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Abstract 

During the last years, most biochar studies were carried out on tropical soils whereas 

perennial field experiments on temperate soils are rare. This study presents a 3-year field 

experiment regarding the effects of differently produced biochars (pyrolyzed wood, pyrolyzed 

maize silage, hydrothermal carbonized maize silage) in interaction with digestate 

incorporation and mineral N fertilizer application on soil C and N, crop yields of winter 

wheat, winter rye and maize, and the quality of winter wheat. Soil C and plant available 



potassium were found to be significantly positive affected by pyrolyzed wood biochar 

whereas the latter only in combination with N fertilization. Crop yields of winter wheat, 

winter rye and maize were not affected by biochar and showed no interaction effects with N 

fertilizer supply. Wheat grain quality and nutrition contents were significantly affected by 

biochar application, e.g. highest amounts of phosphorous, potassium and magnesium were 

determined in treatments amended with pyrolyzed maize silage biochar. Biochar induced an 

improved availability of plant nutrients, which apparently were not yield limiting in our case. 

These results limit the potentials of biochar for sustainable intensification in agriculture by 

increasing crop yields for the temperate zones. However, detection of other environmental 

benefits requires further investigations. 

Keywords: Biochar; field experiment; temperate soil; crop yields; wheat grain quality 

 

Introduction 

The growing world population and increasingly scarce land and freshwater resources have 

induced a discussion on “sustainable intensification” in agriculture (Garnett et al. 2013, 

Godfray and Garnett 2014). While productivity growth in agriculture grew faster than the 

world population in the past 50 years, long term projections of the rate of crop yield growth 

for the most important agricultural crops is decreasing (Food and Agriculture Organization of 

the United Nations 2014a). Although land use could be expanded to meet the growing 

demand to some degree, this could only be realized at high environmental costs which 

illustrate the need to intensify the agricultural production (Garnett et al. 2013). As one 

potential solution the use of biochar as soil amendment was progressively investigated during 

the last years due to the assumed beneficial effects on soil properties, e.g. soil pH, cation 

exchange capacity, soil water holding capacity, long term carbon (C) sequestration, and on 

crop yield and the potential of greenhouse gas mitigation (Chan et al. 2007, Van Zwieten et al. 

2010, Case et al. 2012, Biederman and Harpole 2013, Cayuela et al. 2014).  



Biochar is a C-rich material produced by different thermochemical biomass conversion 

processes (e.g. by pyrolysis and hydrothermal carbonization (HTC)). Pyrolysis is a dry 

carbonization technique typically operated at 400-800°C, whereas HTC is a wet process with 

temperatures in the range of 170-280°C and pressures of 10-80 bar. HTC can therefore use 

wet biomass without prior drying and generally achieve a higher yield of solid C product than 

pyrolysis but with relatively low biological stability and porosity (Libra et al. 2011). Variation 

in process design and feedstock (e.g. wood, crop residues and animal manures) results in 

biochars with various physical and chemical properties (Brewer et al. 2011, Meyer et al. 

2011) and therefore varying impacts on soil properties and crop production. 

A meta-analysis of Biederman and Harpole (2013) based on 371 studies from 114 

independent publications showed the variance of possible effects of biochar on plant 

productivity and nutrient cycling. The meta-analysis of Jeffery et al. (2011) showed an overall 

small (approximately 10%) positive effect of biochar amendment to soils on crop 

productivity. However, most of previous experiments were conducted in tropical 

environments with typically acidic soils, low contents of plant nutrients and soil organic 

matter, which can hardly be transferred to temperate zones where typical soil conditions of the 

tropics are not common (Tammeorg et al. 2014a). Research activities of biochar applications 

to temperate soils in perennial field experiments started recently (Gurwick et al. 2013, 

Borchard et al. 2014, Liu et al. 2014, Nelissen et al. 2015). Moreover, available research 

results do not provide a clear picture of crop yield response in the temperate zones, as has 

been stated for the whole world by the meta-analysis by Jeffery et al. (2011). For example, 

Kloss (2014) reported about depressed mustard (Sinapis alba L.) and barley (Hordeum 

vulgare L.) yields and unaffected clover (Trifolium pretense L.) yields within a one year 

greenhouse experiment after the application of three different biochars (pyrolyzed wheat 

straw, pyrolyzed mixed woodchips and pyrolyzed vineyard pruning). In pot and field 

experiments with maize (Zea mays L.) in Germany (pot experiment) and North America (field 



experiment) no yield effects were found after the application of biochar (Guerena et al. 2013, 

Borchard et al. 2014). Latest research has shown that yield response to biochar application 

interacts with fertilizer supply (Blackwell et al. 2010, Schulz and Glaser 2012, Guerena et al. 

2013) as well as with an enrichment of biochar with nutrients (Gunes et al. 2014, Reverchon 

et al. 2014) or the concurrent application of nutrient rich organic matter (Steiner et al. 2007), 

which may be an explanation for the mixed results of crop yield response in studies with 

biochar from the temperate zones. Furthermore, fermentation of biochars with biologically 

active digestate may contribute to the degradation of volatile organic compounds that are 

potentially phytotoxic (Bargmann et al. 2013, Becker et al. 2013). However, information on 

the comparative effects of biochars originated from pyrolysis or HTC in combination with or 

without digestate and fermentation on soil properties and crop yield is still lacking.  

Most biochar field studies focused on the changes of soil quality and yield effects 

(Lehmann et al. 2003, Chan et al. 2007, Steiner et al. 2007, Asai et al. 2009, Van Zwieten et 

al. 2010, Vaccari et al. 2011, Jones et al. 2012). To our knowledge, only few studies included 

crop growth and development, yield components, nutrient contents and quality of crop 

products (Chan et al. 2007, Tagoe et al. 2008, Uzoma et al. 2011, Jones et al. 2012, Schmidt 

et al. 2014, Tammeorg et al. 2014a). For example, Tammeorg et al. (2014a) reported that the 

seed number per plant of faba bean (Vicia faba L.) and turnip rape (Brassica rapa L.) was 

significantly higher when grown with biochar. Moreover, phosphorus (P) uptake and nitrogen 

(N) use efficiency by plants were increased after biochar addition to soil (Reddy et al. 2013). 

This paper aims to contribute to the question of the effects of differently treated biochars 

on crop yields of winter wheat (Triticum aestivum L.), winter rye (Secale cereale L.) and 

maize (Zea mays L.), the yield components and grain quality of winter wheat as well as on the 

C content in the soil. Therefore, we have set up a three-year field experiment focusing on two 

research objectives, which were evaluated separately. We investigated (I) the impact of 

biochars originated from wood or maize silage, carbonized by pyrolysis or HTC and treated 



with or without digestate and (II) the interaction of biochar from pyrolyzed wood and mineral 

N fertilization on crop yields and soil C content.  

 

Materials and Methods 

Preparation and post-treatment of the biochars 

Three different biochars were used for the investigations. One biochar (W(py)) was 

produced by Pyreg (Dörth, Germany) from a mixture of deciduous and coniferous wood chips 

by means of a screw pyrolyzer. The inlet gas temperature of the reactor’s heating jacket was 

850 °C (± 20 °C) and the temperature of the material increased to up to 900 °C. The hot char 

was quenched with water to about 40% dry matter (DM). The second biochar (M(py)) was 

obtained from Regenerative Energie Wirtschaftssysteme GmbH (Quakenbrück, Germany) 

produced from ensilaged whole crop maize using a continuous pyrolyzer with a nominal 

throughput of 150 kg h-1. The pyrolyzer (Regenis MAX) is a staged system with consecutive 

steps for drying, degassing, and pyrolysis along the horizontal material flow. The biochar 

used in this study was produced at a pyrolysis temperature of 600 °C (30 min), a throughput 

of 100 kg h-1, and slight negative pressure of 5 mbar. Afterwards the hot char was quenched 

by means of water sprinkling. The third biochar was obtained by batch-wise HTC of ensilaged 

whole crop maize at 210°C and 23 bar for 8 h (M(htc)). After the carbonization process the 

resulting HTC slurry was separated into a solid and a liquid phase by means of a chamber 

filter press.  

Digestate was obtained from biogas production using ensilaged whole crop maize. The 

maize silage was digested by a batch-wise solid-state process at mesophilic temperatures 

(approx. 35°C). For biochars M(py) and M(htc) digestate was added for subsequent 

fermentation resulting in biochars named M(py)+D and M(htc)+D. In order to obtain suitable 

conditions for methanogenic fermentation the biochars were mixed with digestate and water. 

For fermentation, a C based digestate to substrate ratio of 1:2 was aspired. By means of water 



addition, each mixture was intended to show a DM content of 25-30%. Approximately 460 kg 

of M(py) and 1170 kg of M(htc) was mixed with 1850 kg of digestate, respectively, as well as 

860 kg (for M(py)) and 400 kg (for M(htc)) of water. The mixtures were filled in flexible 

intermediate bulk container (FIBCs). In order to establish anaerobic conditions the FIBCs 

were wrapped in silage plastic. Mesophilic temperatures were maintained by placing the 

FIBCs on a water-heated concrete plate and covered with an additional plastic sheet. After 29 

days the fermentation was stopped and the FIBCs were removed from the heated concrete 

plate. As expected, the incorporation of digestate to biochar and subsequent fermentation 

decreased the C content and increased the content of ash, when compared to the raw biochars 

(Table 1). All major nutrients were enriched, except for the potassium (K) content of 

M(py)+D, which decreased slightly. Further, M(htc) received a strong increase in pH (5.25 to 

7.03) and electrical conductivity (EC) (0.30 to 1.24 S m-1), whereas the pH and EC of M(py) 

were slightly lower after fermentation (Table 1). Digestate addition to W(py) was made by 

mixing biochar and biochar directly before field application.  

[Table 1 near hear] 

Field experiment 

The field experiment was carried out in Berge near Potsdam (State of Brandenburg, 

Germany; N52° 37' 11.91" E12° 46' 0.268"), an agricultural experimental station of the 

Institute of Agricultural and Urban Ecological Projects. The site is located 45 m above sea 

level; mean annual temperature at this site is 8.7°C and the mean annual precipitation 503 

mm. According to the classification of the Food and Agriculture Organization of the United 

Nations (2014b) the soil at the location of the field experiment can be classified as Cambisol, 

with a sandy loam texture (71% sand, 22% silt, and 7% clay), an initial total C (Ct) and N (Nt) 

content of 7.3 and 0.7 g kg-1 in the upper 20 cm of the soil, respectively, a moderate fertility 

(soil fertility index 35), a pH value of 6.0 and double lactate soluble P (Pdl) and K (Kdl) 

contents of 0.05 and 0.11 g kg-1 dry soil, respectively. The field has been planted with cereals 



and maize in rotation in the past. The previous crop before the beginning of the field trial was 

oat (Avena sativa L.); the last application of organic fertilizer (solid digestate) was in 2010.  

The field experiment was set up in September 2012 with a three-factorial randomized 

complete block design. Four blocks were aligned parallel to a hedge at one side of the field 

which could have an impact on the experiment (Figure 1 a)). Each plot has a size of 4.5 x 10 

m, containing an investigation area (1.5 x 9 m) and a harvest area (1.5 x 8 m) (Figure 1 b)). 

Investigation area provided opportunities to take soil samples, whereas the harvest area 

remained undisturbed for yield investigations.  

[Figure 1 near hear] 

The experimental factors were biochars (BC), digestate incorporation (D), and levels of 

mineral N fertilizer applications (fN). In total 14 treatment combinations, varying in origin of 

input material for biochar production, biochar production methods, type of digestate 

incorporation and fertilization intensity, were randomized in each block. Not all combinations 

of treatments were realized; therefore, two specific orthogonal groups (OG’s) (Table 2) were 

selected to evaluate the research questions with the present design. Treatments of OG1 were 

used to analyze the impact of biochars originated from wood or maize silage, carbonized by 

pyrolysis or HTC and treated with or without digestate. The OG2 evaluated the interaction of 

biochar from pyrolyzed wood and different mineral N fertilization rates.  

In September 2012 the biochars W(py), M(py), M(htc), M(py)+D and M(htc)+D were applied 

at a rate of 7.7 t ha-1 (on DM basis). Half of W(py) and control treatments were mixed with 

digestate (W(py)+D and C+D) before field application with an amount of 3.85 t ha-1 C 

corresponding to the digestate-C:biochar-C ratio of 1:2 of the fermented biochars. Cultivated 

crops were winter wheat (2012) and winter rye (2013) followed by the catch crop oil radish 

(Raphanus sativus var. oleiformis) (2014) and maize (2015). Each cultivation year, the N 

demand was examined and estimated at 150 kg N ha-1 for each crop. Mineral N fertilizer 

(Calcium ammonium nitrate, CAN 27% N) was applied in rates of 0%, 50%, 100% and 130% 



of the estimated crop demand. Within cultivation period 2012-2015 sowing, harvest, soil 

cultivation, plant protection measures and N fertilization were performed according to Table 

3. Meteorological data were taken from the weather station of German Meteorological Service 

located at the research station in Berge ( 

Figure 2). 

[Table 2 near hear] 

[Table 3 near hear] 

Soil, biochar and digestate analysis 

In 2012 soil samples (5 from each plot; crosswise sampling) were taken from fifteen 

evenly distributed plots to a depth of 10 cm to determine soil texture. Therefore, pipet method 

according to DIN ISO 11277 (2002) was applied after samples were air dried and sieved to 2 

mm. For the interpolation of the particle size distribution over the entire experimental site the 

geographic information system (ArcGIS for Desktop 10.0, ESRI) using the Local Polynomial 

Interpolation method was applied. To determine the impact of biochar, digestate and mineral 

fertilizer N on total C (Ct) and total N (Nt) concentrations in the upper 20 cm of the soil, 

samples (five from each plot) were taken in 2012 before application of biochar, digestate and 

mineral N fertilizer, after winter wheat harvest (August 2013), after winter rye harvest 

(November 2014) and after the harvest of maize (September 2015). Samples were mixed to 

composite samples, respectively, and Ct and Nt were determined in duplicate by an elemental 

analyzer (Vario MAX Cube, Elementar Analysensysteme GmbH, Hanau, Germany)). The pH 

values, Kdl and Pdl were determined in 2012 before biochar application and in 2015 after 

maize harvest. Double lactate soluble P and K were analyzed according to the VDLUFA 

method (Naumann and Bassler 1991) and pH was measured potentiometrically. Samples for 

the determination of mineral N (Nmin) were taken in 2012 before application of biochar, 

digestate and mineral N fertilizer and in 2015 after harvest of maize. Therefore, ammonium 



(NH4
+) and nitrate (NO3

-) were extracted with 0.0125 M CaCl2 (5ml per gram dry sample) 

and measured by flow-injection analysis (FIA System, MLE, Germany) 

The DM and ash content of biochars and digestate were determined by drying for 24 h at 

105 °C and subsequently at 550°C. Electric conductivity (EC) and pH values were measured 

in distilled water (ratio biochars/digestate and water; 1:2.5 w/v). Determination of Nmin was 

performed using the same method like for soils. Sulphur (S), hydrogen (H), C and N was 

determined on an elemental analyzer (Vario EL III, Elementar Analysensysteme, Germany). 

Oxygen (O) contents were calculated using contents of C, H, N, S and ash contents. Total 

contents of calcium, iron, magnesium (Mg), potassium (K) and phosphorous (P) were 

determined by inductively coupled plasma optical emission spectrometry. 

Crop yield and plant analysis 

During growing seasons the growth and the development of winter wheat and maize was 

calculated on the basis of the BBCH-code (Meier 1997) whereas crop height was measured by 

a folding rule at five dates between May 2013 and June 2013 and June 2015 and September 

2015. After harvest the fresh and dry matter of the winter wheat and winter rye straw and 

grain as well as the whole biomass of maize was determined. An aliquot of the wheat and rye 

straw and maize was dried at 60°C and milled to 1 mm to determine C and N by dry 

combustion on a Vario MAX CNS Element Analyzer (Elementar Analysensysteme GmbH, 

Hanau, Germany). In the first year of cultivation an aliquot of wheat grains were also milled 

to 1 mm and analysed for C and N as described before. Contents of P K and Mg in grains 

were solubilized by microwave extraction (Mars 6, CEM, Germany) and analysed using an 

ICP-OES (Thermo, United States). With the N content of grains crude protein content was 

estimated (N×5.7), falling number (amylase activity index) (Perten 1964) and sedimentation 

value after ZELENY (Zabel 1965) were tested as proxy for the baking quality of wheat. The 

yield components were quantified during growing season by counting three times one meter 

ears for each plot and calculating ears per m2. Grains per ear were also calculated by dividing 



ears per m2 through grains per m2. The thousand grain weight was determined on samples 

counted by a semi-automated counter. As a scale for the outer quality of wheat, the hectoliter 

weight was measured (Schmorl 1937).  

Statistical analyses 

Statistical analyses were performed using SAS software (SAS version 9.3; SAS Institute 

Inc., Cary, NC, USA), considering proxies for soil quality as covariates. Due to the fact, that 

the clay content varied across the experimental site ( 

 

Figure 3) and the distribution could not only be explained by the applied block design, we 

used the clay content as covariable in the statistical analyzes in addition to the block effect. In 

all models the considered covariate proved to be statistically different from zero. The models 

had a better fit (lower Akaike Information Criterion) than models without covariates. The data 

were grouped and evaluated according to the two OG’s by two-way analysis of variance 

(ANOVA) with the main factors BC and D and the main factors BC and fN, respectively. The 

ANOVA were performed using Proc Mixed followed by LSMeans Tukey HSD post hoc test 

with significant effects considered for P < 0.05. The SAS macro %MULT was used to create a 

letter display representing the significant differences (Piepho 2012).  

[Figure 1 near hear] 

 

Results 

Effects of W(py), M(py) and M(htc) treated with or without digestate (OG1) 

Biochar application and digestate incorporation did not affect pH and Pdl whereas Kdl 

showed an interaction of BC and D in 2015 (Table 4) with a significant higher Kdl 

concentration solely in the control treatment amended with digestate (C+D_N150). Potassium 

contents in C+D_N150 were in the range of treatments amended with biochars; however, no 

further increase of Kdl was induced by digestate in biochar treatments. Three years after 



applying different biochars with or without digestate incorporation a significant effect of 

biochar application on soil Ct and Nt was detected. The application of M(htc) and W(py) 

resulted in significantly higher Ct concentrations in the upper 20 cm of the soil compared to 

control (Table 4). Carbon concentrations in W(py), M(htc), M(py) and control treatments 

were 11.2, 12.1, 9.8 and 9.3 g kg-1. In the first and second year no impact of biochar and 

digestate on soil Ct could be detected. Similarly, no biochar effect was found for Nt between 

2012 and 2014 whereas three years after biochar application Nt concentrations were also 

significantly higher in treatments with M(htc) and W(py) compared to control treatments 

(Table 4). Digestate incorporation also increased the soil Ct compared to control treatments 

after the third year of cultivation. However, in the first two years no digestate effect on Ct and 

on Nt could be proven (Table 4). 

Concentrations of Nmin measured in three soil depth (0-30, 30-60 and 60-90 cm) showed 

no significant differences at the initial state in 2012. In 2015, three years after biochar 

application, the total content of Nmin in all treatments and layers were higher than in 2012. 

Also the allocation to the three layers (0-30, 30-60, 60-90cm) was different with 

70%:20%:10% in 2012 and about 50%:30%:20% in 2015. Additionally, BC and D interacted 

significantly expressed in higher Nmin contents in 30-60 cm depth solely in the 

M(py)+D_N150 treatment compared to all other treatments (Table 4).  

[Table 4 near hear] 

Yields of winter wheat, winter rye and maize showed no significant differences caused by 

BC or D compared to control treatments (Table 5). Averaged yields of winter wheat, winter 

rye and maize were 7.7 (grain) and 7.1 t ha-1 (straw), 8.1 (grain) and 8.3 t ha-1 (straw) and 13.8 

t ha-1 (dry matter), respectively. During the vegetation period no differences in the plant-

growth stages (BBCH-code; Meier (1997)) of winter wheat and maize and in growth heights 

of maize induced by biochar application or digestate incorporation were found. However, 

growth heights of winter wheat from May 2013 to June 2013 were significantly higher (2-4%) 



in treatments with digestate incorporation. Thereafter, no statistically significant differences 

in heights of winter wheat were detected (data not shown).  Plant-growth stages and heights of 

winter rye in 2013/2014 were not determined. 

Total C and N contents in grain and straw of winter wheat and winter rye and total C 

content in maize biomass were not affected by BC or D. Solely N in maize biomass was 

significantly higher in digestate treatments but unaffected by BC (Table 5). Yield components 

of winter wheat had averaged amounts of 477, 34.3, 46.8 and 80.1 for ears m-2, grains ear-1, 

grain weight and hectoliter weight and showed no significant differences between biochar and 

digestate treatments, respectively. Similarly, the nutrient composition of wheat straw (except 

Kstraw) showed no significant differences with average Pstraw and Mgstraw contents of 0.69 and 

0.64 g kg-1 dry soil, respectively. However, the Kstraw content was significantly higher in 

treatments added with digestate independently of biochar addition (Table 6). The 

concentrations of P, K and Mg in wheat grain ranged between 4.0 – 4.7, 4.1 – 4.7 and 1.3 – 

1.6 g kg-1, respectively, and were significantly affected by the main factor BC. Phosphorus, K 

and Mg contents in grain had considerably higher contents in treatments with M(py) addition 

(Table 6). However, crude protein content ranged between 108 and 133 g kg-1 and was 

significantly positive affected by D, independently of biochar addition (Table 6). The falling 

number and the sedimentation value were on average 442 and 14.3, respectively, and no 

statistically significant impacts of the factor BC or D were found (Table 6). 

Concerning the impact of different biochars treated with or without digestate no 

interactions of the main factors BC and D could be detected for any dependent variable (Table 

4, 5 and 6). 

 [Table 5 near hear] 

[Table 6 near hear] 

Interaction of W(py) and mineral N fertilization (OG2) 



To identify the interaction of biochar and mineral N fertilization, control and W(py) 

treatments without digestate incorporation, fertilized with 0, 75, 150 and 195 kg N ha-1, 

respectively (Table 2) were considered. Similar to OG1, pH and plant available P was not 

affected by BC and fN three years after biochar application. However, plant available K 

showed an BC × fN interaction (Table 4) with a significant increase of Kdl in W(py) 

treatments compared to controls when fertilized with 75 and 150 kg N ha-1. Total C 

concentration in the upper 20 cm of the soil was significantly higher in W(py) treatments 

compared to controls since the second year after biochar amendment (Table 4). In contrast, Nt 

concentrations were not significantly altered by W(py) within the entire field experiment. 

Mineral N measured in three soil depth (0-30, 30-60 and 60-90 cm) showed no significant 

differences in 2012. In 2015, Nmin contents of control and W(py) treatments were higher 

compared to 2012 and increased significantly with increasing N rates (Table 4). Whereas 

about 70% of the Nmin was found in the top 30 cm of the soil in 2012, the distribution of Nmin 

after maize harvest was more homogenous to all three depths. In 2015, significantly higher 

Nmin concentrations compared to controls were only found in treatments fertilized with 195 kg 

N ha-1 (Table 4), exclusively due to significantly different NO3
-- N concentrations (data not 

shown). 

Grain and straw yields of wheat and rye were significantly increased by mineral N 

fertilization compared to treatments with no mineral N addition (Table 5). Surprisingly, in the 

third year no impact of mineral N fertilization could be determined in maize yields. As 

already seen in OG1, the application of biochar, more precisely W(py), did not affect the 

yields over the three-year cultivation period. Also plant growth stages and growth heights of 

winter wheat were significantly affected by fertilizer N application rates. Growth heights 

measured in May and June 2013 increased with increasing N rates. At the End of June 2013 a 

BC × fN interaction was found with significant higher growth heights in W(py) treatments 

compared to controls when no N fertilizer was applied. The application of mineral N fertilizer 



accelerated the plant development. Whereas in fertilized treatments the flag leaf was already 

developed in May 2013, plants in control treatments were still in an earlier development 

stage. However, afterwards no further significant differences in plant growth stages were 

found. No effects of W(py) biochar on plant growth stages and growth heights of winter 

wheat were detected. During vegetation period of maize no differences in the plant-growth 

stages and in growth heights were induced by W(py) application or fertilizer N application 

rates.  

Total C and N contents in grain and straw of winter wheat and winter rye and total N 

content in maize biomass were significantly higher in mineral N fertilized treatments (Table 

6). A BC effect was not detected. All plant parameters, only determined for wheat in the first 

year, were significantly affected by the main factor fN, except grain weight. However, the 

effect of fertilizer N rates was different. For ears m-2, grains ear-1, hectoliter weight, Kstraw, 

crude protein content and falling number highest values were determined at highest fertilizer 

N rates whereas for Pstraw, Mgstraw, Pgrain, Kgrain and Mggrain highest values were found in 

unfertilized/low fertilized treatments (Table 6). However, Pgrain and falling number were 

additionally affected by W(py) application inducing increased values, but showed no 

interaction effects of BC and fN. For sedimentation value a BC × fN interaction effect was 

found, in that significant lower values occurred in treatments without biochar and fertilizer N 

addition. This means, that the addition of biochar or mineral N fertilizer, independent of the 

rate, induced significant higher sedimentation values compared to control treatments without 

biochar and N fertilizer addition. Statistically significant differences between biochar and N 

treatments could not be found (Table 6).  

 

Discussion 

Effects on yield components, quality and nutrients in winter wheat straw and grain 



One year after biochar application we found statistically significant effects of biochar on 

crop quality and contents of specific chemical elements in the grain. The contents of P, K and 

Mg in winter wheat grain were significantly higher in M(py) treatments compared to the other 

biochars and the control presumably induced by highest contents of K and Mg and P in M(py) 

biochars (Table 1) due to the combination of feedstock (maize silage) and carbonization 

process (pyrolysis). Furthermore, the M(py) biochar could have affected the sorption and 

desorption of phosphate in the soil, resulting in higher uptake of P by the plants (Morales et 

al. 2013). Apparently P was not yield limiting in our study, since the additional availability of 

P did not affect crop yield. These findings contradicted the review of Singh et al. (2015) who 

stated that no impact of biochar on the crop nutritional quality took place during the initial 

time after application. Phosphate content of wheat grain as well as wheat quality was affected 

by both BC and fN. The higher Pgrain contents in treatments applied with W(py) may also be 

induced by sorption desorption processes. On soils with low concentration of available P 

biochar obtained by pyrolysis might have the potential to reduce P fertilizer demand. Also, the 

indicator for wheat quality falling number was positively affected by BC. However, falling 

numbers >300 sec indicate a reduced enzyme activity and therefore low baking quality, which 

possibly could be explained by a rather late harvest date of the wheat.  

The K content in straw (Kstraw) was significantly affected by digestate addition. A reason 

for that could be the high K content in digestate and biochars with digestate incorporation and 

subsequent fermentation (Table 1) which also increased K content in soil. A higher Kstraw 

content in treatments with the same digestate and biochars was also found in a pot experiment 

with spring wheat (Reibe et al. 2014). Similarly, crude protein content of winter wheat grain 

showed highest values in digestate treatments. As the crude protein content is mainly 

influenced by fN (Ozturk et al. 2003), the high content of available N (102 mg NO3
--N kg-1, 

253 mg NH4
+-N kg-1; Table 1) in the digestate might have been the reason for this effect.  



Biochar application induced no effects on yield components such as ears m-2, grains ear-1, 

grain weight and hectoliter weight. This result was also consistent over the four different 

fertilizer levels as well as for digestate incorporation. This is in line with results after an 

application of spruce and pine-biochar in a field experiment with winter wheat in Finland in 

the first year (Tammeorg et al. 2014a).  

Effects on yield and plant growth 

Even though the contents of nutrients important for plant growth (K, P, Mg) were 

increased in the first year after biochar application, no effect on crop yields within three years 

were detected. This could be explained by an already good supply of K and P in the initial 

soil. Similar results regarding the neutral yield effects were reported from other perennial 

field studies performed under temperate and boreal conditions for a variety of crops, as spring 

barley (Nelissen et al. 2015), maize (Jones et al. 2012, Borchard et al. 2014), wheat, turnip 

rape and faba bean (Tammeorg et al. 2014a, Tammeorg et al. 2014b). Apparently in the 

temperate zones yield response to biochar is not as pronounced as in tropical environments.  

The positive effects of mineral N fertilizer on crop yields are already well known. 

Our results showed no interaction effects of biochar and mineral N fertilizer. In 

contrast, Chan et al. (2007) found significant BC × fN interaction effects in a study 

with 10, 50 and 100 t biochar ha-1 and 100 kg N ha-1 N fertilization showing increasing 

yields with increasing rates of biochar application in the presence of N fertilizer. The 

application rate of biochar in our study was in the lower range of that in the above 

mentioned one, which may explain the limited response to interaction effects. 

However, at agricultural field scale biochar application rates of 50 t ha-1 and above are 

economically not feasible. Usually, the positive effects of mineral N fertilizer on crop 

yields are also applicable for maize. However, in our study neither mineral N fertilizer 

nor biochar or digestate application affected the yield of maize probably due to a 

sufficient availability of N from soil N. One explanation might be an established 



surplus of N after ploughing the oil radish, which was cultivated before maize. 

Because of this also the unfertilized controls as well as the lower fertilized plots 

received sufficient N. Another possible explanation could be a shift of mineral N into 

deeper soil layers or removal through surface runoff directly after application because 

of an exceptionally high precipitation event directly after the first fertilization in May ( 

Figure 2). An indication for this is the higher soil Nmin status after maize harvest 

compared to 2012 and a higher proportion of Nmin in deeper soil layers (30-90 cm) (Table 4). 

Significantly higher crop heights of winter wheat from May 2013 to June 2013 induced 

by digestate incorporation could be explained by an input of plant available nutrients (Mg, Ca, 

K etc.) within digestate. Schulz and Glaser (2012) observed a similar effect of biochar 

amended with compost on the crop height of oat. 

  [ 

Figure 2 near hear] 

Effects on soil C content 

  Biochars are C rich products which mainly consist of aromatic compounds and 

therefore are suitable to sequester C in agricultural soils (Lehmann and Joseph 2009). Most 

studies observed an increase of soil C directly and also several years after the application of 

biochar (Chan et al. 2007, Biederman and Harpole 2013, Liu et al. 2014, Nelissen et al. 2015). 

In this study we detected statistically significant changes of Ct concentrations in the first two 

years only for W(py) biochar addition in OG2, however, not in OG1 when comparing W(py) 

with the other biochars and the control. One explanation for not finding a statistical proof for 

added C in OG1 is probably related to the high variance of Ct among the replications, which is 

about twice as high as the variance of the control treatments. Furthermore, due to the 

experimental design the statistical analysis of the factor biochar (W(py)) in OG2 were based 

on twice the observations compared to OG1. However, M(py) and M(htc) were only 

investigated in OG1. Hence, the results cannot certainly contribute to the question of potential 



C mineralization of biochar or soil C of the treatments M(py) and M(htc). However, the 

significant increase of Ct concentration after W(py) application indicate the potential of 

pyrolyzed wood-biochar to sequester C after application to soil. This might have been a result 

of the low hydrogen (H):C ratio (Table 1) of W(py). The H:C ratio as well as the oxygen 

(O):C ratio are regarded as indicators for the aromaticity and stability of biochars (Lehmann 

and Joseph 2009, Spokas et al. 2011). Likewise, the high pyrolysis temperature and Ct content 

of the W(py) biochar suggests lower biochar mineralization rates due to a higher degree of 

aromaticity and stability (Ameloot et al. 2013). The H:C ratio and Ct content of M(py) was 

approximately as high as in W(py) but induced minor changes in soil Ct compared to W(py). 

Possibly, due to the higher N content in M(py) microbial activity was increased in these 

treatments simultaneously inducing a priming effect in these treatments. Hydrothermal 

carbonization as well as the addition of digestate by subsequent fermentation resulted in 

increased H:C and O:C ratios and reduced Ct contents (Table 1), respectively, indicating a 

reduced stability and therefore a diminished ability to sequester C of these biochars. After the 

third year of cultivation, significantly higher Ct and Nt concentrations were also observed in 

M(htc) treatments compared to controls, however, exclusively in treatments where biochar 

was fermented with digestate. Possibly, M(htc) and digestate developed an interaction which 

increased the soil C content by stabilizing the biochar-C or enhancing the microbial biomass. 

These increases of Ct indicated the potential of pyrolyzed and hydrothermal carbonized 

biochar to sequester C after application to soil. However, it also showed that not only the type 

of carbonization method or feedstock caused this effect.  

 

Conclusion 

After the application of differently produced biochars based on biomass of wood 

debris and maize, crop yields of winter wheat, winter rye and maize were not affected by 

biochar and showed no interaction effects with N fertilizer supply. This result limits the 



potentials of biochar for sustainable intensification and reduced environmental damage due to 

agricultural production for the temperate zones. The presented results indicated that the 

different biochars may induce improved availability of plant nutrients in the first year after 

application to a temperate sandy soil. This was shown by higher contents of plant nutrients in 

the winter wheat straw and grain, however, without positive yield response. Apparently, these 

plants nutrients were not yield limiting in our case. Yet, it has to be mentioned that the 

biochar application rates in this study were comparatively low. The incorporation of digestate 

by fermentation or mixing showed no yield effect but positively affected the soil nutrient 

content in combination with the biochars. However, the fact that no negative yield effects 

were found after biochar application suggests the potential of biochar for C sequestration and 

other environmental benefits, which still need to be identified. 
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Table 1. Biochar and digestate characteristics 1 
 2 
    D W(py) M(py) M(py)+D M(htc) M(htc)+D 

DM105°C (g kg FM-1) 236 551 929 300 474 328 

Ash (g kg DM-1) 343 166 184 276 32 252 

pH (CaCl2) 8.26 9.35 9.89 9.52 5.25 7.03 

EC (Sm−1) 2.38 1.71 3.08 2.25 0.30 1.24 

NH4
+-N (mg kg-1 DM) 253 0.64 2.59 13.9 0.39 49.25 

NO3
--N (mg kg-1 DM) 102 0.88 1.27 41.78 n.d. 1.20 

Nt (g kg-1 DM) 36.6 7.19 16.5 25.8 20.9 28.8 

Ct (g kg-1 DM) 401 776 752 558 646 549 

St (g kg-1 DM) 5.36 2.47 2.67 4.00 2.88 3.36 

Ht (g kg-1 DM) 40.4 14.0 13.4 24.2 46.0 56.8 

O (g kg-1 DM) 174 33.7 31.6 113 253 110 

H/C atomic ratio 1.21 0.22 0.21 0.52 0.86 1.24 

O/C atomic ratio 0.33 0.03 0.03 0.15 0.29 0.15 

Ca (g kg-1 DM) 14.27 26.23 9.62 17.04 2.71 7.30 

Fe (g kg-1 DM) 3.67 3.08 11.81 13.70 3.69 3.90 

Mg (g kg-1 DM) 3.12 3.05 5.11 4.57 0.43 1.33 

K (g kg-1 DM) 20.01 5.77 33.53 25.40 1.22 8.11 

P  (g kg-1 DM) 4.14 2.26 5.67 8.07 2.16 2.93 

DM dry matter, EC electrical conductivity, Nt total nitrogen, Ct total carbon, St total sulfur, Ht total hydrogen, O oxygen, Ca 

calcium, Fe iron, Mg magnesium, K potassium, P phosphorous, D digestate, W pyrolyzed wood, M(py) pyrolyzed maize silage, 

M(py)+D fermented pyrolyzed maize silage, M(htc) hydrothermal carbonized maize silage, M(htc)+D fermented hydrothermal 

carbonized maize silage, n.d. not detectable 

 3 

 4 



Table 2. Treatments and factors of the field experiment as well as the assignment to the orthogonal groups. 5 

Treatment Factors  Orthogonal groups  

Total amount of 

biochar and digestate 
  

BC  D  fN  OG 1 OG2  

  feedstock process     [kg N ha-1]       [t DM ha-1] 

C-D_N0 - -  -  -    x  - 

C-D_N75 - -  -  75    x  - 

C-D_N150 - -  -  150  x x  - 

C-D_N195 - -  -  195    x  - 

C+D_N150 Maize silage Anerobic digestion  added on the field 150  x    9.6 

W(py)-D_N0 Wood Pyrolysis  -  -    x  10 

W(py)-D_N75 Wood Pyrolysis  -  75    x  10 

W(py)-D_N150 Wood Pyrolysis  -  150  x x  10 

W(py)-D_N195 Wood Pyrolysis  -  195    x  10 

W(py)+D_N150 Wood+Maize silage Pyrolysis+Anerobic digestion  added on the field  150  x    10+9.6 

M(py)-D_N150 Maize silage Pyrolysis  -  150  x    10 

M(py)+D_N150 Maize silage Pyrolysis+Anerobic digestion  by fermentation   150  x    14 

M(htc)-D_N150 Maize silage Hydrothermal carbonization  -  150  x    12 

M(htc)+D_N150 Maize silage Hydrothermal carbonization+Anerobic digestion  by fermentation   150  x    14 

C control, W wood, M maize, py pyrolyzed, htc hydrothermal carbonized, D digestate, BC biochar, fN fertilizer N rates, DM dry matter, x treatment belongs to the Orthogonal Group above-named 



Table 3. Agro-technical data  6 

Management Date 
Application of biochars and digestate 12-Sep-2012 
  Tillage with cultivator 17-Sep-2012 
  Tillage with plow 20-Sep-2012 
      
Crop: Winter wheat (Triticum aestivum L.)   
  Sowing (350 seeds m-2) 18-Oct-2012 
  Herbicide application (3 l ha-1 Picona) 12-Nov-2012 
  1. Mineral fertilization  11-Apr-2013 
  2. Mineral fertilization  6-May-2013 
  Fungicide application (1 l ha-1 Juwel Top) 14-May-2013 
  Fungicide application (0.5 l ha-1 Taspa) 4-Jun-2013 
  Insecticide application (0.075 l ha-1 Karate Zeon) 4-Jun-2013 
  Harvest  15-Aug-2013 
      
  Stubble mulching 22-Aug-2013 
  Tillage with cultivator 27-Aug-2013 
  Tillage with cultivator 17-Sep-2013 
  Tillage with plow 24-Sep-2013 
      
Crop: Winter rye (Secale cereale L.)   
  Sowing (150 seeds m-2) 25-Sep-2013 
  Herbicide application (5 l ha-1 Boxer, 0.07 l ha-1 Primus) 25-Oct-2013 
  Growth regulator application (0.8 l ha-1 CCC) 25-Oct-2013 
  1. Mineral fertilization  6-Mar-2014 
  Herbicide application (50 g ha-1 Artus, 0.1 l ha-1 Primus) 14-Mar-2014 
  Fungicide application (0.9 l ha-1 Champion) 14-Mar-2014 
  2. Mineral fertilization  14-Apr-2014 
  Fungicide application (0.9 l ha-1 Diamant) 14-May-2014 
  Harvest  7-Aug-2014 
      
  Tillage with disc harrow 12-Aug-2014 
  Sowing of oil radish (Raphanus sativus var. oleiformis) 3-Sep-2014 
  Tillage with disk harrow 21-Apr-2015 
      
Crop: Maize (Zea mays L.)   
  Sowing (16 seeds m-2) 22-Apr-2015 
  1. Mineral fertilization  11-May-2015 
  Herbicide application (1.5 l ha-1 Calaris) 20-May-2015 
  Fungicide application (1.25 l ha-1 Diamant) 20-May-2015 
  Herbicide application (0.7 l ha-1 Motivell Forte) 20-May-2015 
  2. Mineral fertilization  16-Jun-2015 
  Herbicide application (2 l ha-1 Gardow Gold) 16-Jun-2015 
  Harvest 18-Sep-2015 



Table 4. Soil pH, double lactate soluble P (Pdl) and potassium (Kdl), total carbon (Ct) and nitrogen (Nt) and mineral N (Nmin) contents in soil and 7 

the probability values for the treatment factors biochar and digestate incorporation/fermentation and their interactions in the first orthogonal 8 

group as well as for the treatment factors biochar and N-fertilization and their interactions in the second orthogonal group.  9 

    pH  Kdl   Pdl  Ct  Nt  Nmin 2012  Nmin 2015 

    2012 2015  2012 2015   2012 2015  2012 2013 2014 2015  2012 2013 2014 2015  
0-30 
cm 

30-60 
cm 

60-90 
cm 

 
0-30 
cm 

30-60 
cm 

60-90 
cm 

    (-)  (mg 100g-1)   (mg 100g-1)  (g kg-1)  (g kg-1)  (kg ha-1)  (kg ha-1) 
OG1                                                  

C   6.12 6.29  11.4 16.1   5.80 5.51  7.39 9.19 8.81 9.34 c  0.69 0.82 1.01 0.61 b  39.5 9.7 4.20  63.4 37.4 b 16.8 
M(py)   5.81 6.08  8.85 19.6   4.89 5.18  7.16 9.51 9.77 9.82 bc  0.64 0.79 0.87 0.61 b  47.9 13.2 4.50  63.4 76.9 a 23.1 
M(htc)   5.93 6.15  13.1 17.9   5.25 5.79  7.37 9.61 9.53 12.1 a  0.70 0.80 0.90 0.77 a  37.0 12.2 4.92  60.4 31.3 b 16.1 
W(py)   5.81 6.15  10.5 17.5   4.44 5.38  7.16 10.6 10.0 11.2 ab  0.66 0.80 0.91 0.67 ab  40.8 10.8 4.63  57.3 42.5 ab 17.8 
                                                   
D_no   5.88 6.15  10.0 16.6 b   4.93 5.39  7.07 9.36 9.03 10.1 b  0.66 0.77 0.84 0.62  39.5 12.4 4.20  50.8 34.5 b 16.1 
D_yes   5.95 6.18  11.8 19.0 a   5.26 5.53  7.29 10.1 10.0 11.1 a  0.68 0.84 1.01 0.70  43.1 10.5 4.93  71.4 59.5 a 20.8 

  df P-values 
BC 3 0.326 0.690  0.228 0.122   0.532 0.606  0.939 0.121 0.110 0.0004  0.873 0.941 0.893 0.025  0.369 0.591 0.817  0.964 0.017 0.387 
D 1 0.555 0.796  0.138 0.021   0.612 0.669  0.468 0.180 0.068 0.024  0.543 0.157 0.071 0.063  0.550 0.314 0.209  0.236 0.016 0.207 
BC x D 3 0.895 0.378  0.341 0.009   0.520 0.900  0.532 0.071 0.575 0.711  0.691 0.702 0.565 0.743  0.288 0.485 0.753  0.605 0.024 0.165 

OG2                                                  
C   6.15 6.36  12.0 13.6 b   5.75 5.57  7.63 8.94 8.09 a 9.20 b  0.70 0.80 0.82 0.62  40.0 9.9 4.1  57.9 27.9 17.9 
W(py)   5.93 6.24  10.6 16.7 a   5.14 5.39  7.26 9.72 9.78 b 10.2 a  0.66 0.76 0.83 0.60  41.6 11.2 6.8  40.8 32.1 15.9 
                                                   
N0   5.84 6.31  10.6 14.5   5.49 5.59  6.96 9.06 7.91 9.27  0.64 0.76 0.76 0.56  42.2 10.4 4.08  19.6 b 14.5 b 13.9 b 
N75   6.11 6.46  11.8 15.0   5.84 5.66  7.49 9.10 10.0 9.84  0.68 0.79 0.85 0.63  44.7 11.8 9.47  23.5 b 17.5 ab 14.3 b 
N150   5.95 6.24  9.5 14.9   4.61 5.48  7.19 9.14 8.60 9.66  0.66 0.76 0.82 0.60  38.2 10.1 3.91  59.0 ab 35.0 ab 16.9 b 
N195   6.26 6.20  13.3 16.1   5.83 5.20  8.13 10.0 9.24 10.1  0.74 0.81 0.88 0.66  38.1 10.0 4.29  95.13 a 53.0 a 22.8 a 
  df P-values 
BC 1 0.229 0.260  0.332 <.0001   0.211 0.586  0.834 0.144 0.004 <.0001  0.919 0.722 0.707 0.412  0.730 0.483 0.271  0.264 0.960 0.075 
fN 3 0.408 0.307  0.152 0.851   0.262 0.859  0.498 0.484 0.163 0.928  0.877 0.929 0.083 0.877  0.773 0.699 0.442  0.005 0.032 0.0002 
BC x fN 3 0.715 0.317  0.505 0.007   0.082 0.557  0.617 0.435 0.525 0.358  0.627 0.603 0.569 0.376  0.838 0.556 0.512  0.540 0.902 0.371 
C Control, M(py) pyrolyzed maize silage, M(htc) hydrothermal carbonized maize silage, W(py) pyrolyzed wood, D digestate, BC biochar,  fN fertilizer N rates, N0 0 kg N ha-1, N75 75 kg N ha-1, N150 150 kg N ha-1, N195 195 
kg N ha-1, df degrees of freedom. Data shown are means (4 replicates across 4 treatment levels for BC in OG1, 2 treatment levels for BC in OG2, 2 treatment levels for D and 4 treatment levels for N). Different letters indicate 
significant differences (p<0.05) between treatments. The significant (p<0.05) main factor P values are bolded. 
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Table 5. Crop yields and carbon (C) and nitrogen (N) in plants over the experiment runtime and the probability values for the treatment factors 12 

biochar and digestate incorporation/fermentation and their interactions in the first orthogonal group as well as for the treatment factors biochar 13 

and N-fertilization and their interactions in the second orthogonal group.  14 

    
winter wheat yield   winter rye yield  maize yield  winter wheat  winter rye  maize 

    grain straw   grain straw  biomass  grain straw  grain straw  biomass 
    (t ha-1)   (t ha-1)  (t ha-1)  C (t ha-1) N (t ha-1) C (t ha-1) N (t ha-1)  C (t ha-1) N (t ha-1) C (t ha-1) N (t ha-1)  C (t ha-1) N (t ha-1) 

OG1                                       
C   7.92 7.00   8.29 7.89  13.6  3.10 0.15 2.81 0.03  3.22 0.12 3.19 0.05  6.84 0.21 
M(py)   7.62 7.05   8.15 7.93  13.7  2.61 0.13 2.85 0.02  3.17 0.13 3.22 0.05  6.79 0.20 
M(htc)   7.42 6.99   8.35 8.26  13.9  2.91 0.14 2.83 0.02  3.26 0.13 3.36 0.05  7.01 0.21 
W(py)   7.76 7.55   8.22 8.14  13.9  3.06 0.15 3.05 0.03  3.17 0.13 3.31 0.05  6.88 0.21 
                                        
D_no   7.53 7.02   8.20 7.90  13.6  2.95 0.14 2.84 0.02  3.20 0.12 3.21 0.05  6.81 0.20 b 
D_yes   7.85 7.27 8.30 8.21 13.9 2.89 0.14 2.93 0.02 3.22 0.13 3.33 0.05 6.95 0.21 a 

  df P-values 
BC 3 0.560 0.119   0.714 0.721  0.889  0.420 0.323 0.124 0.373  0.628 0.976 0.589 0.258  0.808 0.522 
D 1 0.259 0.292   0.490 0.245  0.412  0.721 0.797 0.339 0.303  0.675 0.379 0.589 0.424  0.417 0.020 
BC x D 3 0.795 0.408   0.113 0.650  0.195  0.425 0.387 0.394 0.994  0.086 0.074 0.674 0.731  0.373 0.323 

OG2                                       
C   6.42 6.41   7.54 7.11  13.6  2.43 0.11 2.56 0.02  2.93 0.10 2.86 0.04  6.80 0.19 
W(py)   6.64 6.58   7.58 7.18  13.6  2.34 0.11 2.64 0.02  2.93 0.11 2.90 0.04  6.76 0.18 
                                        
N0   3.77 c 3.88 b   6.10 b 5.34 b  13.2  1.15 b 0.05 b 1.52 c 0.009 c  2.37 b 0.08 c 2.11 b 0.02 c  6.53 0.14 b 
N75   6.46 b 6.39 a   7.98 a 7.46 a  13.9  2.53 a 0.11 a 2.56 b 0.016 b  3.09 a 0.10 b 3.00 a 0.03 b  7.04 0.20 a 
N150   7.74 a 7.32 a   8.22 a 7.98 a  13.7  3.04 a 0.15 a 2.95 a 0.024 a  3.19 a 0.12 a 3.17 a 0.05 a  6.85 0.20 a 
N195   8.14 a 7.89 a   7.92 a 7.79 a  13.6  2.82 a 0.14 a 3.17 a 0.031 a  3.07 a 0.12 a 3.24 a 0.05 a  6.70 0.21 a 

 df P-values 
BC 1 0.286 0.122   0.987 0.699  0.735  0.892 0.666 0.095 0.581  0.925 0.979 0.578 0.224  0.645 0.150 
fN 3 <.0001 <.0001   <.0001 <.0001  0.379  <.0001 <.0001 <.0001 <.0001  <.0001 <.0001 <.0001 <.0001  0.095 <.0001 
BC x fN 3 0.817 0.281   0.066 0.881  0.345  0.626 0.524 0.291 0.617  0.052 0.297 0.914 0.847  0.396 0.620 
C Control, M(py) pyrolyzed maize silage, M(htc) hydrothermal carbonized maize silage, W(py) pyrolyzed wood, D digestate, BC biochar,  fN fertilizer N rates, N0 0 kg N ha-1, N75 75 kg N ha-1, N150 150 kg N ha-1, N195 195 
kg N ha-1, df degrees of freedom. Data shown are means (4 replicates across 4 treatment levels for BC in OG1, 2 treatment levels for BC in OG2, 2 treatment levels for D and 4 treatment levels for N). Different letters indicate 
significant differences (p<0.05) between treatments. The significant (p<0.05) main factor P values are bolded. 



Table 6. Yield components of wheat, plant analysis of wheat straw and grain and the quality of wheat grains and the probability values for the 

treatment factors biochar and digestate incorporation/fermentation and their interactions in the first orthogonal group as well as for the treatment 

factors biochar and N-fertilization and their interactions in the second orthogonal group. 

    
Ears m-2 Grains ear-1 Thousand  

grain weight 
Hectolitre

weight  
Pstraw Kstraw Mgstraw Pgrain Kgrain Mggrain Crude protein 

content 
Falling 
number 

Sedimentation 
value 

    (-) (-) (g) (kg hl-1) (g kg-1) (g kg-1) (g kg-1) (g kg-1) (g kg-1) (g kg-1) (% DM) (-) (-) 
OG1                             

C   453 37.9 46.6 80.2 0.69 8.06 0.64 4.13 b 4.19 b 1.30 b 128 436 14.0 
M(py)   474 31.9 47.2 80.0 0.71 7.79 0.66 4.44 a 4.48 a 1.43 a 127 436 14.5 
M(htc)   504 31.5 47.2 80.1 0.66 7.77 0.62 4.15 b 4.22 ab 1.32 b 125 442 14.3 
W(py)   477 35.8 46.4 80.1 0.70 8.05 0.65 4.16 b 4.20 ab 1.29 b 121 454 14.5 
                              
D_no   479 34.3 46.7 80.1 0.65 7.57 b 0.65 4.21 4.31 1.34 121 b 438 14.3 
D_yes   475 34.3 46.9 80.2 0.73 8.26 a 0.64 4.22 4.23 1.33 130 a 446 14.4 

  
df P-values 

BC 3 0.613 0.052 0.439 0.598 0.963 0.797 0.842 0.016 0.025 0.007 0.555 0.156 0.303 
D 1 0.874 0.998 0.675 0.437 0.165 0.023 0.702 0.888 0.250 0.510 0.002 0.244 0.625 
BC x D 3 0.647 0.097 0.703 0.689 0.705 0.384 0.968 0.423 0.851 0.499 0.754 0.391 0.134 

OG2                             
C   461 29.3 45.9 79.6 0.72 7.70 0.68 4.15 b 4.28 1.36 11.8 407 b 12.5 b 
W(py)   456 28.9 45.9 79.5 0.73 7.73 0.68 4.33 a 4.41 1.39 12.0 430 a 14.3 a 
                              
N0   389 b 18.6 b 45.2 79.0 b 0.96 a 7.21 b 0.77 a 4.45 a 4.48 ab 1.50 a 11.0 b 392 b 11.5 b 
N75   443 ab 31.3 a 46.9 79.5 ab 0.57 c 7.13 b 0.64 b 4.30 ab 4.52 a 1.43 a 10.9 b 400 b 13.6 a 
N150   477 a 35.9 a 46.2 80.0 a 0.64 bc 7.80 ab 0.65 b 4.12 ab 4.24 ab 1.30 b 12.4 a 436 a 14.0 a 
N195   525 a 30.6 a 45.5 79.7 ab 0.73 b 8.71 a 0.67 ab 4.09 b 4.15 b 1.28 b 13.3 a 446 a 14.6 a 
  df P-values 
BC 1 0.842 0.857 0.997 0.512 0.763 0.890 0.938 0.048 0.164 0.317 0.666 0.013 <0.001 
fN 3 0.002 0.0004 0.068 0.018 <.0001 0.0003 0.010 0.025 0.019 0.0001 <.0001 <0.001 <0.001 
BC x fN 3 0.952 0.569 0.780 0.844 0.556 0.259 0.306 0.108 0.277 0.210 0.684 0.656 0.003 
C Control, M(py) pyrolyzed maize silage, M(htc) hydrothermal carbonized maize silage, W(py) pyrolyzed wood, D digestate, BC biochar,  fN fertilizer N rates, N0 0 kg N ha-1, N75 75 kg N ha-1, N150 150 
kg N ha-1, N195 195 kg N ha-1, df degrees of freedom, Pstraw phosphorous in straw, Kstraw potassium in straw, Mgstraw magnesium in straw, Pgrain phosphorous in grain, Kstraw potassium in grain, Mgstraw 
magnesium in grain. Data shown are means (4 replicates across 4 treatment levels for BC in OG1, 2 treatment levels for BC in OG2, 2 treatment levels for D and 4 treatment levels for N). Different letters 
indicate significant differences (p<0.05) between treatments. The significant (p<0.05) main factor P values are bolded. 



Figure captions 

Figure 1. Design of the field experiment and the division of one plot 

 

 

Figure 2. Air temperature, precipitation and time of fertilization during maize cultivation. 

 

 

 



Figure 3. Clay content across experimental area. 

 

 




