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Sample size and classification error for Bayesian
change-point models with unlabelled sub-groups
and incomplete follow-up

Simon R. White?!, Graciela Muniz-Terrera® and Fiona E. Matthews®

Abstract

Many medical (and ecological) processes involve the change of shape,
whereby one trajectory changes into another trajectory at a specific time
point. There has been little investigation into the study design needed to
investigate these models.

We consider the class of fixed effect change-point models with an un-
derlying shape comprised of two joined linear segments, also known as
broken-stick models. We extend this model to include two sub-groups
with different trajectories at the change-point, a change and no change
class, and also include a missingness model to account for individuals with
incomplete follow-up.

Through a simulation study we consider the relationship of sample size
to the estimates of the underlying shape, the existence of a change-point,
and the classification-error of sub-group labels. We use a Bayesian frame-
work to account for the missing labels and the analysis of each simulation
is performed using standard Markov chain Monte Carlo techniques. Our
simulation study is inspired by cognitive decline as measured by the Mini-
Mental State Examination, where our extended model is appropriate due
to the commonly observed mixture of individuals within studies who do
or do not exhibit accelerated decline.

We find that even for studies of modest size (n = 500, with 50 in-
dividuals observed past the change-point) in the fixed effect setting, a
change-point can be detected and reliably estimated across a range of
observation-errors.
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1 Introduction

When observing a changing outcome over time, using longitudinal data, the
process may contain periods in which a marked or distinct change occurs in the
underlying shape of the data. The distinct shift from one shape to another is
called a change-point.

Change-point models — also known as change-point regression, switching
regression ', changing regression?, two-phase regression, segmented regression,
broken-stick regression, turning points® or bent-cable regression® — encompass
a wide class of problems. They have been fitted to many longitudinal processes
such as: modelling distinct changes in the rates of a Poisson process for min-
ing accidents %, changes in economic time-series trends”, extremes of climate®,
modelling cognitive decline?, effect of calcium supplementation on blood pres-
sure ', CD4 T-cell counts for HIV infected individuals'' and biomarker levels
for prostate cancer'%!? (see also annotated bibliographies and overviews'* 7).

In our research setting, which is primarily the study of the longitudinal
effects of ageing, individuals experience cognitive decline. However, some indi-
viduals experience a period of steep decline, so-called accelerated decline. This
naturally leads us to consider change-point models to account for the shift from
typical decline to accelerated decline, but fundamental is the concept that not
all individuals experience this change. Accelerated decline is a strong precursor
of increased mortality and decreasing quality of life. Hence being able to identify
sub-groups that are likely to follow different paths is an important area of re-
search, and it is vital to invest in well designed studies with sufficient statistical
power.

Sub-groups

Within the change-point literature there has been a focus on fitting a common
underlying trajectory, with a change-point, to every individual and investiga-
tion of several aspects of this trajectory; for example inferring the time of the
change-point '® or deriving statistical tests for the existence of a change-point '*.
However, in many real-world applications the cohort may be heterogeneous, with
individuals following different trajectories.

A key research question is to learn firstly, if there are different classes of in-
dividual and secondly, what features identify these individuals. The sub-groups
of individuals, namely groups of individuals following different trajectories, are
not observed and must be inferred; individuals are unlabelled within the data,
hence the term unlabelled sub-groups.

Given a set of classes, there will be uncertainty when inferring the individu-
als’ labels, and some individuals will be incorrectly labelled, this is classification-
error.



Incomplete follow-up

Attrition is a well known problem in cohort studies?%?! and presents a specific

challenge when considering change-point models. If the majority of individuals
have dropped out of the study before the change-point, the statistical power
to detect a change-point and attempts to classify individuals will be severely
limited.

To account for attrition in longitudinal studies we consider incomplete follow-
up using a monotone missing assumption, that is when an individual misses
a wave they do not return for any future waves; this drop-out mechanism is
common to many cohort studies.

Under monotone missingness we define a sample size metric, specific to the
single-change-point model, which we term the expected post-change-point sam-
ple size. The expected post-change-point sample size combines the first wave
sample size with the real world problem of attrition in a manner that is intuitive
for study designers.

Any discussion of incomplete follow-up must include the missingness mech-
anism, typically classed as either: Missing Completely At Random (MCAR),
Missing At Random (MAR) or Missing Not At Random (MNAR) %%

We consider Missing Completely At Random as a way to include incomplete
follow-up in our investigation of classification-error and expected post-change-
point sample size, without obscuring these aspects with complex missingness
mechanisms; namely investigating how the proportion of random attrition im-
pacts the power to detect a change-point and classification-error in relation to
our newly defined sample size metric.

Bayesian framework

Change-point models have been considered using frequentist > and Bayesian %?*

approaches. In a Bayesian framework the extension of the model to incorporate
missing data is conceptually simple, though not always computationally possi-
ble. The aim of our paper is to investigate change-point models dealing with
attrition, this requires a computationally tractable model.

We have two distinct forms of missing data, the unknown sub-group labels
and incomplete follow-up. The missing sub-group labels are the motivation
for our paper, whereas the incomplete follow-up is essential to the practical
application of our results. These forms of missing data are simple to include in
a Bayesian change-point model, resulting in a tractable likelihood. Hence our
decision to focus on Bayesian change-point models.

Study design

Study design for change-point models is challenging due to the non-linear nature
of the model. Bischoff and Miller?® derived frequentist optimal designs to detect
the existence of a change-point in the single-path setting. Atherton et. al2,
also for the single-path setting but in the Bayesian framework, investigated the



optimal location for observation times. There has been little work on optimal
design for the so-called multi-path change-point problem, which is the setting
of our paper, with repeated observations on multiple individuals.

In classical approaches to the investigation of study design, in particular
sample size, closed form expressions (or reasonable closed form approximations)
are used to obtain sample size formulae. The change-point model with un-
labelled sub-groups and incomplete follow-up is of such complexity that even
reasonable closed form expressions are unavailable. An alternative is to investi-
gate the model using computational methods, and with the modern availability
of computing power it is feasible to conduct a simulation study to investigate
classification-error ?”.

The essence of study design is to define a set of criteria and optimise the
design to achieve the best value of the criteria, typically under some constraints,
e.g. cost and time. For example, randomised control trials are designed to
detect a difference between treatments while minimising the number of patients.
We consider Bayesian study design, as we have elected to work in a Bayesian
framework, but it is very similar in spirit to frequentist study design.

We define our design criteria to be the precision of parameter estimates, the
power to detect a change-point, and the classification-error. We may directly
affect our criteria by altering the sample size, however as previously discussed
the naive first wave sample size is a poor metric, since we fail to account for
attrition. Hence we consider our expected post-change-point sample size as a
combined feature, where the designer can determine a range of possible attrition
rates and cohort sizes.

The final design aspects concern the form of the underlying trajectories and
the measurements themselves. The measurement error is of fundamental impor-
tance, as we would expect in sample size calculations, and is typically inherent
to the outcome. In our two class model, change and no change, the key feature
of the trajectories is the shift at the change-point, which we term the change-
magnitude. It follows that larger change-magnitudes would be easier to de-
tect, however the parameter that ultimately determines the separation between
the classes is the magnitude of the measurement error relative to the change-
magnitude. Hence, we consider a range of measurement errors to inform designs
with differing measurement variability and also differing change-magnitude ra-
tios.

Outline

In this paper we perform a simulation study to investigate classification-error,
and the power to detect a change-point, in a class of Bayesian (multi-path)
change-point models with unlabelled sub-groups. This family of change-point
models are commonly used to investigate change %28, though this is a restrictive
model (fixed effect), we have extended it to incorporate unlabelled individuals
(for whom the sub-group to which they belong is unknown).

The focus of our paper is on the classification-error properties of the study
design; within the model we investigate there are many features to explore.



For this paper we consider two common design parameters: measurement error
and attrition. Although we perform a simulation study, our generated data
are inspired by the study of cognitive decline as measured by the Mini-Mental
State Examination (MMSE)??; where it is recognised that not every individual
experiences a change and it is of interest to infer the change or no change
label. Our setting allows us to gain insight into the issues of classification-error
under sample size scenarios with incomplete follow-up, and present guidelines
for future study designs.

2 Methods

When reporting a simulation study it is important to be clear on the aims,
computation details and summary measures®’:3!. First, we formally define the
class of change-point model and the incomplete follow-up mechanism of interest.
Next, the details of the Markov chain Monte Carlo (MCMC) method used for
Bayesian inference are presented.

Our investigation is motivated by the study of cognitive decline in ageing,
using this setting we define the parameter ranges considered in our simulation
study.

Finally we discuss the issues of sample size determination in relation to our
Bayesian approach, specifically the summary measures and statistical criteria
for which a sample size is optimal.

The MCMC algorithm was implemented in custom written C code and run
in parallel on several multi-core machines to obtain posteriors efficiently. All
other analyses were performed using the GNU R statistical software3%:33,

2.1 Change-point model

We consider the class of change-point models commonly known as broken-stick
models with fixed effects. The underlying shape consists of a linear trend before
and after the change point with potentially differing slopes such that there is
no discontinuity at the change-point.

Of note, we extend the model such that each individual is a member of one
sub-group with differing slopes around (i.e. before or after) the change-point.
In this paper we consider the case where each individual either experiences a
change or not, i.e. there are two distinct sub-groups within the population with
one group experiencing no change in the slope.

Individuals may have varying numbers of observations at varying times. For-
mally, let there be n individuals each with m; observations of the outcome y;;
at time ¢;;, for¢ =1,...,nand j =1,...,m;. For each individual, r; indicates
the group label, i.e. whether they experienced a change (r; = 1) or not (r; = 0).

For our simulation study, we consider the case of each individual’s observa-
tions being aligned such that ¢;; = 0 Vi. Further, the time of the change-point
is fixed for all individuals for whom a change occurs, at time c say.
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Figure 1: Example illustration of the two distinct sub-groups: no change and
change. The two linear segments meet at the change-point with no discontinuity.

Hence, our change-point model includes a mixture of two classes, the so-
called no change class (also known as the stable class) and change class, with
fixed underlying shape, see Figure 1 for an illustration.

Using a fixed effects model, let o and S denote the intercept and slope
respectively of the linear trend in the no-change sub-group. Define § as the
change-magnitude, i.e. the change in the slope after the change-point. The
change-point is at some fixed time, ¢, for all individuals whom experience a
change. Finally, the observation-error for each individual at each time point is
denoted ¢;;. Hence, the general form of this class of change-point models is,
o o+ Bti; + €5 ifr;=0,orifr;,=1and t;; <c (1)
Yis o + (B + 5)15”' + €55 if r, =1 and ti; >c

To ensure there is no discontinuity in the trajectory, the intercept of the change
sub-group (r = 1) is set to & = (a — dc¢). The requirement to have no discon-
tinuity at the change-point is a feature of the broken-stick class of models, not
of change-point models in general 3437,

The model specification is completed by defining the probability of an indi-
vidual experiencing a change, P(r; = 1) = p,,, and the observation-error, €;;.
The observation-error is assumed to follow a normal distribution with preci-
sion 7 (1 = #), and all error terms, both between and within individuals, are

independent.

2.2 Observation model

Cohort attrition is a significant problem in longitudinal studies, particularly
if the aim is to detect the existence and impact of change-points. Hence we
incorporate incomplete follow-up into our simulation study.

When performing a simulation study the data generating model must be fully
specified "3, Hence we must specify the time points at which observations are
made and a drop-out mechanism for the incomplete follow-up; our so-called
observation model, or equivalently a missingness model.

We consider an observational model with a minimally interesting drop-out
mechanism to investigate classification-error, monotone random attrition. In-
dividuals are observed at fixed time points, such that t;; = t,Vi, and there



is a single drop-out time, t4, with an associated drop-out probability for each
individual, pg, .

In this paper we keep the observation model constant across individuals,
namely ¢4, = tq Vi and pg, = pq Vi, as the missing profile, although of great
interest and importance in longitudinal modelling, is not the focus of this study.
By focusing on a basic missing profile we can more easily deduce and present
the impact of a varying amount of missing data on classification-error. Thus,
each individual ¢ is observed at times t1, o, ..., ts when they may drop-out with
probability pg and are not observed further, or continue to be observed at times
tdtis. -y tm.

This pattern of drop-out, where individuals do not return to the study at
later time points, is common in cohort studies.

Under this model drop-out is independent of sub-group, the missingness is
so-called Missing Completely At Random (MCAR)??. The unlabelled change-
point model presented is not inherently limited to the MCAR setting. However,
to focus on the novel unlabelled sub-groups aspect of the model we use an MCAR,
profile in this study. Further work is needed to investigate the characteristics
of our model within the more complex, and realistic, settings of Missing At
Random (MAR) and Missing Not At Random (MNAR) %%

2.3 Bayesian inference using MCMC

Within the Bayesian framework we use Bayes rule to formulate the posterior of
interest as the product of the likelihood of the observed data and the prior den-
sities of the parameters. We observe y = (Y11, - -, Ynm,, ) and t = (t11,. .., tnm,,)
with a likelihood that is a combination of our fixed effect change-point model
and observation model,

7T(O[, ﬁa 67 T|Z/7 t? C, td7pd7p7“) X L(y»pd|047 Bv 57 T, ta C, tdap’l“)ﬂ-(aa 67 67 T)7

where in general an individual’s probability of drop-out, p4,, may depend on y;.

The likelihood is complicated by the observation model and unknown sub-
group labels for each individual. In fact, for a general observation (i.e. miss-
ingness) model with unknown sub-groups the likelihood becomes intractable,
meaning that we cannot evaluate the likelihood of a set of observations directly.
It would require integrating over many possible missing data values, made more
difficult as there are no closed form integrals or conjugate priors.

The likelihood is intractable due to the unlabelled sub-groups. To evaluate
it we need to integrate over both the change and no-change possible scenarios
for each individual. Under a Bayesian approach, it is conceptually easy to add
change-indicators, r = (r1,...,7,), as further parameters by augmenting the
parameter space (also known as data augmentation or auxiliary variables) 367,
Conditional on the change-indicators, the likelihood is then easily computed for
each observation. Hence the posterior of interest is, in the most general terms,

’/T(O[, Ba 53 T, T|y7 t,c, tdvpdapr) X L(yapda T|05> ﬁ7 57 7,1, ¢, td,Pr)W(Oé, 57 5a T, T)a



where the likelihood, L(-), is defined by the change-point model and observation
model. Using data augmentation we can now make inference using MCMC
methods.

Within our simulation study we are assuming that drop-out is independent of
sub-group, the so-called MCAR setting; hence y is independent of py. Further,
combined with a constant drop-out probability, ps, = pq Vi, the observation
model can be factored out of the likelihood as a constant. Thus it has no effect
on the likelihood and can be ignored; its only effect is to vary the amount of
missing data, which will impact the precision of estimates. In our notation,

L(y.pa:r|-) = Ly, r[-)L(pal-) = L(y,7|)C C€R

Finally, the likelihood term involving the sub-group and outcome is separa-
ble, as the sub-group labels are augmenting the parameter space to make the
likelihood tractable. Leading to the posterior,

77(@7 8,0, T, 7"|y7 t,c, td,pd,pr) X L(y‘av B,0, 7,71, C)L(T|p7‘)ﬂ—(a7 B,0,T, T)’ (2)

where the first part of the likelihood is given by Equation (1).

The mixture of two sub-groups and change-point leads to a non-standard
form of the likelihood (i.e. no conjugate prior), and hence the requirement to
use Metropolis-Hastings (MH) updates within an MCMC scheme. The proposal
distributions within each MH update were of standard forms. However, there
is an interesting aspect to the dispersion of the proposals that we will return to
in Section 2.4.

The MCMC chains were run for 10° iterations and, as is standard practice,
an initial block of 103 iterations were discarded as burn-in. Further, only every
50th iteration was retained, so-called thinning, to reduce the auto-correlation
of the approximately 3000 remaining samples from the posterior density.

2.4 Simulation study

The family of change-point models, combined with an observation model, as
defined in Sections 2.1 and 2.2, have many parameters to consider. Within the
scope of this paper it would not be feasible to consider the full parameter space,
due to limits of space and clarity in presenting our results.

If we consider a common study design question, determining a sufficient
sample size to reliably detect a pre-defined effect size, a key consideration is the
measurement error; more noisy observations require a larger sample size. In our
setting, with unlabelled sub-groups, noisy measurements are an obvious feature
to investigate. The magnitude of the pre-defined effect size is important, but
mainly its magnitude relative to the measurement error.

As already discussed, incomplete follow-up is an important feature of longi-
tudinal study design. Hence we should consider a parameter from the observa-
tion model within our simulation study; in our case the only parameter is the
drop-out probability. As will be discussed in Section 3, we present our results



in terms of a sample size summary measure, the expected post-change-point
sample size, which reduces the complexity in presenting our results.

There remain several other parameters within Equation (2), which we can
broadly group into three categories as the focus for future work: observation,
shape, and sub-group. Parameters concerning the observation model (i.e. the
missingness model), such as the number and timing of observations, and drop-
out mechanisms, lead into future investigations of more interesting dependent
missing mechanisms (i.e. MAR and MNAR). Parameters concerning the shape
of the process, namely the slope, intercept, change-magnitude and change-point,
are important for translating the results to other settings; but they are inher-
ently linked to the observation-error; thus we feel that for our first investiga-
tion the observation-error is sufficient. As an intuitive comparison, consider a
common approximate approach to determining the sample size for a two sample
t-test comparing two population means which only requires the ratio of the vari-
ance and effect size®®; hence the relative magnitudes of the shape parameters
and observation-error are of key importance. Finally, parameters concerning the
sub-group labels, which determine the relative numbers of individuals in each
group, are set to generate equally likely sub-group membership in this paper,
which will likely correspond to a best case scenario for classification.

Thus we consider two features of our extended change-point model: the effect
of the observation-error, 7, that is noise or measurement error; and the drop-out
parameter, py. We investigate the interaction of varying 7-py over different first
wave sample sizes in a simulation study.

For a simulation study we must generate many simulated data sets at a range
of parameter values. Rather than consider abstract scales for the parameters we
use a motivating real world application, modelling cognitive decline in ageing as
measured by the Mini-Mental State Examination (MMSE)?%*%. Change-point
models have previously been applied in the field of ageing and cognition?®, and
for the MMSE in particular*' which we use as a basis for our parameter ranges.

The MMSE is measured on a scale from 0 to 30, with scores greater than 25
considered normal cognition. Although the MMSE is discrete and our focus is on
a continuous outcome, assuming discrete outcomes as continuous is common and
we primarily use the MMSE to motivate otherwise arbitrary parameter values.
As all our individuals are aligned, such that ¢;; = 0 Vi, and we set our intercept
as 25, a = 25, which is mild cognitive impairment on the MMSE scale. However,
for our motivating example of 75 year olds this corresponds to the mean observed
MMSE value. Equating a unit of time to one year, when modelling decline in
cognition a decline in MMSE score by one per year is reasonable, so the slope of
the no change group (before the change-point) is minus one, 8 = —1. Given the
typical decline of one point per annum, a reasonable accelerated rate of decline
would be three points per annum, and so to give a slope past the change-point
of three would require a change-magnitude of two, § = —2.

In keeping with our motivating example of studies of cognition in ageing
and a yearly time scale, typical studies last five to ten years with three to five
observations (or waves). Thus, we assume five observations at fixed time points
for all individuals. Namely, t; =0, to = 2, t3 = 4, t4 = 6, and t5 = 8. We set



the time of the drop-out as t; = 4 and the time of the change-point as ¢ = 5 for
all individuals. Thus, individuals who drop-out do not have any observations
after the change-point. The probability of experiencing a change is the same for
all individuals, namely p,, = p, = 0.5 V.

In summary, the parameter values derived from our motivating example,
modelling cognitive decline in ageing, are («, 3,0) = (25, —1, —2) and (¢, t4, p,) =
(5,4,0.5).

Within our simulation study it only remains to specify the range of the
observation-error and drop-out parameters. We consider three error-precisions,
7€ {0.05,0.1,0.2} (error-variances o € {20, 10,5} respectively) corresponding
to three very different error magnitudes relative to the observations; and a
wide range of drop-out probabilities, pg € {0.1,0.3,0.5,0.7,0.9}. In longitudinal
ageing studies drop-out rates of 50% are not unknown.

For each of the fifteen possible scenarios, three observation-errors and five
drop-out probabilities, we generated 150 data sets consisting of 500 individuals.
Each individual experiences a change or not, and either has complete informa-
tion or drops out.

To assess the impact of sample size we restrict the number of individuals
used from each simulated data set. The subsets were defined by restricting to
the first k£ individuals in each data set, k = 25, 50, 75, 100, 125, 150, 200, 300, 500.
The range of sample sizes was chosen to reflect typical applications of change-
point models in the literature %!&40:41,

Having defined the parameter values from our motivating example it is pos-
sible to discuss the scales of the prior and proposal distributions within our
Bayesian analysis. The priors are all uninformative and proper,

a ~ Norm(0,10%) B ~ Norm(0,10%) § ~ Half-Norm(0, 10?)

T= (;) ~ Gamma(1,1) 7; ~ Bernoulli(0.5).

We use a half-normal prior on the change-magnitude, 4, to aid identifiability
and, in the case of cognitive decline, the direction of change is known a priori.

The proposal distributions require a slight adaption due to our focus on
sample size. With larger sample sizes the posterior variance is expected to be
smaller, hence using the same proposal distribution across all simulated data
sets will induce different mixing and acceptance rates, potentially distorting the
comparison across sample sizes. To minimise this, the variance of each proposal
distribution was scaled based on the number of observed individuals. Thus the
proposal distributions were,

q(o’|av) ~ Norm(a, (f(n)1.2)%)  q(8'|8) ~ Norm(B, (f(n)0.85)%)
q(6'16) ~ § x Log-Norm(0, (f(n)1)?) q(7'|7) ~ Norm(r, (f(n)0.85)%).

Where f(n) = lﬁ) gg((if)), since the minimum sample size considered in our simula-
tion study is 25 (any function such that f : N — (0,1], f(N) — 0 as n — oo and

f decays to zero at a suitable rate would be appropriate). These distributions

10



and function, f, were based on multiple trial runs to investigate acceptance
rates and mixing properties of the posterior samples.

In a real application, it may be beneficial to use an adaptive update scheme
to improve the efficiency of the MCMC chain. In our simulation study this
deterministic adaption was sufficient.

2.5 Bayesian sample size

Frequentist sample size calculations have a long history, particularly in medical
research due to clinical trials, and are typically framed in terms of hypotheses
with Type I and Type II errors. The null hypothesis, significance level, alter-
native hypothesis, and desired effect-size combined with an optimality criteria
define the required sample size.

Bayesian sample size is slightly different and is split into two main types:
model comparison using Bayes Factors, which may be extended to a fully deci-
sion theoretic approach; or inferential approaches (see Adcock*? and Pezeshk **
for a review).

The fully decision theoretic approach***° is the preferred method, account-
ing for the prior distribution and incorporating a loss-function to quantify the
cost of a decision. However, to avoid further complicating the results, and how
to translate them to different settings, we discount the use of utility functions
as they are very application specific.

The Bayes Factor approach“® compares the marginal posterior probability
of the data, D, under two models, which can be taken as equivalent to the
null and alternative hypotheses in the frequentist approach. The Bayes Factor
comparing two models is defined as the ratio of the marginal posterior of the

data under each model, BF = :ggiﬁég, i.e the parameters and their priors have

all been integrated out (hence the Bayes Factor depends on the prior®”). Values
of the Bayes Factor substantially different from one indicate evidence in favour
of one model. A complete simulation study, incorporating varying priors, that
could be used to make general statements about study design for change-point
models would be very difficult to perform and summarise. Since our Bayesian
change-point model has no closed form expressions and missing data, the MCMC
analysis is computationally expensive for each simulation. Further, it is non-
trivial to compute the Bayes Factor from the MCMC output*®. Hence, given
the scope of our study, we discount investigating varying priors and also the
Bayes Factor approach.

The remaining Bayesian approaches are termed inferential **, for example the
Average Length Criterion (ALC) and posterior moments. The ALC is defined
as the average length of the v% Highest Posterior Density (HPD) interval. The
Highest Posterior Density interval is a form of Bayesian Credible Interval, which
are often compared to frequentist confidence intervals (although a confidence
interval and a credible interval are two distinct concepts and typically would not
coincide). Sample size is then defined in terms of a minimum desired ALC. Thus
the ALC is a sample design criterion, akin to setting the desired significance level

11



and power in a frequentist design setting. Simpler than the ALC, sample size
can be defined in terms of a minimum desired posterior moment, such as median,
mean or variance.

In our investigation, for the intercept («), slope (8), change-magnitude (J)
and error-precision (7), we consider the error in the estimated posterior median,
the variance of the posterior and the 95% ALC. For the change-indicators (r),
we analyse the classification-error.

2.6 Simulation summaries

For each scenario we generated 150 data sets, each generating a posterior sample
using the MCMC scheme in Section 2.3.

For the intercept (), slope (), change-magnitude (§) and error-precision
(1), we compute the posterior median from each data set within a scenario, s,
and summarise all data sets using the Mean Absolute Error (MAE),

150
Z |y —w*(s)] for w € {a, 5,0, 7} and scenario s.  (3)
=1

1
MAE,(w) = 150
Where @; denotes the median of the MCMC posterior for parameter w in the
I*h data set and w*(s) its true value (varies by scenario only for 7).
Again, for the intercept (), slope (8), change-magnitude (0) and error-
precision (1), we compute the posterior variance and 95% ALC, and summarise
all data sets using the mean of the variance or ALC,

150 150
1

1
vars(w) = 150 Zvar(wl) ALC;(w) = 150 ZALC(wl)
=1 =1

We note that the overall summaries are based on 150 data sets. Hence in
addition to the error due to using a finite sample from the MCMC posterior,
there will be further Monte Carlo error due to using a sample of all possible data
sets??. The decision to use 150 repetitions of each scenario is in line with other
simulation studies, and gives sufficient insight into the relationship of interest.

Within our change-point model there are two distinct sub-groups, change
and no change. This naturally leads to two questions: whether there is a change
at all, namely whether § # 0; and given there is a change-point, what is the
classification-error of individuals.

In the classical sample size framework the Type II error, or power, of the test
is the ability to detect a difference when one exists. In the Bayesian framework
we could perform model selection comparing the base = 0 against 6§ # 0 (or
0 < 0 if only modelling decline). Alternatively, we could monitor the marginal
posterior probability on §. In the one-sided case it is not sufficient to monitor
the HPD interval of § without a spike-and-slab prior°%! (since ¢ is continuous,
then P(6 = 0) = 0). However, the probability P(§ < h) for a range of h
can easily be computed from the MCMC samples, giving an indication of the
probability of a meaningful change-magnitude.
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Finally, we summarise the classification-error for each scenario. In our sim-
ulation study, the true r; is known for each individual and we can obtain a
posterior probability for whether they experienced a change or not. We plot Re-
ceiver Operating Characteristic (ROC) curves as the true positive rate against
the false positive rate ranging over all thresholds. In this instance, the posterior
of each r; can be summarised as the probability of being assigned to the change
class; we then vary the threshold of assignment to the change class from zero
to one. To summarise ROC curves it is common to compute the area under
the curve (AUC) as a measure of classification-error, our area under the ROC
(AUROC). By definition, an AUROC of one corresponds to a perfect classifier
and an AUROC of half is random assignment.

3 Results

We first illustrate several simulated data sets, to present the qualitative nature
of our scenarios and to highlight the noisy properties of the simulated data.
Despite having the true generating parameters, we do not expect to recover
them perfectly nor do we expect to be able to avoid classification-error.

Within our simulation study we ran 20,250 MCMC chains covering 150 rep-
etitions of all scenarios: three error-precisions, five drop-out probabilities and
nine samples sizes. Given the number of MCMC chains, we considered summary
measures of the acceptance rates and convergence; both were sufficient for valid
inference under our implementation (see Appendix for further details).

Our aim is to gain insight into the relationship of sample size and classification-
error, focusing on the error-precision and drop-out probability. Even moderate
tabulated output would be far too verbose, thus we present graphical represen-
tations of our results that more succinctly illustrate our findings.

In the following sections we plot the summary measures defined in Section 2.6
by error-precision against the expected sample size post-change-point. The plots
show the mean for each scenario, omitting the uncertainty due to Monte Carlo
error for clarity, and LOWESS®%53 curves to highlight the trend across the
scenarios.

Using these summary plots we assess change-point detection and classification-
error under varying post-change-point sample sizes. Although not our main
focus, we also consider the three shape parameters: intercept («), slope (5),
change-magnitude (4); and inference on the error-precision (7) itself.

3.1 Example data sets

Our change-point model was coded in the R statistical software package®? and
for each scenario — defined by 7* and pjj, together with the values of the other
parameters and observation times, see Section 2.4 — we generated 500 individ-
uals’ trajectories; this was repeated 150 times (all data sets available from the
corresponding author).
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(a) Observation-error, = 0.05 (b) Observation-error, t=0.1 (c) Observation-error, T=0.2
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Figure 2: Example data sets under different scenarios with n = 75 and common
intercept (a = 25), slope (8 = —1), change-magnitude (6 = —2) and change
probability (p, = 0.5). The thick solid black lines denote the underlying model,
and each individual’s observations are drawn depending on whether they truly
experience a change (dashed black line) or not (solid grey line). Plots (a)—
(c) illustrate differing error-precisions, 7, with drop-out probability pg = 0.5.
Plots (d)—(e) illustrate differing drop-out probabilities, py, with error-precision
T=0.2.

Figure 2 illustrates five example data sets with n = 75 individuals and
common intercept (o = 25), slope (8 = —1), change-magnitude (§ = —2) and
change probability (p,. = 0.5).

In our model each individual is a member of the change or no change class.
Figure 2 shows that some individual’s observations are at odds with their sub-
group due to observation-error. For example, in Figure 2b there are individuals
whom did not experience a change (solid grey line) but have similar final ob-
servations to those who did experience a change (dashed black line), and vice
versa.

3.2 Existence of a change-point

To consider the question of classification-error we must first determine whether
distinct sub-groups exist. There are two degenerate cases, in the first a change-
point exists and all individuals experience a change. The other degenerate
case is when no change-point exists, i.e. the change-magnitude is zero, and all
individuals experience no change.
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(a) P(5<-0.05) (b) P(5<~2.00) (¢) P(3<~3.00)
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Figure 3: Mean posterior probability of change-magnitude, J, being less than
(a) —0.05, (b) —2, and (c) —3; given the true change magnitude is Jgrye = —2.
We use P(6 < —0.05) as an indicator that a change-point exists. Scenarios are
grouped by the true observation-error (solid, dashed and dotted lines). Simula-
tion summaries are grey lines and LOWESS curves are black.

The case of no change-point presents an identifiability issue for our model. If
the change-magnitute is truly zero, then the change and no change sub-groups
follow identical shapes; meaning the labels are ill-defined. Conversely, the case
of all individuals experiencing a change given a non-zero change-magnitude is
well defined, since the labels correspond to distinct shapes.

Hence before we can consider classification-error we must first address the
existence of a change-point, i.e. check for a non-zero change-magnitude. As
discussed in Section 2.5, we could model the existence of a change-point and,
using Bayes Factors or variable selection approaches, obtain appropriate poste-
riors. However, for the reasons discussed earlier we shall not directly compare
the evidence for a change-point but instead consider the posterior probability
of the change-magnitude being non-zero. Recall, by definition P(§ < 0) = 1
and P(6 = 0) = 0 (continuous distribution restricted to the negative real line),
so instead we set some threshold, h < 0, and consider P(§ < h). The choice
of h must not be too small or it will give no information; based on the relative
parameter values and motivating example, we let h = 0.05.

Figure 3 plots P(6 < h) for our detection threshold, h = —0.05, and two
further values: the true value of the change-magnitude, h = —2, and a value
below the truth, h = —3.

Figure 3a reflects our explanation of failing to detect a change-point. We see
for the smallest error-precision scenario, 7 = 0.05, that for post-change-point
sample sizes less than 100 there is (averaged across our 150 repetitions) less
than half of the posterior mass of the change-magnitude parameter away from
zero. Crudely speaking, we only have a 50% chance of detecting a true change-
point. This increases to 70% at twice the precision, 7 = 0.1, and approximately
95% at four times the precision, 7 = 0.2. For all error-precisions, we see that a
post-change-point sample size of 500 almost guarantees detection of a non-zero
change-magnitude.

Note that Figure 3a only indicates that the posterior density is away from
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zero, not that it is centred around the true parameter. It is perhaps concerning
that even for large post-change-point sample sizes, say 200 individuals, under
our reasonable error-precision (7 = 0.1) there is still a 10% chance of failing
to estimate a non-zero change-magnitude; and hence failing to properly classify
any individuals.

Assuming reliable inference, we would typically expect the posterior to be ap-
proximately symmetric about the true parameter value (d¢;qe = —2). Figure 3b
indicates that this is the case, as the post-change-point sample size tends to
larger values. That is, in the limit across all obervation-error values, half the pos-
terior probability is below the true value and half above, i.e. P(d < dtyye) — %

Finally, to illustrate the directionality of the inference, Figure 3c plots the
posterior probability of a change-magnitude smaller than minus three. Note that
the order of the three error-precision lines is reversed on this plot compared to
Figure 3b, as we are considering the opposite tail of the posterior; namely the
solid line corresponding to 7 = 0.05 shows the lowest probabilities in Figure 3b,
but the highest in Figure 3c. For the smallest error-precision (7 = 0.05) there is
a non-zero probability of a change-magnitude greater than —3, indicating that
we can both under and over estimate this parameter while still being bounded
at zero.

3.3 Classification error

Classification is inference at the level of individuals, unlike inference on the
change-point model parameters which is at the population level (in a fixed ef-
fects model). Classification-error concerns differences between an individual’s
true label and their inferred label. However, this comparison is only well de-
fined if both the true and inferred labels are interpretable. That is, unless we
first confirm the existence of a change-point the inferred labels, change and no
change, are meaningless. Hence, change-point detection is more fundamental to
our problem.

We first consider the issues of ill-defined labels. Then, once we have deter-
mined the existence of a change-point, following Section 3.2, meaning that our
change and no change labels are well defined, we can consider the accuracy of
classification.

Figure 4a plots the mean AUROC by error-precision over a range of post-
change-point sample sizes. Counter to our expectation, the classification-error
becomes greater for larger sample sizes and appears to be tending to an AUROC
of 0.5, i.e. random labelling. We do not expect classification to become worse
with an increasing sample size.

Recalling our simulation setting from Section 2.4, individuals who drop out
are lost to follow-up before the change-point, so they cannot really be in either
the change or no change group. This issue arises since we are considering infer-
ence at the individual level, unlike in Section 3.2, where at the population level
the question of the existence of a change-point is well-defined.

In fact, we might consider these individuals to be in a distinct third group,
for whom the question of whether they experience a change-point is ill defined.
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Figure 4: Area under ROC curve for (a) all individuals and (b) only those
individuals with observations after the change-point. The plot for all individuals
seems to indicate larger sample sizes lead to a loss in accuracy, but this is an
unfair comparison due to the inclusion of individuals who drop-out before the
change-point — their classification is ill defined. Hence, the second plot considers
only individuals with observations past the change-point.

Such a group is distinct since individuals are missing completely at random
(MCAR), and the drop-out probability is independent of sub-group. Hence,
there is no information in the observed data (scores y and times ¢) to inform
the sub-group label for individuals with incomplete follow-up; they will have
random labels. Thus, for these individuals the AUROC will approach a half.

Typically at larger post-change-point sample sizes there are more individ-
uals with incomplete follow-up, leading to a large number of random labels.
These random ‘true’ labels will lead to many mis-classification errors from our
inference, since both the ‘true’ label and posterior label will be random the prob-
ability they coincide is dependent on the proportion of change and no change
individuals in the population.

For our setting, with known fixed change-point location and MCAR, drop-
out, we can exactly define three distinct sub-groups: change, no change and
dropped-out before change-point. Figure 4b plots the classification-error for the
subset of individuals with observations past the change-point, that is individuals
for whom classification into change or no change is well defined. Hence we have
removed the effect of including the dropped-out individuals. Immediately we
see that classification improves with sample size, as we expect.

When interpreting Figure 4 we must account for detecting a change-point
as indicated by Figure 3. Until a change-point is reliably (we deliberately leave
the term reliably undefined) detected the AUROC appears steady, then begins
to climb slowly. Even at the largest post-change-point sample sizes we do not
achieve perfect classification. Further, there is an indication that for increasing
sample size the AUROC is levelling out to some limiting value. This is in
keeping with our earlier observations on Figure 2, that there exist individuals
with observed outcomes that are closer to the opposite sub-group, namely some
individuals in the no change group have outcome scores — due to the observation-
error — close to the change group. Hence, we do not expect to recover perfect
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classification.

We must also consider that for a post-change-point sample size of 10, com-
bined with an equal chance of experiencing a change or not (p, = 0.5), we
expect only 5 individuals to be in each sub-group. However, this is not fixed to
be exactly 5 and due to the random group assignment several of the simulated
data sets had no individuals in one of the sub-groups. Thus, at low post-change-
point sample sizes there will be higher Monte Carlo error (recall that the group
membership of individuals was not passed to the MCMC analysis code, so the
inference is made blinded to the true group membership).

At moderate post-change-point sample sizes, the probability of detecting
a change-point increases. However, the simulation study summaries of the
Bayesian posteriors for the change-magnitude (&) will reflect this uncertainty
by becoming a mixture of two distributions: no change with posterior mass
around zero and change with posterior mass around two. Hence Figure 3 is
really summarising a bimodal distribution. Bimodal distributions are poorly
characterised by the variance and ALC (the ALC being ill defined when the
posterior is multimodal), which we shall consider in Sections 3.5 and 3.6, so it is
important to consider all results in the context of the existence of a change-point.

3.4 Post-change-point sample size

In study design, the often asked question is the required sample size. This is
well defined in single time point studies, for example the classic comparison of
means between two groups. However, in the longitudinal setting we have the
additional complexity of attrition.

The problem of attrition is especially troubling in a change-point model, in
the worst case scenario we might lose all individuals before any experience the
change-point. There are some parallels with designing studies to investigate
time-to-event processes, requiring long enough follow-up to capture sufficient
events to make inference.

With that background in mind, we proposed a convenient metric to encap-
sulate both the first wave sample size (at time t;) and attrition; our so-called
expected post-change-point sample size. This metric has the benefit of focusing
study designers thinking on the key aspect of the change-point process, while
still being a univariate summary of the sample size.

For our cognitive decline inspired process defined in Section 2.4, we have two
observation times beyond the change-point (¢ = 5) and drop-out time (¢4 = 4);
both of which are fixed for all individuals. Thus, for a given sample size, n, and
drop-out probability, pg, there is an expected number of individuals who should
be observed at the last observation (t5 = 8), namely n(1 — pg).

There are two important observations about our metric. Firstly, it is possible
to achieve the sample expected post-change-point sample size with different first
wave sample sizes. For example, n = 100 coupled with p; = 0.1, and n = 300
coupled with p; = 0.7, both result in an expected post-change-point sample
size of 90. Secondly, the actual post-change-point sample size is random. This
means our smooth curves — for example in Figure 3 — are really smoothing
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Figure 5: Mean absolute error of the posterior median estimate of the change-
magnitude, §, plotted against (a) the first wave sample size and (b) our expected
post-change-point sample size. We highlight three expected post-change-point
sample sizes: 15, 45 and 90, and the (c) the corresponding first wave size, n,
and drop-out, pg, paris.

variability in the mean absolute error, over the y-axis, and across the actual
post-change-point sample size from each simulated scenario, over the x-axis.

In Figure 5 we illustrate the benefit of considering our results in terms of the
expected post-change-point sample size using the bias in estimating the change-
magnitude parameter; which we shall consider in more details in Section 3.5.
The change-magnitude parameter, §, is resonably “well behaved” and clearly
dependent on the number of observations post-change-point.

Figure 5a presents the mean absolute error for the change-magnitude (J)
parameter when 7 = 0.05, plotting the x-axis as the first wave sample size;
with five different lines for each drop-out probability, ps. We have highlighted
three expected post-change-point sample sizes: 15, 45 and 90, which can each
be obtained as two distinct combinations of n and py. In Figure 5b, we plot
the same information with the x-axis as our expected post-change-point sample
size. The ‘error bars’ on each expected post-change-point sample size reflect the
mean absolute errors from Figure 5a.

The general pattern, larger sample size leads to less bias, is clear across
both plots. However, the interaction of attrition and first wave sample size in
Figure 5a is, even for the “well behaved” change-magnitude, complex and highly
non-linear. Conversely, Figure 5b presents a noiser picture in the raw data, but
a clearer understanding of the impact of observations after the change-point
on our ability to make inference. This is particularly important more complex
questions of change-point detection in Section 3.2 and classification-error in
Section 3.3, where our message is that post-change-point sample size is a key
consideration. However, we acknowledge, as clearly shown in Figure 5b, that our
simple metric exhibts variability. Hence our use of LOWESS curves to highlight
the trends of interest.
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Figure 6: Summary measures for the intercept («) parameter over a range of
post-change-point sample sizes: (a) mean absolute error of the posterior median,
(b) mean posterior variance and (c) 95% ALC. Scenarios are grouped by the
true observation-error (solid, dashed and dotted lines). Simulation summaries
are grey lines and LOWESS curves are black.

3.5 Intercept, slope and change-magnitude

Our change-point model, defined in Equation (1), has three parameters that de-
termine the underlying shape: the intercept («), slope () and change-magnitude
(9), see Figure 1. Figures 6, 7 and 8 plot: (a) the mean absolute error of the pos-
terior median, (b) the mean posterior variance, and (c) the 95% average length
criterion against the expected post-change-point sample size, namely n(1 — pg).
The scenarios are separated based on the true observation-error, which takes
one of three values (7 € {0.05,0.1,0.2}).

By definition the shape parameters are dependent, since we require continu-
ity at the change-point. Beyond the continuity constraint, a deeper dependence
is induced by the existence of a change-point. If the change-magnitude is zero
or, almost equivalently, all individuals belong to the no change class, then the
slope parameter will be informed by all observations. Conversely, if a change-
point does exist then the variation is explained by both the slope and change
parameters. These two situations will result in different estimates for the slope,
which in turn will affect the estimate for the intercept.

Figure Ga plots the bias in the posterior median for the intercept («) param-
eter. We see that for small post-change-point sample sizes there seems to be a
plateau. Beyond a post-change-point sample size of 50, on the log-log scale, the
bias seems to decrease linearly. Given drop-out is missing at random, we would
expect the bias in the intercept to be well behaved. Figure 6b and 6¢ are closely
related, for a unimodal symmetric posterior there is a one-to-one relationship
between the variance and ALC. As expected, the measures seem well behaved
on the log-log scale for increasing post-change-point sample size.

Similarly, Figure 7 plots the same measures for the slope () parameter and
the behaviour is comparable.

The change-magnitude (§) parameter behaves very differently. In Figure 8,
the bias is an order of magnitude greater than for the slope parameter despite
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Figure 7: Summary measures for the slope () parameter over a range of post-
change-point sample sizes: (a) mean absolute error of the posterior median, (b)
mean posterior variance and (¢) 95% ALC. Scenarios are grouped by the true
observation-error (solid, dashed and dotted lines). Simulation summaries are
grey lines and LOWESS curves are black.

being comparable, and the variance and ALC do not appear as well behaved.

The explanation of Figure 8 comes from the ability to detect the existence
of a change-point. If there is insufficient evidence of a change-point then the
posterior for the change-magnitude will be close to zero (in a classical sense or
using spike-and-slab priors, P(6 = 0) ~ 1). In this case, recalling that the bias
is bounded in one direction since we assumed a half-normal prior, the mean
absolute error must be equal to two. Thus, at small post-change-point sample
sizes, when we cannot reliably detect the existence of a change-point we see a
large bias. However, once we reliably detect the change-point the bias reduces
rapidly, as seen in Figure 8a. This also explains the plateau on Figures 6a
and 7a, at these sample sizes the posterior detects no change-point and so the
intercept and slope are being fitted to the entire data (akin to a simple linear
regression).

3.6 Error-precision

The error-precision (1) parameter is particularly important to our discussion.
Typically in classical sample size formulae the user must specify the observation-
error a priori as a fundamental aspect of determining the sample size. In that
regard, we consider the error-precision as known. In an application we would
also wish to make inference on the error-precision.

Figure 9a, 9b and 9c plot the summary measures for the error-precision as
for the shape parameters in Section 3.5. Against our intuition, the least precise
scenario, 7 = 0.05, (equivalently, the noisiest observation-error, 0 = 20) has
the lowest bias, variance and ALC.

However, this comparison in unfair as the measures are not based on the
same values across the three scenario groups; unlike the plots in Section 3.5,
where the scenario groups were all comparing their measures to the same true
value. To compensate, Figures 9d, 9e and 9f plot the bias, variance and ALC
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Figure 8: Summary measures for the change-magnitude () parameter over a
range of post-change-point sample sizes: (a) mean absolute error of the posterior
median, (b) mean posterior variance and (¢) 95% ALC. Scenarios are grouped
by the true observation-error (solid, dashed and dotted lines). Simulation sum-
maries are grey lines and LOWESS curves are black.

relative (by scaling) to the true error-precision.

Once scaled, ignoring the low post-change-point sample sizes due to the
failure to detect a change-point, we see that there is no difference in the bias
and ALC, both of which appear to decrease linearly on the log-log scale. This
is as expected since all observation errors are independent, so we would expect
fairly reliable inference about the error-precision.
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Figure 9: Summary measures for the error-precision (7) parameter over a range
of post-change-point sample sizes: (a) mean absolute error of the posterior me-
dian, (b) mean posterior variance and (c) 95% ALC. Scenarios are grouped by
the true observation-error (solid, dashed and dotted lines). Simulation sum-
maries are grey lines and LOWESS curves are black.
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4 Discussion

Using a simulation study, for a class of fixed effect change-point models with
unlabelled individuals belonging to either a change or no change class, we
have investigated the relationship between post-change-point sample size and
classification-error — as well as the bias and variance of the posterior estimates
of the fixed effects — in a Bayesian framework.

Insights into study design

The results relate to our motivating setting of modelling decline in cognition
measured by the MMSE. Although exact numerical results would need adjust-
ing under different parameters, the overall trends and conclusions are widely
applicable.

Our first insight is to consider study design in terms of (expected) post-
change-point sample size, a function of the drop-out probability (ps) and first
wave sample size (n). We have shown important relationships that hold for a
range of sample sizes and missingness scenarios by reducing these two factors
to a single number.

The price we pay for using a simple univariate sample size metric is greater
variability across comparable scenarios. Where we define comparable scenarios
to be n-pg pairs giving similar post-change-point sample sizes (n(1—pg)). How-
ever, the between comparable scenario variability must be considered within the
context of the within scenario Monte Carlo variability. Recall that each scenario
has 150 simulated datasets, each with a random post-change-point sample size
(distributed around the expected post-change-point sample size). The within
and between scenario variability is of a similar magnitude, meaning that com-
bining comparable scenarios as illustrated in Section 3.4 is reasonable.

Study designers can consider the trade-off between the cost to decrease drop
out (thus minimising incomplete follow-up) and the cost of initial recruitment to
obtain a specified post-change-point sample size. Further, thinking in terms of
post-change-point sample size highlights the issue of biased attrition in cohort
studies?” since only a sub-sample of initial recruits are represented post-change-
point. Our drop-out model is appropriate for unbiased attrition processes and
we leave the impact of alternative attrition models for future work.

Our main result combines change-point detection and classification-error.
As expected, the error-precision defines the limiting AUROC for larger post-
change-point sample sizes. That is, given the separation of the true underlying
sub-groups relative to the error-precision we would expect an upper limit on
the classification accuracy, i.e. for very low error-precision the two sub-groups
would overlap and be indistinguishable. The observation-error is a key aspect
of required sample size, and the effect of larger precision (equivalently, smaller
variance) can be trivially seen in Section 3. In our study, an error-precision
of 0.05 (equivalently a standard deviation of 4.47) has a limiting AUROC of
approximately 0.85. A more realistic error-precision of 0.1 (standard deviation
3.16) for the MMSE?? has a limiting AUROC of approximately 0.9.
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For study designers, the inherent limit on classification is a concern. Worse,
the rate of increase to the limit is very slow. Thus only minor improvements in
AUROC are gained for substantial increases in post-change-point sample size.

Conversely, and unintuitively, for low post-change-sample sizes there is not
a significant increase in classification-error (equivalently a decrease in the AU-
ROC). However, the stability in classification-error is an artefact of the half-
normal prior on the change-magnitude. Since the parameter can never be zero,
even a slight change-magnitude results in a difference in the likelihood between
the two labels for an individual. Thus, individuals that are far above or below
the true shape will be ‘correctly’ labelled. Despite these ‘correct’ labels, the la-
bels themselves cannot be interpreted (and are essentially meaningless) since if
the change-magnitude is zero then both sub-groups really experience no change.

Thus, when designing a study optimised for classification we require a post-
change-point sample size that gives interpretable labels, i.e. confirms the exis-
tence of a change-point, and then attains the desired classification-error. Hence,
reliability of change-point detection is more important to setting sample size
than the classification-error. From Figure 3 we see that, in our motivating
example, a post-change-point sample size of 50 is the minimum at which the
probability to detect a change-point increases across all three error-precisions.

Comparison to real applications

The novel aspect of our change-point model is to include unlabelled sub-groups,
which has allowed us to gain insight into the issue of classification-error; many
change-point models assume every individual experiences a change or pre-classify
the individuals. Within our simulation study we considered individuals to be
equally likely to be in either group, this is the most optimistic setting to detect a
difference with equally size groups. However, we did not include any covariates
that could aid classification, which may reduce the sample size but would add
further coefficients to estimate — a trade-off that requires further investigation.

The inclusion of unlabelled sub-groups allows us to consider links between
our approach and methods to test for the existence of a change-point; specifi-
cally, if all individuals are classified in the no-change group we have evidence
that there might not be a change-point at all. Ji et al.'? consider a hypothesis
test for the existence of a change-point using MMSE scores of 47 individuals
(a subset of a larger dataset), where some exhibit so-called accelerated decline
(i.e. a change-point) under visual inspection. The individuals’ observation times
are zero aligned at diagnosis of Alzheimer’s Disease, so in our framework there
is a post-change-point sample size of 47. According to our design criteria this
sample size has only moderate power to detect a change-point. Further, our
approach would accommodate a mixture of change and no-change individuals,
whereas the hypothesis test of Ji et al.'” only considers everyone to have a
change-point or not.

Although we have used a simplified setting, this class of fixed effect change-
point models have been applied in practice %28, Hall et al.'® study the Buschke
Selective Reminding (BSR) test and, in our notation, estimate an intercept (o)
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of 46.06, slope () of —0.61, a change-magnitude (J) of 1.49, and an approximate
observation-error (7) of 0.4; which reasonably match our simulation study values
derived from the MMSE. With a post-change-point sample size of 365, according
to our design criteria, their study was appropriately powered to detect a change-
point. However, as part of their approach Hall et al.'® also estimate the time of
the change-point. In terms of our sample size results, the effect of also estimating
the change-point would be to under-estimate the power.

Summary

In our simulation setting, the sub-group label is inferred solely on the observed
scores and times. In real application focusing on classification other covariates,
such as gender, would likely be available. Previous work has considered adding
covariates in Equation (1) under a Bayesian®* or frequentist®® framework. The
effect of adding covariates into the change probability model — which was held
constant in this paper, p,, = 0.5 Vi — as a logistic model with covariates has not
been considered and remains an open question for further research.

The expected post-change-point sample size metric focuses designers think-
ing on the key aspect of study design for change-point processes, while still
being a relatively interpretable univariate summary of the required sample size.
It may also be possible to extend this univariate metric to more complex attri-
tion models, beyond the single drop-out time model.

We have shown that even for studies of modest size (n = 500, with 50 past
the expected change-point) in the fixed effect analysis a change-point of size two
can be detected and modelled. Further work is needed to extend these results to
more complicated change-point models, and to assess the relationship of sample
size with the change-magnitude and the observation model. We have developed
initial guidance for study designers on the relationship between accuracy of
classification and sample size.
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A Checking MCMC mixing and convergence

Our simulation study involved running 20,250 MCMC chains (three error pre-
cisions and five drop out probabilities, on each of the 150 data sets at nine
different sample sizes). Each run typically took between 30-60 minutes, and
overall computation time was a week on three 48-core servers (48 x 2.2GHz
cores with shared memory running Ubuntu linux).

Mixing and convergence are important for the validity of the posteriors but
it would be infeasible to manually assess the mixing and convergence of each
chain. Due to the computational burden of the simulation study, it was not
possible to run multiple chains on each data set. Hence standard automated
checks comparing between and within chain variance®® were not available. A
random sample of twenty chains, across all scenarios, were manually assessed for
convergence by inspecting trace plots and auto-correlations (results not shown).
Acceptance rates within each chain for all parameter updates were recorded, and
overall summaries were plotted. Despite using adaptive proposal distributions,
see Section 2.4, the acceptance probability of all updates still decreased with
sample size. However, the acceptance rate was sufficient given the number of
iterations and choice of thinning.

Every chain was initialised with the same starting point, namely («g, 8o, 00, T0) =
(20,3,—10,1), as an unlikely point in the parameter space that was far from the
truth. This choice enabled us to assess convergence by monitoring the burn-in
periods. For a sample of simulated data sets, alternative initialisation points
were used to test the convergence from multiple start points. In all cases, the
chains from the separate starting points converged to a common posterior within
the burn-in period.
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