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A chimeric virus created by DNA shuffling of the capsid genes of 1 

different subtypes of porcine circovirus type 2 (PCV2) in the backbone 2 

of the non-pathogenic PCV1 induces protective immunity against the 3 

predominant PCV2b and the emerging PCV2d in pigs 4 
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 24 

Abstract 25 

Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-26 

associated disease (PCVAD). Available commercial vaccines all target the PCV2a 27 

subtype, although the circulating predominant subtype worldwide is PCV2b, and the 28 

emerging PCV2d subtype is also increasingly associated with PCVAD. Here we 29 

molecularly bred genetically-divergent strains representing PCV2a, PCV2b, PCV2c, 30 

PCV2d, and “divergent PCV2aPCV2e” subtypes by DNA-shuffling of the capsid genes 31 

to produce a chimeric virus representing PCV2 global genetic diversity. When placed 32 

in the PCV2a backbone, one chimeric virus (PCV2-3cl14) induced higher neutralizing 33 

antibody titers against different PCV2 subtypes. Subsequently, a candidate vaccine 34 

(PCV1-3cl14) was produced by cloning the shuffled 3cl14 capsid into the backbone of 35 

the non-pathogenic PCV1. A vaccine efficacy study revealed that chimeric virus PCV1-36 

3cl14 induces protective immunity against challenge with PCV2b or PCV2d in pigs. The 37 

chimeric PCV1-3cl14 virus is a strong candidate for a novel vaccine in pigs infected with 38 

variable PCV2 strains.  39 

 40 

Keywords: Porcine circovirus type 2 (PCV2); porcine circovirus-associated disease 41 

(PCVAD); DNA shuffling; capsid; vaccine  42 
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Introduction 43 

Porcine circovirus (PCV) is a small, non-enveloped, single-stranded DNA virus 44 

which belongs to the family Ciroviridae (1).  PCV type 1 (PCV1) was originally 45 

identified as a cell culture contaminant of the porcine kidney cell line PK-15 in the 46 

1970’s, and was later found to be non-pathogenic in pigs (2, 3).  In 1997, a pathogenic 47 

variant designated as PCV type 2 (PCV2) was identified in wasting piglets shortly after 48 

weaning (2, 4-9).  As more cases were identified worldwide, PCV2 was determined to be 49 

the primary causative agent of porcine circovirus-associated disease (PCVAD), which 50 

includes a broad spectrum of clinical symptoms such as wasting, reproductive failure, 51 

respiratory signs and enteritis, and PCV2 may also have a role in the porcine dermatitis 52 

and nephropathy syndrome (10).   53 

PCV2 is one of the most economically devastating viral pathogens to affect the 54 

global pig industry to date, and vaccination has been an effective strategy to reduce the 55 

economic losses associated with PCV2 infection (11). Currently, all commercially 56 

available inactivated or subunit vaccines target theconsist of a single PCV2a subtype 57 

capsid antigen (11-14).  However, since 2005, a new subtype, PCV2b, has taken over as 58 

the most prevalent PCV2 strain associated with PCVAD cases in the U.S. and other 59 

countries (15-17). In addition, newly emerging PCV2d strains (previously referred to as 60 

“mutant PCV2b”), have been identified in an increasing number of cases in vaccinated 61 

herds worldwide, leading to the speculation by some that the emerging PCV2d strains are 62 

able to overcome vaccine protection (18-20). A recent study showed that animals 63 

vaccinated with recombinant PCV2a capsid protein had lower viral loads and generated 64 

higher neutralizing antibodies against a PCV2d-1 strain than vaccination with either a 65 
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PCV2b or homologous PCV2d-1 recombinant capsid protein, suggesting that PCV2 66 

capsid immunogenicity varies (21).  However this could not fully explain how PCV2d 67 

infections are emerging in PCV2a vaccinated herds.   68 

Until recently, only three PCV2 subtypes were recognized, including PCV2a, 69 

PCV2b, and PCV2c, the last of which was identified in Denmark during the 2000’s, is 70 

recognized but not very prevalent (22, 23).  While the majority of the PCVAD cases in 71 

the United States are now associated with PCV2b, the emerging PCV2d subtype has been 72 

slowly increasing in the U.S since its initial discovery in 2012 and is now more prevalent 73 

than PCV2a (24).  Although the exact reason for the emergence of PCV2d remains 74 

unclear, it can be commonly found in vaccinated herds, leading to the speculation of 75 

either reduced protection against this emerging PCV2d or vaccination failure of 76 

individual animals (18).  While the introduction of PCV2a based vaccine strategies has 77 

resulted in a drastic decline in PCV2 prevalence (25), the increased genetic diversity of 78 

PCV2 strains is concerning, and is suggestive of selective pressure promoting genetic 79 

diversity.  In fact, a recent report has demonstrated the increasing genetic diversity 80 

amongst the PCV2d subtype, as the majority of isolates identified from 1999-2011 can be 81 

classified under the subclade “PCV2d-1,” and the majority of isolates identified recently, 82 

from 2006-2014, diverge from the PCV2d-1 subclade and are now designated “PCV2d-83 

2” (24).  In addition, in vitro evidence suggests distinct antigenic differences among 84 

PCV2 subtypes, which may help explain the emergence of new strains (26, 27). 85 

Therefore, in order to address the concern of emerging PCV2d as well as the predominant 86 

PCV2b now circulating in global swine herds, as well as the possibility for the generation 87 

of increasingly divergent PCV2 strains that cannot be controlled by vaccination with a 88 
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PCV2a antigen alone, future vaccine strategies should focus on broadening the protection 89 

of a single vaccine by targeting emerging strains such as PCV2d and the predominant 90 

PCV2b subtype.   91 

DNA shuffling has been shown to be a powerful tool to introduce genetic 92 

diversity into the virus of interest (28, 29).  In fact, recently our group has successfully 93 

shuffled the structural genes of porcine reproductive and respiratory syndrome virus 94 

(PRRSV) and developed chimeric virus vaccine candidates with broadly protective 95 

properties against heterologous PRRSV strains (30-33).  Therefore, in the present study 96 

we aimed to molecularly breed by DNA shuffling the capsid genes of 5 genetically 97 

diverse PCV2 subtypes including PCV2a, PCV2b, PCV2c, PCV2d and a capsid sequence 98 

representing a recently identified divergent PCV2a virus previously referred to as 99 

“PCV2e.”    “PCV2e” The “PCV2e” genotype was (originally identified by phylogenetic 100 

analysis of the capsid sequence (34), but was later determined be included in theor 101 

divergent PCV2a genotype based on full sequence phylogenetic analysis (35)).  While the 102 

“PCV2e” strains identified are not divergent enough from PCV2a strains to be referred to 103 

as their own genotype, this strain was included in this study to increase genetic diversity 104 

of the PCV2 capsids utilized for DNA shuffling, and will be referred to as “divergent 105 

PCV2a” in this paper to separate it from the classic PCV2a strain used in this study. In  in 106 

order to create a chimeric virus that can induce broad cross-protection against different 107 

PCV2 subtypes especially the emerging PCV2d and the currently predominant circulating 108 

PCV2b.   109 

We were able to successfully generate four viable chimeric viruses with shuffled 110 

capsid gene sequences in the backbone of PCV2a. An in vivo pilot study was first 111 
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conducted in pigs to assess the infectivity and cross-neutralizing activities of these 4 112 

chimeric viruses. The chimeric virus (3cl14) exhibiting the highest level of cross-113 

neutralizing activity against different PCV2 subtypes were subsequently selected for a 114 

challenge and efficacy study in pigs against the currently predominant circulating PCV2b 115 

strain as well as the emerging PCV2d strain. We demonstrated that the capsid-shuffled 116 

chimeric virus 3cl14 induces protective immunity in conventional pigs against challenges 117 

with both PCV2b and PCV2d.  118 

 119 

Materials and Methods 120 

Cells:  A subclone of the PK-15 cell line that is free of PCV1 contamination was 121 

produced previously by end-point dilution of PK-15 cells (ATCC CCL-33) (36). This 122 

subclone PK-15 cell line was cultured in Minimal Essential Medium (MEM) 123 

supplemented with 10% Fetal Bovine Serum (FBS) and antibiotics and was used in the 124 

serum virus neutralization assay and to propagate all virus stocks for this study.  125 

 126 

DNA shuffling of the capsid genes from 5 different PCV2 subtypes:  The capsid gene 127 

sequences representing each of the 5 genetically-diversified PCV2 subtypes were selected 128 

for DNA shuffling, including PCV2a (strain 40895, GenBank accession number 129 

AF264042), PCV2b (strain NC16845, accession number GU799576), PCV2c (accession 130 

number EU148503), PCV2d-1 (accession number AY181947), and “PCV2edivergent 131 

PCV2a” (accession number EF524533). The PCV2a and PCV2b strains were isolated 132 

from U.S. pigs and described previously (12, 37), while the PCV2c, PCV2d-1, and 133 
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“divergent PCV2aPCV2e” capsid genes were synthesized by GenScript (PIscataway, 134 

NJ).   135 

Traditional DNA shuffling was used to shuffle the 5 different PCV2 capsid genes 136 

essentially as previously described for PRRSV (31), with slight modifications. Briefly, 137 

the capsid gene DNAs from each of the five PCV2 strains were mixed in equimolar 138 

amounts with a total of 5 µg DNA and diluted in 50 µl of 50 mM Tris-HCl (pH 7.4) and 139 

10 mM MgCl2. The mixture was incubated at 15°C for 3 min with 0.15 U of DNase I 140 

(Sigma). DNA fragments ranging from 50 to 150 bp in size were purified from 2% 141 

agarose gels, and subsequently added to the Pfu PCR mixture consisting of 1X Pfu 142 

buffer, 0.2 mM each deoxynucleoside triphosphate (dNTP), and 0.06 U Pfu polymerase. 143 

A PCR program without using primers (95°C for 4 min; 40 cycles of 95°C for 30s, 60°C 144 

for 30s, 57°C for 30s, 54°C for 30s, 51°C for 30s, 48°C for 30s, 45°C for 30s, 42°C for 145 

30s, and 72°C for 2 min; and finally, 72°C for 7 min) was performed to reassemble the 146 

digested DNA fragments. Subsequently, specific primers flanking the shuffled PCV2 147 

capsid region, UniRep-F and 2aORF2-R (Table S1), were used to amplify the shuffled 148 

PCV2 capsid using Pfu Ultra II Hotstart PCR Master Mix (Agilent Technologies) per the 149 

manufacturer’s instructions (95°C for 4 min, 10 cycles of 95°C for 30s, 50°C for 30s, 150 

72°C for 30s, 25 cycles of 95°C for 30s, 54°C for 30s, 72°C for 30s, and finally 72°C for 151 

7 min). 152 

 153 

Construction of infectious DNA clones of chimeric PCV2a and PCV1 viruses with 154 

shuffled PCV2 capsid genes:  The shuffled capsid gene product libraries were cloned 155 

into the blunt end cloning vector, pCR-Blunt II, using the Zero Blunt
® 

TOPO
®

 PCR 156 
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Cloning kit (Life Technologies, Carlsbad), per manufacturer’s instructions.  Selected 157 

clones were sequenced and analyzed for DNA shuffling efficiency, and well-shuffled 158 

capsid genes containing regions from all 5 PCV2 subtypes were amplified and 159 

subsequently cloned into the infectious DNA clone backbone of the PCV2a strain 40895 160 

by fusion PCR, essentially as previously described (38). Briefly, the shuffled PCV2 161 

capsids were amplified using primers UniRep-F and 2aORF2-R (Table S1). The PCV2a 162 

infectious DNA clone backbone sequence was amplified in two fragments that flank the 163 

PCV2 capsid region using primers SacII-uni-F and UniRep-R, and primers 2aORF2F and 164 

SacII-uni-R, for PCV2a fragments 1 and 2, respectively (Table S1). All three PCR 165 

reactions were performed using ACCUZYME MIX
TM 

(Bioline) at 95°C 10 min, 35 166 

cycles of 95°C for 30s, 54°C for 30s, and 68°C for 1.5 min.  The first fusion PCR was 167 

performed with the PCV2 fragment 1 and the shuffled PCV2 capsid sequence using the 168 

external primers SacII-uni-F and 2aORF2-R. Subsequently, a second fusion PCR reaction 169 

was performed with the product of the first fusion PCR reaction and the PCV2a fragment 170 

2, using the external primers SacII-uni-F and SacII-uni-R (Table S1). All fusion PCR 171 

reactions were performed using ACCUZYME MIX
TM 

at 95°C 10 min, 35 cycles of 95°C 172 

for 30s, 60°C for 30s, and 68°C for 4 min. The full-length chimeric PCV2a containing 173 

each individual shuffled PCV2 capsid was amplified, and cloned into the pCR-Blunt II 174 

TOPO plasmid using the Zero Blunt
® 

cloning kit to produce infectious DNA clones of 175 

chimeric PCV2a with shuffled capsid genes.   176 

The shuffled PCV2 capsid 3cl14 was cloned into the infectious DNA clone 177 

backbone of the non-pathogenic PCV1 to create the vaccine candidate PCV1-3cl14 by a 178 

similar fusion PCR protocol. Briefly, the shuffled PCV2 capsid 3cl14 was amplified 179 
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using primers PCV1-BB-F and PCV1-DS-ORF2-R (Table S1). The infectious DNA 180 

clone PCV1 backbone sequence was amplified from the PBSK+ plasmid containing 181 

PCV1 in two fragments that flank the PCV1 capsid region using primers M13F (-20) and 182 

PCV-BB-R, and primers PCV-DS-ORF2-F and M13R, for PCV1 fragments 1 and 2, 183 

respectively (Table S1). All three PCR reactions were performed using Platinum® PCR 184 

Supermix (Thermo Scientific) at 94°C 3 min, 35 cycles of 94°C for 30s, 55°C for 30s, 185 

and 68°C for 1 min. Fusion PCR was performed first with the PCV1 fragment 1 and the 186 

shuffled PCV2 capsid 3cl14 fragment using the external primers M13F and PCV1-DS-187 

ORF2-R (Table S1). A second fusion PCR reaction was performed with the product of 188 

the first fusion PCR reaction and PCV1 fragment 2, using the external primers M13F and 189 

M13R.  The full-length chimeric PCV1 virus containing the shuffled capsid 3cl14 was 190 

cloned into pCR-Blunt II TOPO using the Zero Blunt
® 

cloning kit to produce the 191 

infectious DNA clone of vaccine candidate chimeric PCV1 virus 3cl14. 192 

 193 

Preparation of virus stocks:  The infectious virus stocks of PCV2b strain NC16845, U.S. 194 

PCV2d-2 strain JX535296, and each of the PCV2a capsid-shuffled chimeric viruses were 195 

produced by transfecting PK-15 cells with concatemerized viral genomes from the 196 

respective infectious DNA clones. Briefly, the respective PCV2 genomes were excised 197 

from pCR-Blunt II TOPO by SacII digestion, concatemerized, and transfected into PK-15 198 

cells to determine the viability and infectivity by immunofluorescence assay (IFA) as 199 

previously described (36, 37, 39).  The virus stocks for the chimeric PCV1-2a and 200 

chimeric PCV1 containing shuffled 3cl14 capsid (PCV1-3cl14) were prepared similarly 201 
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as described above except that the viral genome was excised from the pCR-Blunt II 202 

TOPO vector by digestion with KpnI prior to concatemerization.   203 

 204 

Determination of the infectivity and cross-neutralizing activities of the PCV2 capsid-205 

shuffled viruses: To initially identify viable PCV2 capsid-shuffled viruses with improved 206 

cross-neutralizing activities against different PCV2 subtypes, we first conducted a pilot 207 

pig infection study with a limited number of animals (n=3). A total of 18, 4-week-old, 208 

cross-breed conventional pigs were purchased from a commercial farm that is known to 209 

be free of PRRSV and M. hyo without active PCV2 circulation as determined by 210 

regular PCV2 PCR on selected batches of pigs.  Sows have low amounts of antibodies 211 

against PCV2 or are seronegative and we selected litters from negative sows without 212 

cross-fostering. The piglets were randomly assigned to six groups of 3 pigs each, and 213 

each group of pigs was housed separately. Prior to inoculation, each pig was weighed, 214 

bled, and confirmed to be negative for PCV2 by PCR and serology.  Five groups were 215 

inoculated intramuscularly each with 5 ml (10
3.66 

TCID50/mL) of either chimeric virus 216 

PCV1-2a or one of the four PCV2 capsid-shuffled viruses (PCV2-3cl13, PCV2-3cl14, 217 

PCV2-3cl4-2, or PCV2-3cl12-2). One group was mock-inoculated similarly with 5 mL of 218 

PBS buffer (Table 1).  Blood was collected weekly, and animals were monitored for 219 

seroconversion to PCV2 capsid antibodies by ELISA and evidence of PCV2 infection by 220 

qPCR. Animals were necropsied at 56 days post-infection (dpi). The weekly serum 221 

samples were used to perform serum virus neutralization test against strains representing 222 

different PCV2 subtypes (data not shown for 0-49 dpi). The animal study was approved 223 

by Virginia Tech IACUC.  224 
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 225 

Serum virus neutralization assay:  Serum samples collected from infected pigs were 226 

tested for neutralizing antibody titers against the wild-type PCV2a, PCV2b, PCV2d-1, 227 

and PCV2d-2 strains by IFA.  Briefly, the serum samples were serially diluted 1:2 in PBS 228 

and mixed with 150 TCID50 of PCV2a, PCV2b, PCV2d-1, or PCV2d-2 virus stocks, 229 

respectively, at an equal volume ratio and incubated for 1 hr at 37˚C.  The serum-virus 230 

mixture was then added to PK-15 cells in a 96 well plate in duplicate.  After 72 hrs 231 

incubation at 37˚C, an IFA was preformed using pig sera against PCV2a diluted 1:1000, 232 

as the primary antibody and FITC-conjugated goat anti-pig IgG (KPL) diluted 1:50 as the 233 

secondary antibody.  The 50% serum neutralizing antibody titers were determined as the 234 

highest dilution at which there was 50% or greater reduction in virus titer compared with 235 

the average of the serum from PBS control pig group at that dilution.  236 

 237 

Vaccination efficacy and challenge study in conventional pigs:  The virus containing 238 

shuffled capsid 3cl14 in the backbone of PCV2a induced significantly higher neutralizing 239 

antibody responses against different PCV2 strains. Therefore, the shuffled capsid 240 

sequence 3cl14 was subsequently cloned into the infectious DNA clone backbone of non-241 

pathogenic PCV1 to produce a PCV1-3cl14 shuffled capsid chimeric virus as the vaccine 242 

candidate. Subsequently, a pig challenge study was conducted to evaluate the efficacy of 243 

the candidate PCV1-3cl14 chimeric virus vaccine against infection with currently 244 

predominant circulating PCV2b as well as the emerging PCV2d-2.  This experiment was 245 

a subset of a larger study.  However, wild type exposure prevented completion and 246 

analysis of other groups.  247 
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 Briefly, a total of 32, 3-week-old, cross-breed conventional pigs were purchased 248 

from a commercial farm that is known to be free of PRRSV and M. hyopneumoniae, and 249 

is negative for PCV2.  The animal study was approved by Iowa State University IACUC 250 

as well as by Virginia Tech IACUC.  The piglets were randomly assigned to 4 groups of 251 

8 pigs each. Prior to inoculation, each pig was weighed, bled, and confirmed to be 252 

negative for PCV2.  Groups 1 and 2 pigs were each vaccinated intramuscularly (IM) in 253 

the neck region with 5 ml of the candidate PCV1-3cl14 chimeric virus vaccine (10
3.7

 254 

TCID50/mL per pig). Groups 3 and 4 pigs were each mock-vaccinated IM with 5 ml PBS 255 

buffer (Table 2).  All animals were monitored daily for clinical signs including wasting, 256 

respiratory distress, and behavioral changes such as lethargy and inappetence.  Blood 257 

samples were collected prior to inoculation, and weekly thereafter from each pig through 258 

42 days post-vaccination (dpv).  259 

At 42 dpv, groups 1 (vaccinated) and 3 (mock-vaccinated) pigs were each 260 

challenged with 10
4.8 

TCID50 (2.5 ml intranasally and 2.5ml IM) of the PCV2b NC16845 261 

virus strain, and groups 2 (vaccinated) and 4 (unvaccinated) were each similarly 262 

challenged with 10
4.8 

TCID50 of the PCV2d-2 JX535296 virus strain.  Blood samples 263 

were collected weekly through 20 days post-challenge (dpc) (or 62 dpv), at which time 264 

all pigs were weighed and necropsied. A panel of serum and tissue samples was collected 265 

for quantification of viral DNA loads and for histological examination of PCV2-266 

associated lesions.  267 

 268 

Gross pathology and histopathology evaluation:  Necropsies were performed at 20 dpc 269 

on all pigs in a treatment status blinded fashion. Estimates of macroscopic lung lesions 270 
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(ranging from 0 to 100% of the lung affected) and lymph node size (ranging from 0 271 

[normal] to 3 [four times the normal size]) were obtained for each pig (40, 41).  Sections 272 

of lung, lymph nodes (superficial inguinal, mediastinal, tracheobronchial, and 273 

mesenteric), tonsil, heart, thymus, kidney, spleen, and liver were collected during 274 

necropsy and processed routinely for histological examination and PCV2 275 

immunohistochemistry (IHC) (Iowa State University Veterinary Diagnostic Lab). Also, 276 

samples of tracheobronchial lymph node (TBLN) were collected from each pig for DNA 277 

extraction and quantification of PCV2 viral genomes by real-time quantitative PCR. 278 

Microscopic lesions in the lymphoid tissues, lungs, heart, liver, kidney, ileum, and colon 279 

were scored in a treatment status blinded manner, as described previously (40). 280 

Specifically, lymph nodes, spleen, and tonsil were evaluated for presence and degree of 281 

lymphoid depletion and histiocytic replacement. 282 

 283 

Quantitative PCR to quantify viral DNA loads in serum and tissues 284 

For both animal experiments we used a previously published protocol to extract DNA 285 

from serum and lymph node samples and a previously published qPCR SYBR green 286 

assay to quantify viral loads in these samples (37, 42).  For the pilot infection study 287 

(Table 1) and for the challenge experiment (Table 2), PCV2 specific primers were used 288 

to amplify a conserved region spanning the origin of replication and a portion of the 289 

replicase gene, as previously reported (37), using primers PCV2-83F and PCV2-83R 290 

(Table S1). For the detection of the PCV1-3cl.14 vaccine strain in the challenge study 291 

(Table 2), primers PCV1-qRepF and PCV1-qRepR primers (Table S1) were used to 292 

amplify only the PCV1 backbone based vaccine virus DNA. 293 
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 294 

Serology:  A PCV2-specific ELISA using PCV2a capsid antigen (Iowa State University 295 

Veterinary Diagnostic Lab) was used to detect anti-PCV2 ORF2 IgG in each serum 296 

sample as previously described (43).  297 

 298 

Sequence confirmation of virus recovered from infected pigs:  DNA extracts from 299 

serum samples collected at 20 dpc from selected pigs in each group were tested by PCR 300 

for PCV2 capsid sequences, and the amplified PCR products were sequenced to verify 301 

that the virus recovered from the infected pigs was the same virus inoculated into the 302 

animals.  PCR primers Unirep-F and 2aORF-2 were used to amplify the PCV2 capsid 303 

gene in these samples using the same PCR program as described above for cloning 304 

(Table S1).  Additionally, DNA extracts of TBLN tissues from selected pigs in each 305 

group were also tested to confirm that the virus detected by PCR from infected pigs was 306 

the same virus that was inoculated into the animals.  PCV2b was amplified and 307 

sequenced using primers specific for PCV2b as previously described (37).  The  PCV2d-2 308 

vDNA was amplified and sequenced using the same forward primer as for PCV2b and a 309 

PCV2d-specific reverse primer NB-56-m2b (Table S1). 310 

 311 

Statistical Analysis:  Statistical analysis was performed using Prism v6.0 (Graphpad, La 312 

Jolla CA).  A one-tailed t-test was used to analyze statistical significance between two 313 

groups, while a one-way ANOVA and then t-tests corrected for multiple comparisons 314 

were used to determine significance between three or more groups.  315 

 316 
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Results 317 

Generation of infectious chimeric viruses containing the shuffled capsid from 5 318 

genetically distinct PCV2 strains:  Traditional DNA shuffling was used to molecularly 319 

breed the capsid genes from five genetically distinct PCV2 strains representing different 320 

subtypes PCV2a PCV2b, PCV2c, and PCV2d-1, as well as “divergent PCV2aPCV2e” 321 

(divergent PCV2a) (Fig. 1).  Although the general consensus is that previously classified 322 

“divergent PCV2aPCV2e” virus isolates do not diverge enough from identified PCV2a 323 

strains to be considered their own subtype (35), a “divergent PCV2aPCV2e” capsid 324 

sequence was chosen to help increase the genetic diversity of the resulting shuffled 325 

capsid.  The capsid gene sequences from these 5 strains were shuffled using DNase I 326 

digestion and reassembled by PCR without primers. A PCR product of the expected size 327 

was then generated after a second round of PCR with specific primers spanning the 328 

capsid gene.   The shuffled capsid gene library was then cloned into the infectious clone 329 

backbone of PCV2a (strain 40985) to screen for viable viruses.  Of the more than 50 330 

clones with “well-shuffled” capsids (containing regions from all 5 parental PCV2 331 

strains), only 4 of them successfully rescued infectious virus when transfected into PK-15 332 

cells (data not shown).  333 

The four viruses with shuffled capsids contain a range of combinations of the 334 

genetic signatures of PCV2 genomes from all 5 parental strains (Fig. 1). The majority of 335 

the unique amino acid signatures introduced into the shuffled capsids originated from 336 

PCV2c, which is not surprising since PCV2c is the most genetically distinct of the 5 337 

parental strains, based on a phylogenetic analysis (Fig. 2).  Therefore, we demonstrated 338 
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here that traditional DNA shuffling successfully generated viable infectious chimeric 339 

viruses with shuffled capsid genes from 5 different PCV2 subtypes.  340 

 341 

PCV2-3cl14 with shuffled capsid genes induces cross-neutralizing antibodies against 342 

different PCV2 subtypes:  To determine the viability and screen for the best virus with 343 

shuffled capsids for subsequent challenge and efficacy study, we experimentally infected 344 

conventional pigs with each of the four viruses (PCV2-3cl13, PCV2-3cl14, PCV2-345 

3cl4_2, and PCV2-3cl12) as well as with the chimeric PCV1-2a virus (12). Serum 346 

samples were collected prior to infection and weekly thereafter, and all animals were 347 

monitored for serconversion to PCV2a capsid by an ELISA (Table 1). All animals 348 

experimentally inoculated with PCV1-2a or with PCV2-3cl14 seroconverted to PCV2 349 

antibodies by 49 days post-inoculation (dpi), however only 2 out of 3 animals in the 350 

PCV2-3cl12_2 and 1 of 3 pigs inoculated with either virus PCV2-3cl4 or PCV2-3cl4_2 351 

were seropositive at 49 dpi (Table 1). 352 

Serum samples collected from 56 dpi were tested by a serum virus neutralization 353 

assay in PK15 cells for cross-neutralizing antibodies against wild-type PCV2a, PCV2b, a 354 

PCV2d-1, and PCV2d-2 virus strains (Fig. 3). The neutralization assay was not 355 

performed against the parental PCV2c and divergent PCV2aPCV2e strains because 356 

PCV2c viruses have not associated with PCV2-induced disease and attempts to grow the 357 

divergent PCV2aPCV2e wild type virus in PK-15 cells was unsuccessful in our hands 358 

(data not shown).  Infections of pigs with 3 PCV2 viruses with shuffled capsid genes 359 

(PCV2-3cl13, PCV2-3cl4_2, and PCV2-3cl12) did not induce higher levels of 360 

neutralizing antibody when compared to the chimeric PCV1-2a virus which is the basis 361 
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for the current Fostera
TM

 PCV commercial vaccine.  However, infection of pigs with the 362 

chimeric virus PCV2-3cl14 with shuffled capsid genes from different PCV2 subtypes 363 

induced significantly higher neutralizing antibody titers against PCV2a and PCV2d-2 364 

when compared to PCV1-2a (p<0.05) (Fig. 3). In addition, although not statistically 365 

significant, the chimeric virus PCV2-3cl14 also induced higher levels of neutralizing 366 

antibody than the PCV1-2a against both PCV2b and PCV2d-2.  Taken together, this pilot 367 

animal study suggests that the viruses with shuffled capsid genes are viable and 368 

infectious in pigs, and that one shuffled capsid virus PCV2-3cl14 induces significantly 369 

higher levels of neutralizing antibodies against genetically distinct PCV2 strains when 370 

compared to the other chimeric viruses as well as to the PCV1-2a vaccine virus. 371 

Therefore, the virus PCV2-3cl14 was selected for the subsequent challenge and efficacy 372 

study in pigs to evaluate its potential use as a novel vaccine.  373 

 374 

The chimeric virus PCV1-3cl14 induces protective immunity in conventional pigs 375 

against challenge with PCV2b and PCV2d-2.  PCV2a is the genomic backbone for the 376 

virus PCV2-3cl14. Therefore, in order to produce a novel vaccine candidate, we 377 

subsequently transferred the shuffled capsid gene from the virus PCV2-3cl14, identified 378 

in the initial cross-neutralization study, to the genomic backbone of the non-pathogenic 379 

PCV1 to produce a new chimeric virus PCV1-3cl14 with a shuffled capsid.  To assess 380 

whether the chimeric virus PCV1-3cl14 vaccine candidate protects against challenge with 381 

different PCV2 subtypes, two groups of pigs (n=8) were each vaccinated with the PCV1-382 

3cl14 chimeric virus, and another two groups of pigs (n=8) were mock-vaccinated with 383 

PBS as controls (Table 2). Blood samples were taken weekly and animals were 384 
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monitored for seroconversion to PCV2 capsid antibody.  At 42 days post-vaccination, one 385 

group of vaccinated and one group of mock-vaccinated animals were challenged with the 386 

predominant field strain PCV2b currently circulating in swine herds worldwide. 387 

Similarly, one vaccinated group and one mock-vaccinated group of pigs were challenged 388 

with the emerging PCV2d-2 virus.  Blood samples were taken weekly after challenge and 389 

all animals were necropsied at 20 dpc.   390 

As expected, pigs in the two vaccinated groups started to seroconvert to PCV2 391 

capsid antibody by 42 dpv, whereas mock-vaccinated groups did not seroconvert until 7-392 

14 dpc with PCV2b or PCV2d-2 (or 49 or 56 dpv, Table 2, Fig. 4). A qPCR assay 393 

targeting the PCV1 replicase gene (ORF1) was used to test for PCV1-3cl14 viral DNA 394 

from weekly sera, but PCV1-3cl14 viral DNA was undetectable and below the detection 395 

limit of the assay in any group after vaccination (data not shown). This is consistent with 396 

previous reports of the attenuated chimeric PCV1-2 virus infections in pigs (12, 37).   397 

Only 2 out of 8 animals vaccinated and subsequently challenged with PCV2b had 398 

detectable viremia, and only at 14 dpc, compared to 4 and 7 out of 8 PCV2b challenge 399 

control animals at 14 and 20 dpc, respectively (Table 2).  This difference was statistically 400 

significant, as the vaccinated and PCV2b challenged group had significantly lower levels 401 

of viral DNA loads in sera at 20 dpc, compared to mock-vaccinated and PCV2b 402 

challenged animals (p<0.01) (Fig. 5). For animals vaccinated and subsequently 403 

challenged with PCV2d-2, 1/8 at 14 dpc and 2/8 at 20 dpc had detectable viremia, while 404 

7/8 PCV2d-2 challenged control animals were positive for serum viral DNA at 14 dpc 405 

and 20 dpc (Table 2). Also, the vaccinated and PCV2d-2 challenged group had serum 406 

viral DNA loads that were significantly reduced at 14 and 20 dpc (p<0.001, p<0.05, 407 
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respectively), as compared to PCV2d-2 challenge only controls (Fig. 5).  All vaccinated 408 

and subsequently challenged groups had significantly lower levels of PCV2 viremia at 409 

the peak of virus replication compared to control groups. In addition, all vaccinated and 410 

subsequently challenged groups had significantly lower levels of detectable PCV2 DNA 411 

in lymph nodes compared to mock-vaccinated and challenged groups (PCV2b = p<0.001, 412 

PCV2d-2 = p<0.0001, Fig. 6). These results indicated that vaccination with PCV1-3cl14 413 

chimeric virus significantly reduces the level of virus replication in pigs when challenged 414 

with the predominant PCV2b subtype or with an emerging PCV2d-2 strain.  415 

In addition to reducing viral DNA loads in sera and lymphoid tissues, vaccinated 416 

animals also had a decreased PCVAD lesion score compared to unvaccinated animals 417 

(Fig. 7). Vaccinated pigs that were subsequently challenged with PCV2b had 418 

significantly reduced pathological lesion scores for all measures of PCVAD, which 419 

includes lymphoid depletion and histiocytic replacement in lymph nodes, spleen, and 420 

tonsil tissues, as compared to unvaccinated but PCV2b challenged controls (Fig. 7). 421 

Similarly, pigs vaccinated and subsequently challenged with PCV2d-2 had significantly 422 

lower pathological lesion scores for lymph node measures, as well as tonsil lymphoid 423 

depletion (Fig. 8A, 8B, 8E) as compared to unvaccinated but PCV2d-2 challenged 424 

controls. Consistent with the results for serum and lymph node viral DNA detection, both 425 

vaccinated and subsequently challenged groups had significantly lower viral antigen 426 

scores in lymph node, spleen, and tonsil, compared to challenge only controls (Fig. 8). 427 

Overall, these results suggest that vaccination with PCV1-3cl14 chimeric virus vaccine 428 

candidate protects against two genetically distinct and relevant PCV2 strains, the 429 
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predominant PCV2b subtype currently circulating in pig farms worldwide and the 430 

emerging PCV2d-2 strain.  431 

 432 

Discussion 433 

PCVAD is arguably one of the most economically-important diseases affecting 434 

the global swine industry. Characterized by progressive wasting, hallmark histological 435 

lesions of lymphoid depletion with histiocytic infiltration, and the presence of PCV2 436 

antigen or DNA in the lesions, PCVAD is caused by PCV2 infection, although co-437 

infection with other pathogens are usually necessary for the development of the full-438 

spectrum of clinical PCVAD (44-46). Several commercial vaccines against PCV2 are 439 

currently available, all of which are based on the PCV2a subtype (11), which prior to 440 

2005 was the main subtype (15-17).  However, now PCV2b has surpassed PCV2a as the 441 

most prevalent strain associated with PCVAD losses in the swine industry (15-17). In 442 

addition, recently, speculation of vaccination failures has been reported, and though no 443 

direct evidence has been found as of yet, these Andl though all current vaccines have 444 

been proven effective at preventing clinical signs and global economic loss due to 445 

PCVAD, events have been associated with the emergence of the PCV2d (or mutant 446 

PCV2b) subtype (18, 19, 24), as well as the replacement of PCV2a with PCV2b as the 447 

predominant circulating subtype, cannot be ignored.   (18, 19, 24). Therefore, it is logical 448 

to develop the next generation of vaccines especially against the emerging PCV2 strains.  449 

The objectives of this study were to molecularly breed the capsid genes from 450 

different PCV2 subtypes by DNA shuffling, and to develop a candidate chimeric virus 451 

vaccine based on the non-pathogenic PCV1 backbone and shuffled capsid genes of 452 
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divergent PCV2 subtypes. Traditional DNA shuffling approach was undertaken in this 453 

study, in which 5 genetically distinct capsid sequences from each of the 4 known PCV2 454 

subtypes, as well as from the “divergent PCV2aPCV2e” type (47), which is now 455 

generally considered as a divergent PCV2a strain (35), were used for the DNA shuffling. 456 

Of the more than 50 shuffled PCV2 capsids that were cloned and sequenced, infectious 457 

chimeric viruses were rescued in PK15 cells only in 4 of them, suggesting that the small 458 

PCV2 genome cannot support a large number of forced random reassortment within the 459 

capsid gene.   460 

The four viable viruses with shuffled PCV2 capsids generated by traditional DNA 461 

shuffling contained antigenic epitopes from all 5 genetically divergent PCV2 strains, 462 

although most of the variability in the shuffled capsids could be found in the PCV2c 463 

parental strain. This was not unexpected, as the PCV2c subtype is the most divergent 464 

strain from the rest of the PCV2 subtypes identified thus far, based on a phylogenetic 465 

analysis (24, 48). Alignment of the 5 selected parental strains revealed that the PCV2c 466 

does, in fact, contain the most genetically distinct amino acid variations, though some of 467 

these amino acids overlap with the parental PCV2d strain, including the addition of a 468 

terminal lysine residue.  The presence of amino acid residues unique to PCV2c and 469 

PCV2d strains suggests that, although the PCV2c subtype has not associated with any 470 

clinical disease, this subtype could possibly have contributed to the evolutionary 471 

emergence of the current PCV2d subtype. In fact, the PCV2c subtype was recently 472 

isolated from feral pigs in Brazil for first time since it was originally described in 473 

Denmark in the early 90s.  The feral pig populations were also infected with the other 474 

three PCV2 subtypes, suggesting the possibility of recombination (23).  Therefore, these 475 
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findings support the inclusion of PCV2c for DNA shuffling in the current study in order 476 

to increase the breadth of protection of the resulting candidate vaccine against currently 477 

emerging and future possible emerging PCV2 strains.   478 

In order to determine the in vivo infectivity of the shuffled viruses and to screen 479 

for the best chimera for subsequent challenge and efficacy study, conventional pigs were 480 

experimentally inoculated in a pilot study with each of the 4 viruses with shuffled capsids 481 

in the PCV2a backbone as well as with the chimeric PCV1-2a vaccine virus (12).  The 482 

results showed that virus PCV2-3cl.14 induced higher levels of neutralizing antibody 483 

titers when compared to the chimeric PCV1-2a virus, as well as the other 3 shuffled 484 

capsid viruses. The chimeric virus PCV2-3cl.14 also induced significantly higher 485 

neutralizing antibody titers against PCV2a and PCV2d-2 strains.  The fact that the PCV2-486 

3cl1.14 shuffled capsid virus induced higher neutralizing antibody titers against PCV2a 487 

compared to a homologous vaccination with the PCV1-2a chimeric vaccine strain was 488 

unexpected.  However others have demonstrated this phenomenon with PCV2 viruses 489 

before.   Although they demonstrate opposing results, there are many differences in the 490 

experimental design, which could explain these discrepenciesdiscrepancies (21, 49). In 491 

addition, the PCV2-3cl14 virus strain grew to the lowest titer of 10^3.33 TCID50/mL 492 

compared to the other PCV2-shuffled capsid strains and the PCV1-2a vaccine strain in 493 

vitro on multiple occasions (data not shown), suggesting that the increase in total and 494 

breadth of neutralizing antibody titers compared to the other strains tested was not simply 495 

due to increased replication efficiency.  Taken together, these results demonstrate that 496 

more research is needed to understand the complicated nature of PCV2 capsid 497 

immunogenicity.  Comparison of the amino acid sequences of the shuffled capsid 3cl14 498 
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to the other three shuffled capsids as well as the PCV1-2a reveals three regions with 499 

distinct amino acid residues.  Two of these regions, amino acids 106-108 and 126, 500 

overlap with previously-identified B-cell antigenic epitopes (50). In addition, the 501 

mutation at position 126 corresponded to a location within the predicted B-cell and SLA-502 

class II epitopes (51).  It is also possible that mutations within regions unrecognized as 503 

immunogenic may play a direct role in the protective immune response, or alter structural 504 

recognition of other immunogenic capsid regions, such as the 169-180 region shown to 505 

play a “decoy” role in anti-PCV2 antibody recognition (52, 53).  While the 3cl14 residues 506 

at 169-180 are identical to the strain used to demonstrate the decoy nature of this region, 507 

changes at other locations may result exposure of this region to antibody neutralization.  508 

While the majority of PCV2c amino acid residues introduced into the 3cl14 shuffled 509 

capsid residues that map to a subset of the parental strains, but not one distinct subtype 510 

have been introduced.  The 3cl14 sequence contains amino acids at positions 14 and 232 511 

that represent the PCV2a and “divergent PCV2a” as well as an amino acid residue that is 512 

shared by PCV2d, PCV2b, and PCV2, but not divergent PCV2a or PCV2c at position 21, 513 

and a residue shared by the parental PCV2b and PCV2d but not PCV2c, PCV2a, or 514 

“divergent PCV2a” at position 185.  Interestingly, the 3cl13, 3cl4_2, and 3cl12_2 515 

shuffled capsids all contain the additional lysine residue at the C-terminus of the capsid 516 

found in the PCV2d parental strain.  This mutation is suggested to play a role in the 517 

increased pathogenicity and vaccine failure of the emerging PCV2d strains, although no 518 

direct evidence of this role has been reported to date (38, 54). However, the 3cl14 519 

shuffled capsid sequence does not include the additional lysine, suggesting that it is not a 520 

necessary epitope for producing neutralizing antibodies against the PCV2d-2 strains, 521 

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times
New Roman

Formatted: Font: (Default) Times
New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times

New Roman

Formatted: Font: (Default) Times

New Roman, 12 pt, Not Italic



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

since PCV1-3cl14 protects against PCV2d-2 infection in the challenge and efficacy 522 

experiment. While it is possible that the properties of 3cl14 capsid sequence discussed 523 

above are important for production of cross-protective neutralizing antibodies in pigs, 524 

additional research is warranted to determine the important amino acid residues that may 525 

play a critical role in conferring cross-neutralizing activities against different PCV2 526 

subtypes. 527 

Based on induction of significantly higher cross-neutralizing antibody titers, 528 

compared to the other shuffled capsid candidates, the shuffled 3cl14 capsid sequence was 529 

subsequently selected to produce a chimeric virus PCV1-3cl14 vaccine candidate.  The 530 

protective efficacy of the PCV1-3cl14 chimeric virus as a potential vaccine was evaluated 531 

by challenging vaccinated pigs with PCV2b or PCV2d, respectively. PCV2b is the 532 

predominant subtype currently infecting pigs worldwide, whereas the PCV2d is an 533 

emerging subtype (24).  We previously have demonstrated the attenuation of chimeric 534 

PCV1-2a and PCV1-2b viruses in the genomic backbone of the non-pathogenic PCV1 in 535 

vivo (12, 37, 39).  Consistent with these previous reports, there was no detectable PCV1-536 

3cl14 viremia in vaccinated pigs throughout the duration of the study, and no detectable 537 

clinical disease prior to challenge with either PCV2b or PCV2d (data not shown), even 538 

though the vaccinated pigs are infected as evidenced by seroconversion to PCV2 capsid 539 

antibody. It is also possible that the standard PCV2a capsid- based PCV2 ORF2 ELISA 540 

assay is less sensitive for detection of the PCV1-shuffle capsid induced antibodies, 541 

possibly leading an underrepresentation of the antibody titers in the PCV1-3cl14 542 

vaccinated groups, however further research is needed to determine if this is the case.  543 

Whether the serology data is indeed blunted due to the limitations of the assay, the 544 
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reduction in challenge virus levels shows a significant effect of vaccination with the 545 

PCV1-3cl14 vaccine candidate on PCV2b and PCV2d challenge strains.    546 

Vaccination with the chimeric virus PCV1-3cl14 vaccine candidate resulted in 547 

significantly reduced PCV2b or PCV2d viral DNA loads at the peak of viremia as well as 548 

reduced viral DNA loads in lymphoid tissues at termination of the study. Furthermore, 549 

the lymphoid lesions were also significantly reduced in vaccinated groups subsequently 550 

challenged with PCV2b compared to mock-vaccinated and challenged controls. Though 551 

the vaccinated animals showed no statistically significant reduction in spleen lymphoid 552 

depletion and spleen and tonsil hystiocytic replacement when challenged with PCV2d, 553 

they did have significant reduction for the rest of the PCVAD-associated scores, as well 554 

as reduced viral DNA loads in serum and lymph node tissues, indicating that the PCV1-555 

3cl14 chimeric virus vaccine candidate induced protection against both PCV2b and 556 

PCV2d challenge in conventional pigs.   557 

 558 

Conclusion 559 

To our knowledge, this is the first report of construction of viable chimeric PCV2 560 

vaccine candidate by shuffling the capsid gene of 5 divergent PCV2 strains belonging to 561 

different subtypes.  Importantly, vaccination of pigs with a chimeric virus PCV1-3cl14 562 

with shuffled capsid genes induced protective immunity against challenge with the 563 

predominant PCV2b subtype and the emerging PCV2d subtype. Therefore, this chimeric 564 

virus is a potential candidate for further development into the next generation of vaccine 565 

against PCV2. 566 

 567 
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Figure Legends 

Fig. 1. Amino acid sequence alignment of the capsid proteins from the five parental 

PCV2 wild-type strains and the four candidate DNA-shuffled capsids evaluated in 

this study. The first five sequences represent the parental strains including PCV2a (strain 

40895, GenBank accession number AF264042), PCV2b (strain NC16845, accession 

number GU799576), PCV2c (accession number EU148503), PCV2d (accession number 

AY181947), and “divergent PCV2a” (accession number EF524533). while the bottom 

four sequences represent the DNA-shuffled PCV2 capsids.  Amino acids that differ from 

the consensus are shown in black.  

 

Fig. 2. A phylogenetic tree of the capsid genes of selected PCV2 strains from 

different subtypes. The phylogenetic tree was constructed using the neighbor-joining 

method with bootstraps in 1,000 replicates. The number above each major branch 

indicates the bootstrap value. The bold italicized sequence names represent the PCV2 

sequences of the 5 parental strains used for DNA shuffling in the study.   

 

Fig. 3. Comparison of 50% neutralizing antibody titers against four PCV2 wild-type 

strains from sera of pigs experimentally inoculated with chimeric viruses PCV2-

3cl13, PCV2-3cl14, PCV2-3cl4_2, and PCV2-3cl12_2, or PCV1-2a with shuffled 

capsid genes.   In vitro 50% neutralization assay of respective sera collected at 56 days 

post-infection against three parental PCV2 strains: (A) PCV2a, (B) PCV2d-1, (C) 

PCV2b, and (D) PCV2d-2 isolate. The NA titers were calculated as the highest 2-fold 

dilution (2
n
) of the serum sample that showed a 50% or greater reduction in the number 
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of positive fluorescent foci, compared to the serum samples from the mock (PBS) 

inoculated control group in the same dilution. Asterisk (*) sign indicates p<0.05 analyzed 

using one-way ANOVA. 

 

Fig. 4. PCV2 capsid-specific antibody response in conventional pigs experimentally 

inoculated with the chimeric virus PCV1-3cl14 vaccine candidate and challenged 

with the wild-type virus strains PCV2b or PCV2d-2.   The mean S/P ratio ± SEM is 

plotted for each treatment group throughout the duration of the study. The virus challenge 

took place at 42 days post-vaccination (dpv).  The dashed line at 0.2 S/P ratio denotes the 

lower end cutoff for a positive sample in this assay. 

 

Fig. 5. Quantification of PCV2 viral DNA loads in sera from pigs vaccinated with 

the chimeric PCV1-3cl14 virus and subsequently challenged with PCV2b or PCV2d-

2 compared to challenge only controls.  Quantification of PCV2 ORF1 viral DNA loads 

in sera using qPCR in (A) PCV2b challenged and (B) PCV2d-2 challenged animals.  

Group means ± SEM are plotted for each time point post-challenge.  The limit of 

detection for the assay was 10
4.2

 copies/mL serum of ORF1 DNA determined by a 

standard curve for 10
1 

– 10
10

 copies of the wild-type PCV2b genome.  (*) Indicates 

statistical significance between groups (Student’s t-test, corrected for multiple tests).  

 

Fig. 6: Quantification of PCV2 viral DNA loads in lymph nodes from pigs 

vaccinated with the chimeric PCV1-3cl14 virus and challenged with PCV2b or 

PCV2d-2 compared to challenge only controls.  Quantification of PCV2 ORF1 viral 
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DNA loads in lymph nodes using qPCR in (A) PCV2b challenged (B) and PCV2d-2 

challenged animals.  Group means ± SEM are plotted for each time point post-challenge.  

The limit of detection for the assay was 10
7.1

 copies/mg tissue of ORF1 viral DNA, as 

determined by a standard curve for 10
1 

– 10
10

 copies of the wild-type PCV2b genome.  

(*) Indicates statistical significance between groups at that time point (Student’s t-test, 

corrected for multiple tests).  

 

Fig. 7. Comparison of lymphoid tissues in pigs vaccinated with the chimeric PCV1-

3cl.14 virus and subsequently challenged with PCV2b or PCV2d-2 with those of 

challenge only controls. Lymphoid depletion and histiocytic replacement for (A, B) 

lymph nodes, (C, D) spleen, and (E, F) tonsils at necropsy were compared for vaccinated 

and challenged animals () with those of challenge only controls (). Individual animal 

scores are represented by individual symbols and group means ± SEM are displayed. 

Asterisk (*) sign indicates statistically significant differences between groups (student’s 

t-test).  

 

Fig. 8. Quantification of PCV2 viral antigen in lymphoid tissues by PCV2 

immunohistochemistry (IHC). The tissues were obtained from pigs vaccinated with 

the chimeric PCV1-3cl.14 virus and subsequently challenged with PCV2b or 

PCV2d-2 compared to challenge only controls. PCV2 viral antigen scores determined 

for (A) lymph nodes, (B) spleen, and (C) tonsils at necropsy were compared for 

vaccinated and challenged animals () with those of challenge only controls (). 

Individual animal scores are represented by individual symbols and group means ± SEM 
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are displayed.  Asterisk (*) sign indicates statistically significant differences between 

groups (student’s t-test).  
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Table 1. Seroconversion to PCV2-specific antibodies in pigs experimentally infected with chimeric PCV2 

viruses containing shuffled capsids or with the PCV1-2a vaccine virus 

 

Group Inocula 
No. of pigs positive for PCV2 antibodies/total on DPV

a
: 

 

0 7 14 21 28 35 42 49 

1 PCV2-3cl13 0/3 0/3 0/3 0/3 0/3 1/3 2/3 1/3 

2 PCV2-3cl14 0/3 0/3 0/3 0/3 1/3 3/3 3/3 3/3 

3 PCV2-3cl4_2 0/3 0/3 0/3 0/3 0/3 1/3 1/3 1/3 

4 PCV2-3cl12_2 0/3 0/3 0/3 0/3 0/3 1/3 1/3 2/3 

5 PCV1-2a 0/3 0/3 0/3 0/3 1/3 2/3 3/3 3/3 

6 PBS 0/3 0/3 0/3 0/3 0/3 0/3 0/3 0/3 

          
          

a 
PCV2 antibody was measured at different days post-inoculation (DPI) with an ELISA using the recombinant PCV2 capsid protein as the antigen.  Animals 

were considered to have seroconverted when samples from two or more consecutive time points were seropositive. Seropositive time points are shown in 

grey.  
 

 

Table 1



Table 2. Seroconversion to PCV2-specific antibodies by ELISA and detection of viremia by PCR in pigs vaccinated with PCV1-3cl14 virus and challenged with 

PCV2b or PCV2d-2 

 

Group Vaccine Challenge Virus 

No. of pigs positive for PCV2 antibodies/total on 

DPV
a
: 

 
 

No. of pigs positive for 

PCV2 antibodies/total on 

DPC
a.c

: 

 

 

No. of pigs positive for 

viremia/total on 

DPC
b,c

: 

 
0 7 14 21 28 35 42  7 14 20  7 14 20 

1 
PCV1-3cl.14 

 
PCV2b 

 0/8 0/8 0/8 0/8 1/8 3/8 3/8 
 

7/8 8/8 8/8 
 

0/8 2/8 0/8 

2 
PCV1-3cl.14 

 
PCV2d-2 

 
0/8 0/8 0/8 0/8 0/8 2/8 4/8 

 
5/8 5/8 5/8 

 
0/8 1/8 2/8 

3 
None (PBS) 

 
PCV2b 

 
0/8 0/8 0/8 0/8 0/8 0/8 0/8 

 
2/8 5/8 8/8 

 
0/8 4/8 7/8 

4 
None (PBS) 

 
PCV2d-2 

 
0/8 0/8 0/8 0/8 0/8 0/8 0/8  1/8 4/8 6/8  1/8 7/8 7/8 

a 
PCV2 antibody was measured with an ELISA with the recombinant PCV2 capsid antigen.  Animals were considered to have seroconverted when samples from two or more consecutive time 

points were seropositive 
b
 Results represent detection by real-time PCR of  wild-type PCV2 DNA 

c 
At 42 days post-vaccination (DPV), the animals in all four groups were challenged with the wild-type PCV2 virus indicated above 
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Table S1: Oligonucleotide primers used in this study 
Primer ID Primer Sequence (5’-->3’) 
uniRep_F TTACTGAGTCTTTTTTATCACTTCGTAATGG 
2aORF2_R CTTTCGTTTTCAGATATGACGTATCCAAGGAGGCG 
uniRep_R ACCCATTACGAAGTGATAAAAAAGACTCAG 
SacII_uni_R AGCCCGCGGAAATTTCTGACAAACGTTAC 
SacII_uni_F TTTCCGCGGGCTGGCTGAACTTTTGAAAG 
PCV1_DSORF2_F CTTTTTTGTTATCACATCGTAATGGTTTTTATT 
PCV1_DSORF2_R TTCTTTCACTTTTATAGGATGACGTATCCAAGGA 
PCV1_BB_F CCTCCTTGGATACGTCATCCTATAAAACTGAAAGAA 
PCV1_BB_R AAATAAAAACCATTACGATGTGATAACAAAAAAG 
NB-56-m2b GAGGTGTTCGGCCCTCCTCA 
PCV2-83F AAAAGCAAATGGGCTGCTAA  
PCV2-83R TGGTAACCATCCCACCACTT 
PCV1 qRepF  TGGAGAAGAAGTTGTTGT 
PCV1 qRepR  TCTACAGTCAATGGATACC 
	  

Supplementary Table 1




