with 

HBcat showed cleavage of H-B bond to give an adduct bearing a 

borylated ligand (1a·Bcat m/z = 733.26). The analogous reaction 

with HBpin lead to no such borylation product being observed. 

However when the Markovnikov selective catalyst 2a was used, 

HBpin was cleaved and borylated complexes 2a·Bpin and 

2a·(Bpin)2 (m/z = 821.39 and 948.48 respectively) were observed. 

The alkoxy-tethered complex 2a, when treated with HBcat, gave 

only products of ligand dissociation and complex decomposition. 

This is in keeping with the results above, which indicted that 2a is 

not a stable catalyst for hydroboration with HBcat. 

That the reaction conditions effectively catalyze the isomeriza-

tion of terminal alkyl-substituted alkenes (vide supra) strongly im-

plies that the reaction proceeds by alkene hydrometallation by an 

iron-hydride complex. The observed borylated iron complexes 

1a·Bcat, 2a·Bpin (Scheme 4) are presumably derived from the cor-

responding iron-hydride complexes 7a and 8a respectively on ion-

ization. We propose that the alkoxy-tethered ligand is more able to 

activate Bpin, promoting the formation of the required iron-hydride 

species and in contrast to the analogous reaction with HBcat which 

only leads to catalysts decomposition. The low activity of 1a in the 

hydroboration of alkenes with HBpin is presumably due to the low 

reactivity of this ligand towards the activation of HBpin. It is not 

clear whether these reactions proceed by a single catalytic iron-hy-

dride species or an ensemble thereof.  

The regioselectivity of the Markovnikov selective hydroboration 

of styrene derivatives with HBpin and alkoxy-tethered complex 2a 

can be rationalized by the formation a stabilized benzyl-iron inter-

mediate following hydrometallation. For the anti-Markovnikov se-

lective hydroboration reactions with the more electrophilic HBcat, 

where catalyst decomposition is observed, a Lewis acid/base pro-

moted,40 or radical hydrogen-atom transfer41 reactions cannot be 

ruled out. However, we also cannot exclude the formation of a ki-

netically favored terminal alkyl-iron intermediate when using 

HBcat. Further mechanistic investigations, in order to investigate 

the regioselectivity switch, and allow refinement of the catalyst de-

sign and expansion of the reaction scope, are still ongoing. 

In summary we have developed a series of novel Fe(II) catalysts 

bearing alkoxy-tethered NHC ligands that are catalytically active 

for the hydroboration of terminal alkenes with controlled and 

switchable regioselectivity. Alkoxy-tethered NHC-FeII complex 2a 

is the first reported iron catalyst that is effective for the Markovni-

kov (branched) selective hydroboration of styrene derivatives using 

HBpin. Additionally, aryloxy-tethered NHC-FeII complex 1a has 

been shown to be an effective catalyst for the anti-Markovnikov 

(linear) selective hydroboration of terminal alkenes using HBcat. 

Mechanistic investigations suggest that the innovative ligand de-

sign facilitates a ligand-assisted catalyst activation. The proposed 

catalytically active hydride species enable iron-catalyzed hydrobo-

ration reactions to proceed in short reaction times at ambient tem-

peratures and, most significantly, in the absence of any external ac-

tivator. 
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