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Abstract  

Genome-wide association studies (GWAS) have identified hundreds of cardiometabolic disease 

(CMD) risk loci. However, they contribute little to genetic variance, and most downstream 

gene-regulatory mechanisms are unknown. We genotyped and RNA-sequenced vascular and 

metabolic tissues from 600 coronary artery disease patients in the STARNET study. Gene 

expression traits associated with CMD risk SNPs identified by GWAS were more extensively 

found in STARNET than in tissue- and disease-unspecific gene-tissue expression studies, 

indicating sharing of downstream cis-/trans-gene regulation across tissues and CMDs. In 

contrast, the regulatory effects of other GWAS risk SNP were tissue-specific; abdominal fat 

emerged as an important gene-regulatory site for blood lipids, such as for the LDL-cholesterol 

and coronary artery disease risk-gene PCSK9. STARNET provides insights into gene-

regulatory mechanisms for CMD risk loci, facilitating their translation into opportunities for 

diagnosis, therapy, and prevention. 

One Sentence Summary 

RNA-seq of vascular and metabolic tissues of coronary artery disease patients reveals cis- and 

trans-effects in disease 

 

.
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In 2012, cardiovascular disease accounted for 17.5 million deaths, nearly one-third of all deaths 

worldwide, and >80% (14.1 million) were from coronary artery disease (CAD) and stroke. 

CAD is preceded by cardiometabolic diseases (CMDs) such as hypertension, impaired lipid and 

glucose metabolism, and systemic inflammation (1, 2). Genome-wide association studies 

(GWAS) have identified hundreds of DNA variants associated with risk for CAD (3), 

hypertension (4), blood lipid levels (5), markers of plasma glucose metabolism (6-10), type 2 

diabetes (6, 11), body mass index (12), rheumatoid arthritis (13), systemic lupus erythematosus 

(14), ulcerative colitis (15) and Crohn’s disease (16). However, identifying susceptibility genes 

responsible for these loci has proven difficult. 

GWAS loci typically span large, noncoding, intergenic regions with numerous single-

nucleotide polymorphisms (SNPs) in strong linkage disequilibrium. These regions are enriched 

in cis-regulatory elements (17) and expression quantitative trait loci (eQTLs) (18-20), 

suggesting that gene regulation is the principal mechanism by which risk loci affect complex 

disease etiology. However, it is largely unknown whether this gene-regulatory effect includes 

one or several genes acting in one or multiple tissues and whether risk loci for different 

diseases share cis- and trans-gene regulation. A better understanding of gene regulation may 

also shed light on why known GWAS risk loci explain only ~10% of expected heritable 

variance in CMD risk (21). Possibly, multiple risk loci, acting through common cis- and trans-

genes, contribute synergistically to heritability (22, 23). 

In the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study 

(STARNET) (fig. S1), we recruited 600 well-characterized (table S1, fig. S2) CAD patients, 

genotyped DNA (6,245,505 DNA variant calls with minor allele frequency >5%, fig. S3), and 

sequenced RNA isolated from blood, atherosclerotic-lesion-free internal mammary artery 

(MAM), atherosclerotic aortic root (AOR), subcutaneous fat (SF), visceral abdominal fat 

(VAF), skeletal muscle (SKLM), and liver (LIV) (15–30 million read depth, figs. S4-S11, table 

S2).  

In total, ~8 million cis-eQTLs were identified, and nearly half were unique SNP-gene pairs 

(figs. S12-S26, tables S3-S7). The STARNET cis-eQTLs were enriched in genetic associations 
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established by GWAS for CAD, CMDs and Alzheimer’s disease (AD) (3-16, 24) (figs. S27-

S33) and were further enriched after epigenetic filtering (figs. S34-S39). Of 3,326 genome-

wide significant risk SNPs identified by GWAS to date (25), 2,047 (61%) had a matching cis-

QTL in STARNET (Fig. 1A). Of the 54 lead risk SNPs verified in meta-analyses of CAD 

GWAS (3), 38 cis-eQTLs with a regulatory trait concordance score (RTC) >0.9 and at least one 

candidate gene were identified in STARNET (table S8, fig. S27). Compared to large datasets of 

cis-eQTL isolated only from blood, cis-eQTLs across all tissues in STARNET matched >10-

fold more CAD and CMD-related GWAS risk SNPs (Fig. 1B). STARNET cis-eQTLs isolated 

from CAD-affected tissues also matched several-fold more CAD and CMD-related GWAS risk 

SNPs than cis-eQTLs from corresponding tissues isolated from predominantly healthy 

individuals in GTEx (18) (Fig. 1C). Thus, several gene-regulatory effects of disease risk SNPs 

appear not to be identifiable in blood or healthy tissues. This notion was further underscored by 

comparing the statistical significances of cis-eQTLs for GWAS risk SNPs in STARNET with 

corresponding associations in GTEx (Fig. 1D). In STARNET, gene fusions (table S9) and 

CAD-related loss of function mutations (table S10) were also detected.  

The cis effects of disease-associated risk loci identified by GWAS are central for 

understanding downstream molecular mechanisms of disease. However, these cis-genes likely 

also affect downstream trans-genes. To identify possible trans effects, we used a causal 

inference test (26) to conservatively call both cis- and trans-genes for lead risk SNPs identified 

by GWAS. After assigning cis-eQTLs for 562 risk SNPs for CMDs and AD (3-16, 24), we 

sought causal correlations between the cis-genes and trans-genes by assessing the probability 

that an interaction was causal (cis-SNPcis-genetrans-gene, FDR<1%) and not reactive 

(cis-SNPtrans-genecis-gene, P>0.05) (26) (table S11). 

We found extensive sharing of cis- and trans-gene regulation by GWAS risk loci across 

tissues and CMDs. In CAD, 28 risk loci with at least one cis-gene (FDR <1%) had a total of 51 

cis-genes and 1040 trans-genes. Of these, 26 risk loci, 37 cis-genes (including 27 key drivers 

(27)), and 994 trans-genes were connected in a main CAD regulatory gene network acting 

across all 7 tissues (Fig. 2). This network was enriched in genes associated with CAD and 
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atherosclerosis (Fisher’s test, 1.54-fold, P=8E-10, table S11). Sharing of cis/trans-genes 

downstream of complex disease risk loci also emerged for other CMDs and AD (3-16, 24) (fig. 

S40), In fact, common key driver genes regulated by risk SNPs across all CMDs, including 

CAD and AD, formed a pan-disease regulatory cis/trans-gene network in which 33/36 cis-

genes were identified as key disease drivers (Fig. 3A).  

Across CMDs and AZ, cis/trans-genes of GWAS risk SNPs for blood lipid levels (5) 

emerged as central (Fig. 3B) where beside LIV (n=46/150 cis/trans-genes), fat tissues harbored 

many downstream genes (45/372 cis/trans-genes in SF and 38/465 in VAF (fig. S41, table S11). 

Abdominal fat (VAF) examples included ABCA8/ABCA5 (rs4148008) associated with 36 

downstream trans-genes in VAF and HDL; EVI5 (rs7515577) associated with 32 VAF trans-

genes and total cholesterol; and STARD3 (rs11869286) associated with 7 VAF trans-genes and 

HDL. In addition, the cis-gene TMEM258 (rs174546) with 22 trans-genes in abdominal fat 

surfaced as a parallel/alternative regulatory site of plasma LDL to the proposed FADS-1,2,3 in 

LIV (5) (fig. S41). Other risk SNPs with VAF-specific cis-genes had few or even no trans-

genes (fig. S41). For example, two risk SNPs—rs11206510 for CAD and rs12046679 for LDL 

cholesterol level (3, 5)—regulate PCSK9 in VAF, not in LIV (Fig. 4A, B). The VAF-specificity 

of these eQTLs were confirmed in an independent gene expression dataset from patients with 

morbidly obesity (28) (Fig. 4C, fig. S30) implicating that PCSK9 is secreted from VAF into the 

portal vein to affect hepatic LDL receptor degradation, LDL plasma levels and risk for CAD 

(29). Interestingly and as previously suggested (30), we did observe that STARNET patients in 

the upper, compared to the lower 5th-20th percentiles of waist–hip ratio, (i.e., patients with and 

without “male fat”) had higher levels of circulating PCSK9 (Fig. 4D) and LDL/HDL ratio (Fig. 

4E).  

Thus, STARNET provides new insights into tissue-specific gene-regulatory effects of 

disease-associated risk SNPs identified by GWAS, exemplified with abdominal fat for blood 

lipids. We also detected unexpected sharing of cis- and trans-genes downstream of risk loci for 

CMDs across both tissues and diseases. We anticipate that the identified cis/trans-gene 

regulatory networks will help elucidate the complex downstream effects of risk loci for 
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common complex diseases, including possible epistatic effects that could shed light on the 

missing heritability of CMD risk. Given the detailed phenotypic data on STARNET patients, 

we can begin to identify how genetic variability interacts with environmental perturbations 

across tissues to cause pathophysiological alterations and complex diseases. Thus, the 

STARNET dataset is a complementary resource for other studies to leverage the initial findings 

by GWAS, particularly of CAD and CMDs. 
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Figure Legends  

Fig. 1. STARNET QTLs and disease-associated risk SNPs identified by GWAS. (A) Venn 

diagram showing 2,047/3,326 disease-associated risk SNPs from the NHGRI GWAS catalog 

overlapping with at least one form of STARNET e/psi/aseQTLs. (B) Odds ratios that 

STARNET eQTLs coincide with CAD-associated risk SNPs (Set 1, CARDIoGRAM-C4D, 

n=53; Set 2, CARDIOGRAM extended, n=150) (3), blood lipids (Set 3, n=35) (5), and 

metabolic traits (Set 4, n=132) (6, 8, 10, 12) versus blood eQTLs isolated from RegulomeDB 

and HapMap. The y-axis shows odds ratios. Error bars, 95% confidence intervals. (C) Stacked 

bar plots comparing tissue-specific eQTLs from STARNET and GTEx (18) coinciding with 

disease-associated risk SNPs in the same Sets 1–4 as in (B). (D-I). Q-Q plots showing 

associations of tissue-specific STARNET (blue) and GTEx (18) (red) cis-eQTLs of disease-

associated risk SNPs identified by GWAS for CAD (3) (D), blood lipids (5) (E), waist-hip ratio 

(12) (F), fasting glucose (6) (G), AD (24) (H), and SLE (14) (I). 

Fig. 2. A cis/trans gene-regulatory network of CAD risk SNPs. A main gene-regulatory 

network of cis-and trans-genes associated with 21/46 index SNPs for risk loci identified for 

CAD by meta-analysis in the CARDIoGRAM GWAS of CAD (3) inferred using a causal 

inference test (26). 

Fig. 3. Cis and trans gene regulation across CMDs and Alzheimer’s disease. (A) A pan-

disease risk SNP cis/trans-gene regulatory network. Thirty-six top key disease drivers, 

including 33 cis-genes for risk SNPs identified for CMDs including CAD and AD by GWAS 

(3-16, 24) were identified as having >100 downstream genes in any disease-specific network or 

belonging to the top 5 key drivers in the main regulatory gene network for each disease (table 

S11). Node (gene) and edge color indicate disease belonging. Edge thickness represents how 

frequent an edge is the shortest path between all pairs of network nodes. Node size reflects the 
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number of downstream nodes in the network. RA, rheumatoid arthritis; SLE, systemic lupus 

erythematosus; UC, ulcerative colitis. (B) cis and trans gene regulation across disease/tissue 

pairs. Nodes represent unique disease-tissue pairs. Edges occur when a cis-gene in one node 

have downstream trans-genes present also in another node. Edge thickness defined as in (A). 

Node size reflects its centrality in the network: The position of the nodes in the network (i.e., 

layout) was derived from an edge weighted spring layout algorithm. The “weight” is defined as 

the number of trans genes that have a connection from the upstream node’s cis genes, 

normalized by the total number of trans genes between two connecting nodes — resulting in 

that highly connected nodes are positioned in the center of the network. 

Fig. 4 PCSK9 regulation in VAF, not liver, increases risk for elevated LDL/HDL ratio.  

(A) PCSK9 was expressed in STARNET LIV and VAF but only associated with the CAD risk 

SNP rs11206510 in VAF (FDR<0.001). Box plot of allelic PCSK9 expression of the CAD risk 

SNP rs11206510 showing dosage effect of the T allele (P=3.91e-15; FDR=4e-04). (B) 

Regional plot of the PCSK9 locus. rs2479394, linked to plasma LDL levels by GWAS (5), acts 

independently of rs11206510 as the lead eQTL of PCSK9 expression in VAF. rs2479394 was 

not an eQTL of PCSK9 in STARNET LIV. (C) Box plots of allelic PCSK9 expression in VAF 

of rs11206510 and rs2479394 in a gene-tissue expression study of morbidly obese patients (fig. 

S29) (28). Box plots of PCSK9 levels (D) and ratios of LDL/HDL (E) in plasma isolated from 

the STARNET patients within the upper and lower 5th-20th percentile of waist-hip ratio (WHR) 

(PCSK9; 5th, P=8.0e-11; 10th, P=1.9e-11; 15th,	 P=5.9e-05; 20th, P=0.004: LDL/HDL ratio; 5th, 

P=0,007; 10th, P=0.001; 15th,	P=0.0005; 20th, P=0.0009). 
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