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Abstract 

Communication between the testicular somatic- (Sertoli, Leydig, peritubular myoid, 

macrophage) and germ- cell types is essential for sperm production (spermatogenesis), but 

the communicating factors are poorly understood. We reasoned that identification of proteins 

in the testicular interstitial fluid (TIF) that bathes these cells could provide a new means to 

explore spermatogenic function. The aim of this study was to map the proteome of TIF from 

normal adult rats. 

Low-abundance proteins in TIF were enriched using Proteominer beads, and 

identified by MALDI tandem mass spectrometry, recognising 276 proteins. Comparison with 

proteomic and genomic databases showed these proteins originated from germ cells, somatic 

cells (Sertoli, peritubular myoid, Leydig) and blood plasma. In silico analysis revealed 

homologues of >80% TIF proteins in the human plasma proteome, suggesting ready 

exchange between these fluids. Only 36% of TIF proteins were common with seminiferous 

tubule fluid that transports mature spermatids to the epididymis, indicating these two fluids 

mailto:peter.stanton@hudson.org.au
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are quite different. This TIF proteome provides an important new resource for the study of 

intercellular communication in the testis. 

 

Significance 

The testis is composed of multiple cell types that co-operate to produce sperm. 

Elucidating how these cells communicate is important for understanding normal sperm 

production and how it is disturbed in infertility. An important goal for new strategies to better 

diagnose male infertility is to find proteins that reflect the ability of the testes to produce 

mature sperm. This study represents a first step towards this goal; by defining the proteome 

of testicular interstitial fluid (or TIF) in adult rats with normal sperm production, and 

comparing it to other relevant datasets. We describe 276 proteins that were detected in TIF. 

We show that TIF is quite different to seminiferous tubule fluid, and importantly, that many 

TIF proteins are present in blood plasma and could therefore potentially be detected by blood 

tests. This TIF proteome will serve as an important resource for research into sperm 

production and conditions of infertility. 

 

Introduction 

Sperm production (spermatogenesis) occurs within the seminiferous tubules, where 

germ cells develop in association with, and supported by, the somatic Sertoli cells (Fig 1). 

Outside of the tubules is the interstitium, containing androgen-secreting Leydig cells, 

macrophages, blood and lymphatic vessels. Tight junctions between Sertoli cells create a 
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blood-testis barrier, which sequesters advanced germ cells in a unique milieu distinct from 

the vascular environment (Fig 1). The immature germ cells (spermatogonia) and Sertoli cells 

lie outside this barrier with free access to the interstitium and vasculature. More advanced 

germ cells and developing sperm reside above the barrier and are thus separated from the 

interstitium and vasculature. 

Communication between testicular cells is essential for spermatogenesis and 

steroidogenesis. For example, peritubular myoid cells (PTMCs) (Fig 1) surround the 

seminiferous tubules and maintain Sertoli cell function, and sperm production [1]. Sertoli 

cells regulate PTMC function (e.g. [2]) and Leydig cell steroidogenesis (e.g. [3]), and 

testicular macrophages modulate Leydig cell function [4]. These cells are not all in physical 

contact yet are highly secretory, therefore communication occurs via soluble factors secreted 

into testicular fluids, including testicular interstitial fluid (TIF). Proteins from various 

testicular cells have been identified in TIF [5], including Sertoli- [5], Leydig- [6], and germ 

cells [7]. Both the volume of TIF and the concentrations of some TIF proteins are responsive 

to changes in endocrine hormones which drive spermatogenesis [8, 9], and to alterations in 

the local environment, including changes in germ cells [10]. Therefore the composition of 

TIF can reflect the status of spermatogenesis. 

Despite considerable effort to find molecular markers of spermatogenesis in readily-

accessible biological fluids (plasma, seminal plasma) (e.g. [5, 7, 11-13]), the diagnosis of 

men with infertility still relies on assessment of sperm number, motility and morphology in 

the ejaculate, and on testis volume and serum hormones ([14, 15]). These assessments give 

limited information when no sperm is present in the ejaculate (azoospermia), because they do 

not reliably inform about the extent of spermatogenesis in the testis. For example, they cannot 



www.proteomics-journal.com Page 5 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

5 

always distinguish between men with primary spermatogenic failure (non-obstructive 

azoospermia) and those with complete spermatogenesis but a physical blockage post-testis 

(obstructive azoospermia). Current approaches provide limited information about the 

potential for spermatogenic improvement with hormonal treatments, or on the presence of 

mature spermatids that could be recovered by testicular sperm extraction for assisted 

reproductive treatment [16-18]. For these applications, a testicular biopsy remains the 

definitive test, but requires specialist surgical skills and carries inherent risks [19]. The 

identification of proteins in testicular fluids and/or blood plasma that reflect spermatogenic 

function could therefore be of use in exploring mechanisms underlying infertility. 

We hypothesise that TIF contains proteins that reflect the cellular functions involved 

in spermatogenesis. Surprisingly little attention has been given to the TIF proteome since 

several germ cell proteins in rat TIF were identified using 2D gels in the mid-90’s [7]. We 

aimed to use more sensitive proteomic methods to map the proteome of TIF in normal adult 

rats as a first step towards future studies of models of animal and human infertility. 

 

Experimental Procedures 

TIF collection: All animal experimentation was approved by Monash Medical Centre Animal 

Ethics Committee. Untreated adult male outbred Sprague Dawley rats (n=3, 75–90 d, 400-

500g) were sacrificed by CO2 inhalation. Testes were immediately removed, cleaned of 

connective tissue, washed in ice-cold PBS pH7.4 containing Complete protease inhibitor 

cocktail (Roche, Castle Hill, Sydney) then patted dry on filter paper. A 2-4mm incision was 

made in the tunica at the distal end, and each testis was suspended in a 15ml tube above 20l 
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PBS/inhibitors via a thin suture placed through the tunica at the other end. TIF was collected 

by percolation for ~16hr at 4C [9], then centrifuged (10,000g, 15min, 4C) and the 

supernatant stored at -80C prior to enrichment.  

Enrichment: Protein enrichment of TIF was achieved using a ProteoMiner protein enrichment 

large capacity kit (BioRad, Hercules, CA, USA) according to the manufacturer’s instructions, 

and low abundance proteins were reduced and alkylated with iodoacetamide and digested 

with trypsin as described [20]. 

Fractionation: Peptides (from ~400g total protein) were fractionated by isoelectric focussing 

using an OFFGEL 3100 Fractionator (Agilent Technologies, CA, USA) with an 

Immobiline™ DryStrip, linear pH range 3-10, 24 cm (GE Healthcare, Uppsala, Sweden) [20]. 

Peptides were focused at a constant current of 50 mA at 25C for 50,000 volt hours. After 

focusing, 24 fractions were collected and stored at -80C. 

Liquid Chromatography and MALDI-Mass Spectrometry (LC-MALDI-MS/MS): Each 

OFFGEL fraction was further fractionated by HPLC and robotically spotted to MALDI target 

plates, resulting in 9,216 spots analysed by MALDI-TOF. Full details, including MS/MS 

search parameters, are included as Supplementary Document 1. Only proteins with a stringent 

MASCOT score >50 were included for further analysis. 

SDS-PAGE, Western blotting and Immunolocalization: Samples (~30g/lane) were boiled in 

Tris-SDS sample buffers and applied to pre-cast 4-12% Criterion XT gels (BioRad). Gels 

were either stained with SyproRuby and imaged on a Fuji FLA5100 fluorescence laser 

scanner, or transferred to nitrocellulose using a Transblot Turbo-Western system (BioRad). 

Membranes were blocked with Odyssey blocking buffer (1:4 for 1hr at 22C, Li-Cor, 
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Lincoln, NE, USA), then incubated overnight at 4C with primary antibody (musashi-2, 

lumican, INSL-3, -actinin; see Supplementary Table 1). The secondary antibodies were goat 

anti-rabbit IgG – Alexa Fluor 680 (1:5,000, Molecular Probes, Eugene, OR, USA) or 

biotinylated goat anti-rabbit IgG (1:500, Vector Laboratories, Peterborough, UK). Antibody 

signals were imaged using an Odyssey detection system (Li-Cor). 

All immunohistochemical procedures were carried out as described [21, 22]; primary 

antibody details are shown in Supplementary Table 1. Antibody signals were visualized with 

a confocal microscope (FV-300, Olympus, Shinjuku, Japan), or by light microscopy 

following incubation with streptavidin-conjugated HRP (1:1,000 dilution, Vector) and 3,3'-

diaminobenzidine with haematoxylin counterstaining. For western blots and 

immunohistochemistry, specificity was monitored by the substitution of the primary antibody 

with an equivalent dilution of affinity-purified non-immune rabbit IgG.  

Bioinformatic analyses: The functional annotation clustering tool within the DAVID 

Bioinformatics Resource (v6.7) was used to group proteins into related biological processes 

(http://david.abcc.ncifcrf.gov/) [23]. 

 

Results  

1. Identification of adult rat TIF proteins 

The volume of TIF recovered per adult rat testis was ~85µl, with a protein 

concentration of 39.8mg/ml. After Proteominer Bead-enrichment, the pooled bound fraction 

(2-3% of total protein) showed an increase in low-abundance proteins by SDS-PAGE (Fig 

http://david.abcc.ncifcrf.gov/
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2A), and was digested with trypsin prior to isoelectric focusing. LC-MALDI-MS/MS analysis 

identified 40-60 proteins per fraction over the pH range 3.0-7.5, with only 5-10 

proteins/fraction in the basic fractions pH 7.8 – 9.9 (Supplementary Figure 1).  

A total of 276 proteins with MOWSE scores >50 were identified. The top 30 are 

shown in Table 1, the entire list is in Supplementary Table 2 and detailed protein and peptide 

sequence data are in Supplementary Table 3. The proteome contained well-known TIF 

proteins such as Insl3 secreted by Leydig cells [6] (rank #262, Supplementary Table 2), 

transferrin (rank#15), well known Sertoli cell proteins alpha2 macroglobulin (rank#24) and 

clusterin (rank #43) [24-26], and Pebp1 (rank #106) previously described in rat TIF [7] and 

expressed in Sertoli and germ cells. TIF also contained diverse proteins including RNA 

splicing / binding enzymes (Isyna1, Gstm1, Aldh2, Sod3), extracellular matrix proteins (Lum, 

Col1a2, Efemp1) and serum factors involved in complement activation (C8b, C9, SerpinG1) 

and the inflammatory response (A2m, Ass1, Masp1).  

2. In silico analysis of TIF proteins  

To build a more complete picture of normal rat TIF, we performed in silico analysis to 

identify the cellular source(s) of TIF proteins, and compared the TIF proteome to other 

testicular fluid proteomes.  

Comparison to other testicular fluid proteomes 

The TIF proteome was compared with three relevant proteomes; 1) seminiferous 

tubule fluid (STF) proteome from adult ram and rat containing 1051 proteins [27]; STF is 

fluid from the tubule lumen (Fig 1) which carries mature spermatids via the rete testis into the 

epididymis, and is largely formed by Sertoli and germ cell secretions, with limited access to 
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the vascular and interstitial compartments. 2) Human PTMC proteome containing 1785 

proteins from cultured cells, including 262 proteins secreted by PTMCs [28]. 3) Human 

plasma proteome via the Human Plasma Protein Database 

(http://www.plasmaproteomedatabase.org) [29]. Comparisons were according to gene 

annotation [27].  

Several interesting points were noted. TIF was only 23% similar to rat or ram STF 

respectively (Supplementary Table 2). When the STF proteomes were merged to form a 

combined STF protein list, the similarity to the rat TIF proteome increased to 36% (Fig 2B). 

41% of TIF proteins were found in the PTMC proteome (Supplementary Table 2), consistent 

with the localisation of these cells in the interstitial compartment (Fig 1). The proportion of 

TIF proteins not represented in either STF or peritubular myoid cell data-sets was 39.0% 

(n=104 proteins). A search for homologues of rat TIF proteins in the human plasma proteome 

revealed >80% proteins in common (Supplementary Table 2), supportive of a ready exchange 

between these two fluids in the testis, and also indicative that TIF proteins could come from 

extra-testicular sources.  

Comparison to microarray data  

To determine the potential contribution of seminiferous epithelial cell types to the TIF 

proteome, we conducted in silico comparisons with mRNA expression data, as individual cell 

proteomes are unavailable. We assessed microarray data from isolated Sertoli cells and 

various germ cell types from mouse and rat [30] and a similar purified cell dataset from rats 

[31]. Both studies grouped germ cells into spermatogonia, pachytene spermatocytes, and 

round spermatids. As most genes were present in one or more of these cell groupings 

http://www.plasmaproteomedatabase.org/
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(Supplementary Table 2), semi-quantitative criteria were designed to highlight genes that 

were expressed in one cell type i) >10fold, or ii) >4-fold, or iii) between 2-4 fold higher than 

any other cell type. Genes with differences <2 fold were considered to be equally expressed 

(see Table 1 and Supplementary Table 2). 

Using these criteria, several patterns became apparent. 34% of TIF proteins showed 

preferential mRNA expression in Sertoli cells and/or spermatogonia (Supplementary Table 2: 

e.g. #90; Ecm1, # 151; Ctsb, #269, Sod3) whereas 28% of TIF proteins were expressed in all 

seminiferous epithelial cell types (e.g. #66; Sptan1, #92; Eef1a1; #217; Phrf1). Overall, 178 

(64%) of TIF proteins showed mRNA expression in Sertoli cells and/or spermatogonia, and 

could thus potentially reflect spermatogenic function (Supplementary Table 2). Only 3.6% 

were preferentially expressed in pachytene spermatocytes and/or round spermatids which 

reside inside the blood testis barrier (e.g. #30; Hrg, #197; Ubqln1, #235; Spata24, # 238; 

Dctn2), and of this group 3 proteins (Itih3, Hrg, Mapt) showed mRNA expression exclusively 

restricted to spermatocytes and spermatids. Homologues of these three proteins were also 

present in human plasma.  

24% of TIF proteins were not expressed in any epithelial cell type and thus may be 

derived from other testicular cells (see below) or from extra-testicular sources. The final 11% 

of proteins had no data available by microarray, and usually corresponded to known plasma 

proteins or in some cases to genes below the detection limit of the arrays. Examples of TIF 

proteins in which the mRNA expression was highly enriched in specific cell types (>10fold) 

included: #28; Itih3 #228; Mapt (in round spermatids), #56; Efemp1, #71; Lum, #81; Col3a1, 

#157; Ogn, #176; Prrc1, #259; Fcn1 (in spermatogonia), and #136, Pah (Sertoli cells). 
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Comparison to Leydig cell microarray 

We sought to determine which TIF proteins could be derived from interstitial Leydig 

cells (Fig 1) using microarray data from the rat [32, 33] and mouse [34]. However, unlike the 

Sertoli and germ cell data where all microarray genes were searchable [30, 31], the available 

Leydig cell microarray data was processed and only records genes judged by the authors to 

be Leydig cell-specific [32-34]. Hence a negative finding in these columns (Table 1 and 

Supplementary Table 2) indicates that the gene is not Leydig cell specific, but it could still be 

expressed by Leydig cells. On this basis, 12 TIF proteins exhibited Leydig cell specificity 

based on rat microarray data, of which 7 were in agreement between the two rat studies [32, 

33], these being Hpx, Pah, Ces1, Ass1, Hmgcs2, Hp, and Insl3 (Supplementary Table 2). A 

further 67 TIF proteins were expressed by mouse Leydig cells (Supplementary Table 2), 

suggesting that at least 28% of the TIF proteome could be Leydig cell-derived, however this 

percentage could be higher noting the above caveat about data specificity. Only 2 genes 

(Ass1, Hmgcs2) were in agreement between all three data sources. 

Gene ontology analysis of rat TIF 

GO analysis of the biological processes enriched in rat TIF found 11 clusters with 

enrichment scores between 11.8 and 2.9, after applying a cut-off FDR score > 0.01 (Table 2). 

Processes relating to ‘coagulation’, ‘acute inflammatory response’, ‘assembly of complex 

proteins’ and ‘nutritional response’ were strongly over-represented in TIF (Table 2, 

Supplementary Table 4). Additional processes of interest were ‘hormone signaling’, 

‘regulation of cellular protein metabolism’, and ‘cell cycle’. 

3. Validation of selected TIF proteins 
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Immunolocalization and western blotting were used to validate the expression of four TIF 

proteins representative of different cellular functions. Lumican is an extracellular matrix 

(ECM) protein of the small leucine-rich proteoglycan family important in collagen 

organization, epithelial cell migration and tissue repair [35] and is secreted by PTMCs [28]. 

Immunolocalization showed weak cytoplasmic staining in spermatogonia and Sertoli cells, 

punctate staining around elongated spermatid heads and strong staining in interstitial cells. A 

single specific band at ~27kDa was detected for lumican in TIF (Figure 3A) which is lower 

than native lumican (~38kDa), and suggests a possible proteolytic event in rat TIF lumican 

that is supported by the C-terminal location of all 4 peptides detected by mass spectrometry 

(Supp Table 3, protein #81).. Musashi 2 (Msh2) is a nuclear DNA mismatch repair protein for 

DNA replication and recombination, known to be important in the testis and localized in 

spermatogonia and early spermatocytes [36]. This staining pattern was confirmed, with 

additional punctate staining in interstitial cells (Figure 3B). Western blotting showed a single 

specific band at ~95kDa in TIF (Figure 3B). Insulin-like 3 (Insl3) is a small peptide hormone 

secreted by Leydig cells [6]. Insl3 immunostaining was detectable in the interstitium (Figure 

3D) although western blotting was unsuccessful, potentially due to its small size (6-15kDa). 

Alpha-actinin-4 (Actn4) is a ubiquitously expressed cytoskeletal microtubule anchoring 

protein but also functions as a nuclear steroid receptor co-activator [37]. Strong 

immunostaining for Actn4 was observed in blood vessels within the interstitium, with a band 

of ~100kDa in TIF (Figure 3E). 

 

Discussion  
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This study is the first to define the protein composition of TIF using mass 

spectrometry. The results provide information on 276 proteins in TIF from normal adult rats. 

We show that rat TIF is comprised of proteins that are expressed in Sertoli cells and germ 

cells of the seminiferous tubules, as well as proteins that are likely to be produced by the 

PTMCs and the steroidogenic Leydig cells. Many TIF proteins (64%) showed mRNA 

expression in Sertoli cells and/or spermatogonia, suggesting the TIF proteome could reflect 

the function of these cells. A comparative analysis of the TIF partial proteome with 

previously published proteomic analyses of STF reveals that the proteomic composition of 

the two fluids varies considerably. Only 36% of proteins secreted into the adluminal 

compartment of the testis and detected in STF were detected in TIF, likely highlighting the 

directional secretion ability of the seminiferous epithelium, and the function of Sertoli cell 

tight junctions that form a major part of the blood-testis barrier [38-40]. It was also 

noteworthy that a small number of proteins expressed by advanced germ cells within the 

blood-testis barrier appeared in TIF. Finally, we show an 80% commonality between TIF 

proteins and blood plasma, providing a potential readily-accessible route by which changes in 

testicular protein markers, and thereby testicular function, could bemonitored in blood.  

The utility of non-invasive protein biomarkers of spermatogenesis in the assessment 

of male fertility has long been suggested ([5], and reviewed [41]), but progress has been slow. 

With the advent of more powerful mass spectrometry-based methodologies, several groups 

have conducted extensive proteomic characterisation of whole mouse and human testes and 

isolated rodent germ cell types [42-44], allowing transcriptomic / proteomic comparisons to 

be made (e.g.[27, 44]). To address the aetiology of human infertility, comparative proteomic 

mapping of seminal plasma from fertile and infertile men has been investigated [13, 45], but 
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produced limited success in distinguishing phenotypes of non-obstructive azoospermia, 

possibly because <10% of seminal plasma is of testicular origin (reviewed in [45]).  

To enable a more direct analysis of testicular fluid output, Chalmel et al examined the 

proteome of rat and ram STF collected at the rete testis, and found it to contain proteins 

preferentially secreted by Sertoli cells and germ cells [27]. However this fluid is difficult to 

access and only available in low volume from rodent models [27]. In contrast, TIF is easier to 

obtain [9] and studies have shown it contains proteins from blood-plasma as well as from 

Sertoli- and germ- cell sources (e.g. [5, 7]). Our analysis has extended these findings 

considerably by using mass spectrometry to identify 276 proteins in TIF, of which 64% are 

expressed by Sertoli cells and spermatogonia. Since these cells have free access to the 

interstitium, they are likely to have a major contribution to the protein composition of TIF. 

Our analysis also reveals that TIF contains some proteins enriched in mature germ cells such 

as round spermatids. Various precedents already exist for circulating proteins derived from 

meiotic and post-meiotic germ cells including the lactate dehydrogenase-C4 isoenzyme in 

control rats [7, 46], and Fabp9 and Ddx4 found in TIF in rats with compromised blood-testis 

barrier function [47]. We also noted proteins that were highly expressed in Sertoli cells and 

appeared only in TIF and not STF (Ehd3, Fmod, Gnl3, Phgdh), suggesting that they could be 

secreted in a basal direction. Directional secretion of Sertoli cell proteins is an important 

functional marker of mature Sertoli cell function [48], therefore it is feasible that the level of 

particular Sertoli cell proteins in TIF could reflect the presence of a functional seminiferous 

epithelium, with an intact blood-testis-barrier. These interpretations are subject to a number 

of untested assumptions, including that mRNA expression need not equate with protein 

secretion, and that the presence / absence of a signal by mass spectrometry may be an issue 
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related to detection sensitivity rather than tissue specificity. Our future studies will focus on 

identifying functional markers of spermatogenesis by comparing TIF from normal and 

various dysfunctional states, including the absence of mature germ cells, and disruption to 

Sertoli cell maturation and function.  

TIF contains components derived from blood as a capillary filtrate, and TIF 

components can leave the testis via the intertubular lymphatic system [49]. In common with 

other interstitial fluids [50], our analysis found TIF contained various blood plasma proteins 

including albumin, complement factors, apolipoproteins, protease inhibitors and 

immunoglobulins. However access of these serum proteins into TIF is not passive as the 

testicular capillary endothelium is unfenestrated [51], hence entry occurs via facilitated 

diffusion and specific transcapillary transport mechanisms that remain poorly understood [8]. 

The simple, gentle method used to collect rat TIF [5, 7, 47] yielded a clear yellow liquid with 

virtually no red blood cells present, suggesting minimal contamination of TIF by blood. 

In conclusion, we have identified 276 proteins in normal adult rat TIF, and by cross-

matching with existing proteomic and mRNA expression databases from testicular cells and 

fluids, show that we can detect proteins contributed by the major cell types (Sertoli, Leydig, 

peritubular myoid, germ) in seminiferous tubules. Several proteins are highly enriched in 

specific cell types, and could potentially reflect spermatogenic function. Additionally TIF has 

only 36% similarity to STF, indicating that these fluids are quite different, but in contrast 

>80% of TIF proteins are also found in human plasma based on an in silico comparison, 

suggestive that ready exchange occurs between these fluids. This ‘proof of concept’ study has 

established that TIF protein analysis is feasible and able to reveal novel information about 

testicular function. We suggest that these results are an important starting point, however an 



www.proteomics-journal.com Page 16 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

16 

increased depth of proteomic information about TIF will be possible with more advanced 

mass spectroscopy techniques as recently demonstrated with other testicular fluid proteomes 

[27, 28]. We anticipate that this study will serve as an important resource for studies aimed at 

identifying signalling pathways between testicular cell types in the normal testis, and opens 

the way for investigative studies to assess the impact of changes in one cell type on the 

functions of others, such as germ cell loss on Sertoli cell health. Finally, as first predicted by 

Sharpe more than 20yrs ago [5], the proteomic monitoring of proteins in TIF and potentially 

serum from fertile and infertile men could provide a new investigative means to assess 

cellular and molecular events relevant to testicular disease and infertility. 
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Figure Legends 

Figure 1. Organisation of the testis. The testis consists of multiple seminiferous tubules 

within which sperm are produced and leave via the rete testis, epididymis and vas deferens. A 

cross section of the testis shows two seminiferous tubules, comprised of germ cells at 



www.proteomics-journal.com Page 17 Proteomics 

 

 

This article is protected by copyright. All rights reserved. 

17 

multiple stages of development in close contact with somatic Sertoli cells, forming the 

seminiferous epithelium. Surrounding the tubules is a layer of peritubular myoid cells which 

have contractile properties. Outside of the tubules is the interstitium containing androgen-

producing Leydig cells, macrophages, and blood and lymphatic vessels; collectively these 

cells and vessels are contained within a proteinaceous testicular interstitial fluid (TIF). Tight 

junctions between individual Sertoli cells form the blood-testis barrier, providing a seal 

which sequesters more advanced germ cell types in the inner, or adluminal, region away from 

earlier germ cell types and interstitial cells outside the barrier. Sertoli cells secrete many 

proteins in a bi-directional manner, either basally to contribute to TIF and potentially to the 

blood-stream, or via the Sertoli cell apex into the seminiferous tubule fluid which transports 

released mature spermatids to the epididymis. The presence of the blood-testis barrier 

prevents uncontrolled mixing between seminiferous tubule fluid and testicular interstitial 

fluid. Figure adapted from [52]. 
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Figure 2. A) SDS-PAGE on 4-12% SDS gradient gel of (1) adult rat testicular interstitial 

fluid, (2) non-enriched TIF proteins, (3) enriched TIF proteins. ~250ng total protein was 

loaded under reducing conditions, and the gel stained with Sypro Ruby. Molecular weight 

markers ranged from 200 to 15 kDa. B) Comparison of proteomes from rat TIF, rat and ram 

seminiferous tubule fluid (STF), and human peritubular myoid cells (PTMC) (details of 

sources are included in legend to Table 1). Proteomes were compared based on common gene 

IDs with total gene numbers in each group indicated by *, and italicised figures represent %’s 

of the total TIF proteome.  
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Figure 3. Immunohistochemistry and western blot of A) Lum (lumican), B) Msh2 (DNA 

mismatch repair protein Musashi 2), C) negative control = non-immune rabbit IgG at 

equivalent concentration to primary antibodies for panels A – B (details see Supplementary 

Table 1), D) INSL3 (Insulin-like 3), E) Actn4 (Alpha-actinin-4), F-G) negative controls = 

normal goat serum for panels D & E. Insets are western blots of rat TIF probed with the 

respective antibodies, # indicates positive staining in sections, * = specific band on westerns, 

ns = non-specific band. Bar = 50µm. 
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Tables 

Table 1. Names and expression comparisons of top 30 proteins in adult rat testicular interstitial fluid based on MOWSE scores. The full table 

containing 276 proteins is shown in Supplementary Table 2. 

 Comparison with proteomic data Comparison with mRNA expression data 

Protein is present (yes) or not found (-) 

in testicular fluid/cell proteomes. (TIF 

= testicular interstitial fluid, STF = 

seminiferous tubule fluid, PTMC = 

peritubular myoid cell) 

  Cell types within seminiferous 

tubules 

Interstitial cell types 

Rank Accession Gene 

symbol 

Protein MOWSE 

Scores 

# 

Peptides 

Identified 

Sequence 

Coverage 

[%] 

Rat 

TIF 

Ram 

STF 

(1) 

Rat 

STF 

(1) 

Total 

PTMC 

(2) 

Secreted 

PTMC 

(3) 

Human 

plasma 

proteome 

(4) 

Rat epithelial 

mRNA 

expression 

pattern: 

Johnston 2008 

(5) or Chalmel 

2007 (6)# 

Cell grouping 

with preferent- 

ial expression.            

basal = (SC & 

Sg), adluminal 

= (PS & rST) 

(7) 

Rat 

Leydig 

cell 

specific 

(8)* 

Rat 

Leydig 

cell 

specific 

(9)* 

Mouse 

Leydig 

cell 

specific 

(10)* 

1 gi: 158138561 C3 complement C3 [Rattus 

norvegicus] 

4179 43 42.9 yes yes yes yes yes yes NE@  -* - yes 

2 gi: 8392909 Apoa4 apolipoprotein A-IV precursor 3030 29 74.2 yes yes - - - yes NE  - - - 

http://dx.doi.org/
http://dx.doi.org/
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[Rattus norvegicus] 

3 gi: 77861917 Cfh complement factor H [Rattus 

norvegicus] 

2631 30 41.8 yes yes - yes yes yes Sg>>SC&PS& 

rST 

basal - - - 

4 CO4_RAT C4 Complement C4 OS=Rattus 

norvegicus  

1959 21 27.5 yes - yes - - yes no data#  - - - 

5 APOA1_RAT Apoa1 Apolipoprotein A-I OS=Rattus 

norvegicus  

1906 21 64.5 yes yes - - - yes NE  - - - 

6 gi: 149015982 Fn1 fibronectin 1, isoform CRA_e 

[Rattus norvegicus] 

1874 22 22.4 yes - - yes yes yes Sg>>SC>>PS& 

rST 

basal - - yes 

7 FIBB_RAT Fgb Fibrinogen beta chain 

OS=Rattus norvegicus  

1852 23 51.8 yes yes yes - - yes NE  - - - 

8 gi: 158138568 Alb albumin [Rattus norvegicus] 1852 19 42.6 yes yes yes - - yes NE  - - - 

9 gi: 149048530 Cp ceruloplasmin, isoform 

CRA_a [Rattus norvegicus] 

1777 17 25.7 yes - yes - - yes Sg>SC>>rST& 

PS 

basal - - yes 

10 VTDB_RAT Gc Vitamin D-binding protein 

OS=Rattus norvegicus  

1569 16 47.9 yes yes yes - - yes NE  - - - 

11 gi: 56797757 Fga fibrinogen alpha chain isoform 

1 [Rattus norvegicus] 

1370 12 29.8 yes yes - - - yes NE  - - - 

12 gi: 126722991 Itih4 inter-alpha-inhibitor H4 heavy 

chain [Rattus norvegicus] 

1335 12 26.4 yes yes - - - yes NE (interstitial)  - - - 

13 PLMN_RAT Plg Plasminogen OS=Rattus 

norvegicus  

1078 16 40.1 yes yes yes - - yes NE  - - - 

14 gi: 83816939 A1i3 alpha-1-inhibitor 3 precursor 

[Rattus norvegicus] 

1050 13 20.9 yes - - - - - NE  - - - 
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15 gi: 61556986 Tf transferrin [Rattus norvegicus] 1005 11 30.1 yes yes yes - - yes SC>PS&rST>> 

Sg# 

 - - - 

16 gi: 194474004 Col14a1 collagen alpha-1(XIV) chain 

[Rattus norvegicus] 

1003 9 12.3 yes - - yes yes yes Sg>rST&PS>SC  - - - 

17 TBA1B_RAT Tuba1b Tubulin alpha-1B chain 

OS=Rattus norvegicus  

1001 10 46.6 yes - yes yes - yes SC&Sg>rST>> 

PS# 

basal - - - 

18 gi: 119959830 Actb beta-actin [Rattus norvegicus] 999 8 48.4 yes - yes - - yes SC&Sg&rST&PS  - - - 

19 gi: 38328248 Tuba1a Tubulin, alpha 1A [Rattus 

norvegicus] 

980 9 43.5 yes - - yes - yes SC&Sg>rST>> 

PS# 

basal - - - 

20 gi: 149038928 Gsn gelsolin, isoform CRA_a 

[Rattus norvegicus] 

960 8 25.8 yes yes yes yes - yes Sg>SC>rST&PS basal - - yes 

21 THRB_RAT F2 Prothrombin OS=Rattus 

norvegicus  

935 11 29.0 yes yes - - - yes NE  - - - 

22 gi: 8393418 Gapdh glyceraldehyde-3-phosphate 

dehydrogenase [Rattus 

norvegicus] 

930 11 43.5 yes yes yes yes - yes SC&Sg>>PS& 

rST# 

basal - - yes 

23 gi: 122065184 Fgg RecName: Full=Fibrinogen 

gamma chain; Flags: 

Precursor 

926 10 40.4 yes - yes - - yes PS>rST&Sg&SC adluminal - - - 

24 gi: 109472532 A2m PREDICTED: alpha-2-

macroglobulin [Rattus 

norvegicus] 

899 9 15.0 yes yes yes yes - yes SC>>rST&PS& 

Sg 

 - - - 

25 gi: 162287178 Vtn vitronectin [Rattus 

norvegicus] 

890 8 23.2 yes - - - - yes SC&Sg>>rST& 

PS 

basal - - - 

26 TBA1C_RAT Tuba1c Tubulin alpha-1C chain 

OS=Rattus norvegicus  

889 9 40.3 yes - yes - - yes SC&Sg>rST>> 

PS# 

 - - - 
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27 MUG1_RAT Mug1 Murinoglobulin-1 OS=Rattus 

norvegicus  

888 11 13.4 yes - yes - - - NE#  - - - 

28 ITIH3_RAT Itih3 Inter-alpha-trypsin inhibitor 

heavy chain H3  

868 7 25.6 yes - - - - yes rST>>PS&SC> 

Sg 

adluminal - - - 

29 SPA3K_RAT Serpina3k Serine protease inhibitor A3K 

OS=Rattus norvegicus  

781 10 48.3 yes - yes - - - NE  - - yes 

30 gi: 11066005 Hrg histidine-rich glycoprotein 

[Rattus norvegicus] 

774 10 20.8 yes - - - - yes rST&PS# adluminal - - - 

Explanatory notes 

(1) By comparison with Supplementary Table S1[27]. (2) By comparison with Supplementary Table 1 [28]. (3) Secreted proteins by comparison with 

Supplementary Table 5 [28]. (4) Data from Human Plasma Protein Database (http://www.plasmaproteomedatabase.org). (5) By comparison with data from 

[31] (6) By comparison with [30] and searchable online (http://www.germonline.org/index.html). ‘#’ indicates that data is from [30]. If no symbol, data is 

from [31]. 

‘@ NE’: not expressed or below detection limits. ‘No data’: no probeset that matches the gene symbol. ‘Sg’: spermatogonia, ‘SC’: Sertoli cell, ‘PS’: 

pachytene spermatocyte, ‘rST’: round spermatid. ‘>’ indicates expression greater than 2-fold, but less than 4-fold different to the next cell type. ‘>>’ indicates 

expression greater than 4-fold compared with next cell type. Bold text indicates 10-fold higher expression than next cell type. ‘&’ indicates expression 

differences between cell types is less than 2-fold. ‘NE (interstitial)’ indicates a positive signal in seminiferous tubule preps, but not in isolated germ or Sertoli 

cells, hence signal is likely interstitial. (7) Where possible, cell expression has been grouped as either basal (Sertoli cells, spermatogonia) or adluminal 

(pachytene spermatocyte, round spermatid) to reflect the presence of the blood-testis barrier which separates these two cell groupings. Where this pattern was 

not observed (ie: equal expression across all cell types) no grouping was possible. (8) By comparison with Supplementary Table 2, [32]. (9) by comparison 

with Supplemental Table S3 [33] (10) By comparison with Dataset S2 Leydig cell enriched genes, [34]. ‘*’ The Leydig cell data in (8), (9) and (10) is 

processed and only records genes judged by the authors to be Leydig cell-specific. The (-) symbol indicates no data available, but should not be interpreted as 

a lack of expression. 

 

http://www.plasmaproteomedatabase.org/
http://www.germonline.org/index.html
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Table 2. Functional annotation clustering for the Gene Ontology term ‘Biological Process’ using all rat TIF proteins. A more detailed version of this table 

which includes gene names for each Biological Process is shown in Supplementary Table 4. Clusters with an FDR >0.01 were rejected from this analysis. 

Annotation 

Cluster  

Cluster Name Enrichment 

score 

GO Biological Process  Fold 

Enrichment 

P Value FDR 

1 Coagulation 11.77 GO:0050817~coagulation 13.02 5.14E-12 8.88E-09 

2 Acute inflammatory 

response 

7.41 GO:0006958~complement activation, classical pathway 28.65 1.72E-11 2.98E-08 

   GO:0002541~activation of plasma proteins involved in acute 

inflammatory response 

21.91 2.16E-13 3.72E-10 

    GO:0051605~protein maturation by peptide bond cleavage 12.74 1.15E-12 1.99E-09 

    GO:0002526~acute inflammatory response 16.56 9.67E-24 1.67E-20 

    GO:0016064~immunoglobulin mediated immune response 13.13 7.41E-09 1.28E-05 

      GO:0002443~leukocyte mediated immunity 9.93 5.50E-09 9.49E-06 

3 Assembly of complex 

proteins 

5.81 GO:0051258~protein polymerization 19.10 1.26E-09 2.18E-06 

   GO:0043623~cellular protein complex assembly 6.98 9.28E-08 1.60E-04 

      GO:0043933~macromolecular complex subunit organization 2.89 7.52E-07 1.30E-03 

4 Nutritional response 5.46 GO:0007584~response to nutrient 5.01 1.07E-07 1.85E-04 
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  pathway   GO:0009991~response to extracellular stimulus 4.17 6.40E-08 1.11E-04 

5 Peptide bond cleavage 5.11 GO:0006508~proteolysis 2.88 4.57E-09 7.89E-06 

6 Negative regulation of 

clotting 

4.08 GO:0050819~negative regulation of coagulation 24.13 1.82E-08 3.14E-05 

    GO:0032101~regulation of response to external stimulus 5.34 7.86E-07 1.36E-03 

7 Hormone signalling 3.86 GO:0009719~response to endogenous stimulus 2.80 2.19E-06 3.79E-03 

8 Protein polymer 

biosynthesis 

3.6 GO:0051258~protein polymerization 19.10 1.26E-09 2.18E-06 

9 Regulation of cellular 

protein metabolism 

3.12 GO:0032268~regulation of cellular protein metabolic process 3.31 9.11E-07 1.57E-03 

10 Regulation of 

cholesterol transport  

2.85 GO:0032371~regulation of sterol transport 23.60 2.70E-07 4.66E-04 

11 Cell cycle 2.85 GO:0022402~cell cycle process 3.38 3.84E-06 6.64E-03 
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