
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of an auxiliary acceptor on D–A––A sensitizers for highly
efficient and stable dye-sensitized solar cells

Citation for published version:
Gao, Y, Li, X, Hu, Y, Fan, Y, Yuan, J, Robertson, N, Hua, J & Marder, SR 2016, 'Effect of an auxiliary
acceptor on D–A––A sensitizers for highly efficient and stable dye-sensitized solar cells', Journal of
materials chemistry a. https://doi.org/10.1039/C6TA05588E

Digital Object Identifier (DOI):
10.1039/C6TA05588E

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of materials chemistry a

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322478623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1039/C6TA05588E
https://doi.org/10.1039/C6TA05588E
https://www.research.ed.ac.uk/portal/en/publications/effect-of-an-auxiliary-acceptor-on-daa-sensitizers-for-highly-efficient-and-stable-dyesensitized-solar-cells(5ba23b95-c39a-4566-86a6-0d25f1d86871).html


Journal of Materials Chemistry A  

ARTICLE 

This journal is ©  The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Effect of an Auxiliary Acceptor on D-A-π-A Sensitizers for Highly 
Efficient and Stable Dye-Sensitized Solar Cells 

Yuting Gao,a,b Xing Li,a Yue Hu,c,d Yeli Fan,b Jianyong Yuan,a Neil Robertson,d Jianli Hua*a and Seth 
R. Marder*b  

As one of the promising photovoltaic technologies, high performance metal-free dye-sensitized solar cells (DSSCs) have been 

explored due the fact that they can potentially produce using low-cost materials, their color can be tuned and they exhibit 

reasonable stability. Here three new organic donor–acceptor–π–acceptor (D-A-π-A) sensitizers (B-87, Q-85 and Q-93), 

containing benzothiadiazole, two new modified pyrido[3,4-b]pyrazine as the auxiliary acceptor, have been synthesized and 

employed in DSSCs. Among the three dyes, B-87 and Q-85 showed good photovoltaic performance with power conversion 

efficiencies (PCE) up to 10.2% and 10.0%, respectively, which contribute to the few examples of DSSCs using pure organic 

dyes with iodine electrolyte to exceed the 10% efficiency barrier. It is noteworthy that an initial PCE of 7.16% has been 

achieved for B-87 based DSSCs with ionic liquid electrolyte, which retained 95% of the initial efficiency after continuous light 

soaking for 1000 h at 60 °C, thus demonstrating outstanding stability. The molecular design strategy provides an effective 

approach to modulate the energy of the absorption bands as well as modify the optoelectronic and physical properties of 

the organic sensitizers to achieve highly efficient and stable sensitizers.

Introduction 

As one of the promising photovoltaic technologies, dye-

sensitized solar cells (DSSCs) have attracted considerable 

attention over the past 20 years.1 A number of high power 

conversion efficiencies (PCEs) devices based on metal 

complexes dyes have been reported such as ruthenium2 or 

porphyrin3 complexes, reaching the highest PCE of 11-13%.  

However, ruthenium and porphyrin dyes suffer from either the 

resource scarcity and heavy metal toxicity or formidable 

synthesis. Therefore, the research activity has been increased in 

finding metal-free sensitizers with advantages of many aspects, 

such as facile synthetic approaches, high molar extinction 

coefficient within the visible region and tunable spectral 

properties.4 Generally, most traditional organic sensitizers are 

synthesized with the donor−π−acceptor (D−π−A) configuration, 

making use of the efficient intramolecular charge transfer (ICT) 

process to harvest sunlight for photon-to-electron conversion.5 

From the viewpoint of stability and efficiency, Zhu et al. 

proposed a new concept of D−A−π−A motif by incorporating an 

additional group of electron-withdrawing conjugated 

components in 2011.6 Based on this strategy, a series of 

D−A−π−A organic dyes incorporating internal electron-

withdrawing units such as diketo-pyrrolo-pyrrole,7 bithiazole,8 

isoindigo,9 benzothiadiazole,6, 10 benzotriazole,11 and 

quinoxaline12 into the traditional D−π−A structures were 

reported to modulate the energy levels, extend the spectral 

response and improve stability.  

As noted above, the design of DSSCs molecular dyes requires 

careful consideration of multiple opto-electronic properties, 

such as band alignment and optical absorption coefficient, as 

well as solid-state properties such as dye aggregation, 

morphology, and mode of assembly on the TiO2 photoanode. 

Zhu and co-workers performed extensive studies on 2,1,3-

benzothiadiazole (BTD)-based sensitizers with this D−A−π−A 

motif, and the PCE of the DSSCs has been improved from 8.7% 

(WS-2)6 to 9.0% (WS-9),10 then to 10.08% (WS-51)13 by changing 

different π-bridges to decrease the intermolecular interactions 

and retard the charge recombination. Inspired by their previous 

work, we substituted the cyclopenta[2,1-b:3,4-b']dithiophene 

(CPDT) with 4-bis (2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithio-

phene (DTS) which is found to work very effectively on reducing 

dye aggregation as well as preventing charge recombination 

due to the presence of two out of plane 2-ethylhexyl.14  

Pyrido[3,4-b]pyrazine (PP), an effective electron-withdrawing 

unit because of its two symmetric unsaturated nitrogen atoms 

and the pyridine N-atoms, has already been widely used and 

showed promising photovoltaic properties in photoelectric 

materials. However, its application as an auxiliary acceptor in 

DSSCs was seldom reported.15 Hence, we introduced another 
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two new modified PP-based acceptors other than BTD-based 

core as auxiliary acceptors to modulate the energy gap, 

expecting to broaden the spectral response. In addition, alkoxyl 

and alkyl chains were further introduced into the PP-based unit 

to suppress the dye aggregation and improve the solubility. As 

a result, three DTS-bridged D−A−π−A sensitizers with an 

alteration in auxiliary acceptors were rationally designed and 

exhibited excellent photovoltaic performances, with PCEs as 

high as 10.20% (B-87), 10.01% (Q-85) and 8.43% (Q-93), 

respectively. In this work, it will be seen that the change of 

auxiliary acceptors provides a useful strategy to modify the 

optoelectronic, chemical and physical properties of these 

organic sensitizers, thus generating high performance DSSCs. 

Results and discussion 

Molecular design and synthesis. 

A coplanar and conjugated π-bridge unit DTS was inserted 

between the auxiliary acceptor and cyanoacrylic acid to 

facilitate charge transfer upon excitation from the ground to 

excited state and increase light absorption. Moreover, attaching 

two branched out of plane 2-ethylhexyl chains onto DTS appear 

to attenuate the interfacial recombination, for achieving better 

performance in devices. To further shift the absorption band to 

lower energy and enhance the ICT process, two modified PP-

based cores with stronger electron-withdrawing ability were 

introduced into Q-85 and Q-93, respectively (Fig. 1). With a 

more conjugated and electron withdrawing core, Q-93 is to 

broaden and shift the absorption spectra the lower energy 

relative to Q-85. 

 

Fig. 1 Schematic representation of the D−A−π−A featured 

structures of B-87, Q-85 and Q-93 with different auxiliary 

acceptors. 

 

The synthetic routes to B-87, Q-85 and Q-93 are depicted in 

Scheme 1. The intermediate compounds 3b-3c were obtained 

according to literature.16 Two sequential Suzuki coupling 

reactions with acceptors 3a-3b, respectively, resulted in the 

corresponding aldehyde precursors 7b-7c taking advantage of 

an in situ aldehyde deprotection.14b After deprotection of the 

aldehyde precursors, Knoevenagel condensation of compounds 

8b-8c with cyano acetic acid was conducted to give the target 

dyes B-87, Q-85 and Q-93 in 56%, 70% and 78% yields, 

respectively. Their structures were characterized by NMR, MS 

spectroscopies and EA (Fig. S5-S13, Electronic Supplementary 

Information (ESI)). 

Scheme 1 Synthetic routes of dyes B-87, Q-85 and Q-93. 

 

Optical properties. 

The UV-vis absorption spectra of B-87, Q-85 and Q-93 in CH2Cl2 

solution and on TiO2 films are shown in Fig. 2 and the 

corresponding data are summarized in Table 1. All of the three 

compounds exhibit three major electronic absorption bands: i) 

the  electron transitions in UV region (around 300-350 nm), ii) 

the ICT band in visible region (around 560 nm for B-87 and Q-

85, 590 nm for Q-93), iii)  the additional absorption band or 

shoulder from subordinate orbital transition (near 500 nm). 

Compared with the reported WS-51 (λmax = 551 nm),13 the 

absorption maximum of B-87 (λmax = 562 nm) is 11 nm red-

shifted along with a slight enhancement of molar extinction 

coefficient (ε) from 43000 to 47400 M-1cm-1. Interestingly, the 

two PP-based dyes, Q-85   and B-87 have similar band shapes 

with B-87 showing an identical λmax and an enhancement of ε to 

50600 M-1cm-1 for the latter compoud. However, with a more 

coplanar and conjugated acceptor, λmax of Q-93 (593 nm, ε = 

34600 M-1cm-1) is noticeably bathochromic-shifted by 31 nm 

compared to B-87 and Q-85, which is related to the stronger 

withdrawing electron capability of the auxiliary acceptor. The 

tendency is consistent with the calculated optical gap and 

oscillator strength. As expected, the dye deprotonation and 

aggregation on TiO2 film result in a shift and broadening of the 

absorption spectra that the maximum absorption peaks for B-

87, Q-85 and Q-93 are blue-shifted to 543 nm, 543 nm and 586 

nm, respectively.13 
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Fig. 2 Absorption spectra of B-87, Q-85 and Q-93 in CH2Cl2 
solution (A) and adsorbed on TiO2 transparent films (B). 
 

Electrochemical data and DTF simulation. 

To investigate the feasibility of electron injection from excited 

dyes into the conduction band of TiO2 and dye regeneration by 

redox electrolyte, cyclic voltammetry (CV) measurements were 

performed in CH2Cl2 solution with ferrocene/ferrocenium 

(Fc/Fc+) as an internal reference and 0.1 M tetra-n-butyl 

ammonium hexafluorophosphate as supporting electrolyte. As 

shown in Fig. 3, the position of ES+/S for B-87, Q-85 and Q-93 are 

located similarly at +0.94, +0.98 and +0.97 V vs. normal 

hydrogen electrode (NHE), respectively, which are estimated 

from the first oxidation potentials. These values suggest that all 

of the three sensitizers can provide ample driving force (almost 

600 mV) for ground state regeneration of sensitizers, in 

consideration of I-/I3
- redox electrolyte (0.35 V vs. NHE).17 The 

energy difference between the dye’s excited state oxidation 

potential (ES+/S*) and the conduction band edge (Ecb) of TiO2 

(−0.5 V vs. NHE)18 drives the electron injection from the 

photoexcited sensitizer to TiO2. The driving force is estimated 

by substracting E0-0 from ES+/S, ES+/S* of dyes B-87, Q-85 and Q-

93 are -1.06, -0.96 and -0.82 V vs. NHE, respectively, indicating 

sufficient thermodynamic force for electron injection.  

Fig. 3 The cyclic voltammograms of B-87, Q-85 and Q-93 with 
ferrocene/ferrocenium (Fc/Fc+) as internal standard reference 
and energy diagram with respect to the conduction band of TiO2. 

 

In order to compare these experimental values and to gain 

further insight into structural properties, the frontier orbitals of 

the three compounds were calculated. (See ESI for details) The 

highest occupied molecular orbitals (HOMOs) and lowest 

unoccupied molecular orbitals (LUMOs) with their correspond- 

Ing energies (EHOMO and ELUMO) and the HOMO–LUMO gaps (ΔE) 

are depicted Table 2. It can be seen from Table S1 that the 

 

Table 1 Optical properties and electrochemical properties of the 

dyes B-87, Q-85 and Q-93. 

a Absorption maximum in CH2Cl2 solution (2×10-6 M). b 
Absorption maximum on TiO2 transparent films. c ES+/S was 
measured in CH2Cl2 with 0.1 M tetra-n-butylammonium 
hexafluorophosphate (TBAPF6) as electrolyte which was 
calibrated with ferrocene/ferrocenium (Fc/Fc+) as an internal 
reference and converted to a normal hydrogen electrode (NHE) 
by reference.19 E0-0 was determined from the intersection of the 
normalized absorption and emission spectra. e Calculated 
according to the following equation ES+/S* = ES+/S – E0-0 

 

Table 2 Calculated charge transfer energies (ECT, λcal), oscillator  

strengths (f) and corresponding experimental data (Eexp) of 

dyesb. 

Dyes 
Crucial 

state 
Contributiona f 

ECT, λcal
b 

eV(nm) 

Eexp, λexp 

eV(nm) 

B-87 

S1 
H → L (70%) 

H → L+1 (18%) 
1.93 2.20(564) 2.21(562) 

S2 
H→ L+1 (57%) 

H-1→ L (25%) 
0.07 2.76(450) 2.53(490) 

Q-85 

S1 
H → L (54%) 

H-1 → L (27%) 
1.98 2.21(560) 2.21(562) 

S2 
H-1 → L (26%) 

H → L+1 (54%) 
0.06 2.69(461) 2.48(500) 

Q-93 

S1 
H → L (69%) 

H-1 → L (20%) 
1.08 2.11(588) 2.09(593) 

S2 
H-1 → L (50%) 

H → L+1 (36%) 
0.87 2.47(501) 2.51(495) 

a H-1, H, L and L+1 represent HOMO-1, HOMO, LUMO and 
LUMO+1, respectively; the percentage contributions to wave 
functions of excited states are given in parentheses. 
b Calculations are performed at the PCM(CH2Cl2)-LC-ωPBE/6-
31G(d) level. 

 

HOMO electrons in the three dyes are delocalized throughout 

the entire framework while the LUMOs are primarily distributed 

on the Acceptor-DTS-Anchor unit. This indicates that the 

configurations of the three dyes are highly conjugated with 

excellent electron transfer channels for electron injection. 

Meanwhile, such good overlap between the HOMO−LUMO 

orbital can facilitate the electron migration from donor to the 

anchor unit, then to the conduction band of semiconductor TiO2. 

In addition, the HOMOs of the three dyes are almost the same, 

while the LUMOs follow the trend of Q-93 (-2.85 eV) > Q-85 (-

2.93 eV) > B-87 (-3.11 eV). The results are in good agreement 

with the experimental data, suggesting the corresponding 

electron withdrawing ability of the auxiliary acceptors, that is, 

Q-93 > Q-85 > B-87. Apart from that, the dihedral angle 

between the auxiliary acceptor and the π-bridge follows the 

order of Q-93 (20.4°) > Q-85 (17.4°) > B-87 (-5.6°), as shown in 

Dye λmax
[a] 

/nm 

ε 

/M-1 cm-1 

λTiO2
max 

[b] 

/nm 

ES+/S 
[c] 

/V 

E0-0
 [d] 

/eV 

ES+/S*
[e] 

/V 

B-87 562 47400 543 0.94 2.00 -1.06 

Q-85 562 50600 543 0.98 1.94 -0.96 

Q-93 593 34600 586 0.97 1.79 -0.82 
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 Table S2. The large dihedral angle may lead to a problem of 

electron transfer from the electron-rich donor to the auxiliary 

acceptor, illustrating that Q-85 gives a similar absorption 

spectra with B-87 even with a lower LUMO in CH2Cl2 solution. 

Furthermore, the larger twist in Q-93 on both side of the 

auxiliary acceptor significantly decreases the oscillator strength 

of the lowest energy transition band, which corresponds to the 

relatively small extinction coefficient of the lowest energy band 

of Q-93 from experimental. In constrast, the second lowest 

energy band, which is dominated by HOMO→LUMO+1 

transition, has a much larger oscillator strength compared with 

the other two compounds, which can be attributed to the more 

planar geometry of the auxiliary acceptor in Q-93. 

Photovoltaic performance. 

The DSSCs performances of all the dyes were tested under AM 

1.5G irradiation (1 sun, 100 mW cm-2). Different layers of 

commercial colloidal paste was utilized to optimize the TiO2 

photoelectrode as shown in Fig. S2 and Table S3. With 12 µm 

thick commercial colloidal paste layer and 4 µm scattering layer 

TiO2 film, devices with all the three dyes showed best PCE. The 

photocurrent density voltage curves (J-V) and the incident 

photon to current conversion efficiency (IPCE) spectra of the 

optimized DSSCs based on dyes B-87, Q-85 and Q-93 are shown 

in Fig. 4. The detailed data of short-circuit current density (Jsc), 

open-circuit voltage (Voc), fill factor (FF), and power conversion 

efficiency (PCE) are collected in Table 3. We now turn to the 

influence of altering the auxiliary acceptor core on the DSSCs 

characteristics. As we can see, both the Jsc and Voc of the devices 

with B-87, Q-85 and Q-93 dyes decrease in the trend of B-87 > 

Q-85 > Q-93, and the PCEs of devices increase in order of B-87 > 

Q-85 > Q-93. The best PCE of 10.02% was obtained with B-87 

based on BTD core, possessing a typical Jsc of 20.28 mA cm−2, a 

Voc of 724 mV, and a fill factor of 68.26%. It is well known that 

the quantum conversion yield in response region and the 

spectrum coverage range determine the generation of 

photocurrent density. In this respect, we checked IPCE spectra 

to investigate the contribution of absorption at different 

wavelength to the Jsc, as shown in Fig. 4B. It can be clearly seen 

that the IPCE response are in the range of 300−805 nm for B-87, 

300−750 nm for Q-85 and 300−825 nm for Q-93, respectively. 

The onset wavelengths of photocurrent response from 300-350 

nm are almost identical for the three dyes due to the same 

indoline donor. Interestingly, even though B-87 and Q-85 have 

almost the same absorption spectra in solution, B-87 exhibited 

a more pronounced plateau in the IPCE response than Q-85, 

above 80% in the entire visible region of about 400-650 nm, 

presenting a higher current density of 20.28 mA cm-2. 

Unsatisfactorily, the IPCE response for Q-93 is the broadest but 

with the worst IPCE value that the plateau is no more than 75% 

from 400-700 nm, which is consistent with it having a lower 

molar extinction coefficient than Q-85 , resulting a relatively low 

Jsc (19.53 mA cm-2).  

   As to Voc, the difference of the auxiliary acceptors in B-87 and 

Q-85 have little impact, which are 724 mV and 722 mV, 

respectively. Notably, there is a significant decline for Q-93 (Voc=                 

Fig. 4 (A) J-V curves for DSSCs based on the dyes under 
illumination of AM 1.5 G simulated sunlight (100 mW cm-2). (B) 
IPCE spectra of the same DSSCs. 

 

Table 3. Photovoltaic performance of the DSSCs based on B-87, 

Q-85 and Q-93a. 

Dye Voc (mV) Jsc (mA cm-2) FF (%) PCE (%) 

B-87 724 20.28 68.26 10.02 

Q-85 722 19.55 66.64 9.41 

Q-93 676 19.53 61.83 8.17 

aMeasured under irradiation of AM 1.5 simulated solar light 

(100 mW cm−2) at room temperature, iodide electrolyte was 

utilized containing: 1.0 M 1, 3-dimethylimidazolium iodide, 0.03 

M iodine, 0.1 M guanidinium thiocyanate, 0.5 M tert-

butylpyridine, 0.05 M lithium iodide in acetonitrile:valeronitrile 

(85:15, v/v), the concentration of dyes is 3 × 10−4 M in 

chloroform/ethanol (v/v: 4/6) mixed solvent, platinum is the 

counter electrode.  

676 mV), with a more conjugated and coplanar electron-with-

drawing core, compared with the other two dyes. Generally, the 

device’s Voc is influenced by the conduction band (Ecb) position 

and the recombination of electrons at the TiO2/electrolyte 

interface.20 To identify the position of TiO2 conduction band, we 

fitted the cell chemical capacitance (Cμ) responses under a 

series of bias potentials, determined from the typical 

electrochemical impedance spectroscopy (EIS).21 In these DSSCs 

with the three dyes, the logarithm of Cμ was enhanced at the 

almost identical slope with the given bias potential (Fig. 5A). We 

can see that the Ecb of the B-87 and Q-85 are similar, which is 

slightly higher than that of the Q-93 device. This can be ascribed 

to the lower dipole moment of Q-93, shown in Table S2. As a 

dipole moment pointing away from the TiO2 surface will cause 

an increase in the energy splitting between the quasi-Fermi 

level for electrons in the TiO2 and that for holes in the redox 

couple, which results in a larger Voc.22 
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In addition, we can see clearly that B-87–based DSSCs 

exhibited a slight increase of the charge-transfer resistance (Rct) 

under a series of bias potentials in comparison to Q-85, whereas, 

there was an obvious increase compared with Q-93, which can 

be attributed to less charge recombination of Q-93-DSSCs. The 

data suggest that relatively subtle structural difference on the 

central electron-deficient unit among the three dyes can result 

in a significant difference in the rate charge recombination (B-

87 > Q-85 > Q-93), which may be attribute to the aggregation 

and electron-withdrawing ability. The stronger electron-

withdrawing ability of PP-based core could increase the 

probability of electron recombination from TiO2 to oxidized 

dyes thus lead to a lower Voc value for the PP-based DSSCs. 

The electron lifetime (τn=Cchem×Rct) versus the chemical 

capacitance is also plotted for all the devices to further compare 

the differences in the electron recombination processes (shown 

in Fig. 5C).21a, 23 The longer the electron lifetime in titania films, 

should lead to a higher the electron density and thus higher 

pseudo-Fermi level, which might result in higher Voc. The 

electron lifetime of B-87 device is the longest under certain bias 

potential, followed in descending order by Q-85 and Q-93 

devices. The results further illustrate that B-87 with BTD core 

displays better performance in retarding the electron 

recombination process than the PP core of Q-85 and Q-93. 

Moreover, the dark currents under different bias potential in 

DSSCs based on B-87, Q-85 and Q-93 were presented in Fig. 5D. 

The smaller dark current in DSSCs based on B-87 suggests less 

charge recombination between TiO2 surface and electrolyte, 

and less loss of current in device,24 which can partly explain the 

higher Jsc and Voc of DSSC based on B-87 than Q-85 and Q-93. 

Fig. 5 Plots of cell capacitance Cμ (A), interface charge transfer 

resistance Rct (B), calculated electron lifetime τn (C) and dark 

current (D) under a series potential bias of DSSCs based on 

sensitizers B-87, Q-85 and Q-93 (dye bath solvent: 

CHCl3:C2H5OH, v/v= 6:4, dipping time: 12 h) 

Inspired by previous work, utilization of a coadsorbent is an 

effective approach for suppressing dye aggregation, thus 

enhancing Voc. Given the relatively low Voc values of the three 

dyes, Chenodeoxycholic acid (CDCA), a commonly used 

coadsorbent due to its nonplanar and bulky configuration, was 

used for the consequent optimization. Initially, DSSCs were 

fabricated by dipping the TiO2 films into the dye solutions 

containing concentration of CDCA. The optimized process and 

data of CDCA concentration are shown in Fig. S3 and Table S4. 

The result showed that a concentration of 6 mM CDCA is the 

best condition for the B-87-based DSSCs. The J-V curves of 

DSSCs coadsorbing with 6 mM CDCA were given in Fig. 6A and 

the corresponding photoelectric results were tabulated in Table 

4. Unexpectedly, the PCE for B-87-based DSSC improved from 

10.02% to 10.20%, however, an undesirable decrease was 

observed in PP-based dyes of Q-85 and Q-93 from 9.41% and 

8.17% to 7.31% and 7.35%, respectively. The 20.78 mA cm-2 

achieved for B-87 coadsorbed with CDCA is slightly higher than 

previous 20.28 mA cm-2, which can account for the 

improvement of PCE with Voc remaining the same. As shown in 

Fig. 6C, a narrower but higher IPCE response of B-87 devices 

with CDCA suggests that the aggregation was indeed repressed, 

thus resulting in more efficient charge transport and collection, 

which could explain the increase of Jsc.25 In contrast with B-87, 

it is odd to see the synchronous decline in both Jsc and Voc for Q-

85 and Q-93-based DSSCs. During the optimization procedure, 

it was observed that the TiO2 films soaking in PP-based dye bath 

(3×10−4 M), Q-85 and Q-93, with 6 mM CDCA for 12 h were less 

intensely colored than those prepared with pure dyes, as shown 

in Fig. 7. This phenomenon is not seen for B-87-based dyes, 

suggesting that competitive adsorption between PP-based dyes 

with CDCA is more predominate than BT-based dyes. To probe 

our hypothesis, the extent of dye adsorption for the 

corresponding DSSC devices were measured by the desorption 

method and the data is summarized in Table 4. The results 

confirm that the dye-loading amounts of PP-based dyes were 

reduced significantly, wherein Q-85 decreased from 1.21×10-7 

to 5.83×10-8 mol cm2 and Q-93 decreased from 1.20×10-7 to 

8.50×10-8 mol cm2, upon the coadsorption with CDCA. Whereas 

the dye-loading amount of B-87 did not change significantly, 

showing a slight decline from 1.32×10-7 to 1.13×10-7 mol cm2. 

One plausible explanation for this phenomenon is that the N 

atom of pyridine ring in PP unit could decrease the pKa value of 

CDCA, thus increasing the bonding ability of CDCA with TiO2, 

however further experimentation would need to be performed 

to confirm this. 

Considering the detrimental result of simultaneous 

coadsorption of Q-85 and Q-93 along with CDCA, an alternative 

coadsorption method was performed to lessen the competitive 

effect of CDCA. Herein, we dipped the TiO2 films into 6 mM 

CDCA solution in ethanol for 30 min, then in dyes solution for 

12 h after been washed and dried. As a result, even though 

there was no enhancement of PCE for B-87-based DSSC, the PCE 

for Q-85 and Q-93-based DSSCs was strikingly improved from 

9.41% and 8.14% to 10.01% and 8.43%, respectively (Fig. 6B and 

Table 4). As anticipated, the Voc of Q-85 and Q-93-based DSSCs 

were significantly enhanced, which might be attributed to 

suppression of aggregation of the dyes. The decreased Jsc of the 

devices may be related to the decreased coverage of dyes, 

leading to a loss in light harvesting process. The downward IPCE 

curves shown in Fig. 6D and 6E could also account for the 

decrease of Jsc, compared with pure dyes.  
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Table 4 Photovoltaic performance of the DSSCs based on B-87, 
Q-85 and Q-93 with CDCA as a coadsorbent. 

Dye CDCAa, b Adsorption 

amount 

(mol cm2) 

Voc 

(mV) 
Jsc 

(mA 

cm-2) 

FF 

(%) 
PCE 

(%) 

B-87 0 1.32×10-7 724 20.28 68.26 10.02 

6 mMa 1.13×10-7 724 20.78 67.77 10.20 

6 mMb 9.72×10-8 694 20.17 70.69 9.90 

Q-85 0 1.21×10-7 722 19.55 66.64 9.41 

6 mMa 5.83×10-8 682 15.74 68.08 7.31 

6 mMb 1.03×10-7 738 19.54 69.42 10.01 

Q-93 0 1.20×10-7 676 19.53 61.83 8.17 

6 mMa 8.50×10-8 638 15.83 72.67 7.35 

6 mMb 1.11×10-7 694 18.89 64.33 8.43 
a The films were dipped in a solution (CHCl3:C2H5OH, v/v= 6:4) 
with dyes (3 × 10−4 M) and CDCA (6 × 10−3 M) for 12 h. b The films 
were dipped in CDCA ethanol solution for 30 min first, then 
dipped in dye baths with a concentration of 3 × 10−4 M 
(CHCl3:C2H5OH, v/v= 6:4) for 12 h. 

 

 Fig. 6 J-V curves for DSSCs under illumination of AM 1.5 G 

simulated sunlight (100 mW cm-2) with coadsorption of CDCA by 

two methods, (A) dipping in a solution (CHCl3:C2H5OH,v/v= 6:4) 

with dyes and CDCA for 12 h. (B) dipping in CDCA ethanol 

solution for 30 min first, then dipping in dyes bath 

(CHCl3:C2H5OH,v/v= 6:4) for 12 h. (C) IPCE spectra of DSSCs 

dipping in dye bath of pure B-87 and coadsorbing with CDCA in 

method a, respectively. (D) IPCE spectra of DSSCs dipping in dye 

bath of pure Q-85 and coadsorbing with CDCA in method b, 

respectively. (E) IPCE spectra of DSSCs dipping in dye bath of 

pure Q-93 and coadsorbing with CDCA in method b, respectively. 

 

To further study the impact of the coadsorbing CDCA on Voc, 

the EIS analysis was also performed. Fig. 8 depicts the Cμ and Rct 

of B-87, Q-85 and Q-93 with and without CDCA under a series 

bias potential. We can see that no relative shifts of conduction 

band in TiO2 were observed in presence with CDCA on account 

of the similar Cμ values with pure dyes. In other words, the 

values of Voc are directly correlated with the electron density in 

TiO2. Compared with pure dyes-based DSSCs, Rct values of the 

coadsorbing DSSCs are larger than pure dyes at fixed potential, 

suggesting the inhibition of the interfacial electron 

recombination process.26 (Fig. 8), which suggests less charge 

recombination in presence of CDCA. As a consequence, the 

combined effect gives the larger τCDCA than pure dyes, 

illustrating the relatively higher Voc. 

Fig. 7 The pictures of B-87, Q-85 and Q-93 adsorbed on TiO2 

films in different conditions before fabricated into DSSCs. CDCAa 

means dipping in a solution (CHCl3:C2H5OH, v/v= 6:4) with dyes  

(3 × 10−4 M) and CDCA (6 × 10−3 M) for 12 h. CDCAb means 

dipping in CDCA ethanol solution for 30 min first, then dipping 

in dye baths with a concentration of 3 × 10−4 M (CHCl3:C2H5OH, 

v/v= 6:4) for 12 h. 

Fig. 8 Plots of cell capacitance Cμ (A), interface charge transfer 
resistance Rct (B), calculated electron lifetime τ (C) under a 
series potential bias of DSSCs based on pure dyes and their 
coadsorption with CDCA (B-87 with CDCA in method a, Q-85 and 
Q-93 with CDCA in method b). 
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Stability Measurements.  

In addition to high PCE, long-term stability is a vital requirement 

for the practical application of dye-sensitized solar cells. 

Compared with liquid electrolyte, the solvent-free ionic liquid 

electrolytes have been shown in DSSCs with excellent long-term 

device stability. Possessing the highest PCE of DSSCs based on 

the three dyes, B-87 was chosen to optimize the DSSCs 

performance with ionic liquid electrolyte which contains 1,3-

dimethylimidazoliumiodide / 1-ethyl-3 methylimidazoliumio-

dide / 1-ethyl-3-methyl-imidazolium tetracyanoborate / iodine 

/ Nbutylbenzoimidazole / guanidinium thiocyanate (molar ratio 

12 / 12 / 16 / 1.67 / 3.33 / 0.67). Different thickness of the 

photoelectrode was fabricated by repeating screen printing 

process with different layers of commercial colloidal paste. The 

J-V curves of corresponding DSSCs under standard AM 1.5G full 

sunlight conditions were given in Fig. S4 and their photoelectric 

results were summarized in Table 5. With 8 µm thick 

commercial colloidal paste layer and 4 µm scattering layer TiO2 

film, devices with B-87 showed best PCE of 7.16% with Jsc of 

16.59 mA/cm2, Voc of 699 mV and FF of 69%. The decreased Jsc 

of device with thicker TiO2 layer (12+4) could be ascribed to the 

poor contact between dyes and ionic liquid electrolyte and 

lower diffusion rate, which can affect the dye regeneration. The 

devices were subjected to long-term stability tests under the 

irradiance of AM 1.5G full sun visible light soaking at 60 oC. The 

detailed photovoltaic parameters of devices during the aging 

process are presented in Fig. 9. It can be seen that the PCE of 

the DSSCs increases significantly in the beginning, which is 

related to the improved penetration of the ionic liquid 

electrolyte through the complete thickness of the electrode and 

the ‘‘activation’’ of the entire electrode.27 After that a 

stabilization of the performances was observed and the PCE of 

the devices remained at 95% of the initial value under both the 

thermal and the light-soaking stress for over 1000 h, showing 

outstanding stability. 

 

Table 5 Photovoltaic performance of the DSSCs based on B-87a. 

TiO2 Thicknessb 

(µm) 

Voc 

(mV) 

Jsc 

(mA cm-2) 

FF 

(%) 

PCE 

(%) 

4 + 4 712 14.48 64.12 6.61 

8  + 4 699 16.59 61.74 7.16 

12  + 4 619 15.14 71.61 6.71 

 
aMeasured under irradiation of AM 1.5 simulated solar light 

(100 mW cm−2) at room temperature, the concentration of dyes 

is 3 × 10−4 M in chloroform/ethanol (v/v: 4/6) mixed solvent 

(dipping time: 12h).  bThick commercial colloidal paste TiO2 film 

layer + scattering TiO2 film layer. 

Conclusions 

In summary, three DTS-bridged D−A−π−A sensitizers with a 

variation in auxiliary acceptors were synthesized and each 

exhibited excellent photovoltaic performances, with PCE as high 

as 10.0% (B-87), 9.4% (Q-85) and 8.2% (Q-93), respectively, in  

Fig. 9 Detailed photovoltaic parameters of B-87 based DSSC with 

(8+4) µm TiO2 Thickness measured under irradiation of AM 1.5 

simulated solar light (100 mW cm−2) at 60 oC. (Ionic liquid 

electrolyte). 

 

standard I3
-/I- liquid electrolyte. The relationship between the 

molecular structure and the photovoltaic performance of the 

dye cells were examined using J-V scan, IPCE and EIS. The 

substitution of CPDT bridge with DTS in B-87 results in a red-

shift of absorption spectra and enhanced molar extinction 

coefficient compared with the reported W-51. Compared with 

B-87 and Q-85, Q-93 with broader absorption band showed 

unsatisfactory PCE owing to a lower IPCE and shorter electron 

lifetime. After coadsorption with CDCA in two different 

methods, the photovoltaic performances of the three dyes have 

been improved obviously, achieving PCE of 10.20% (B-87), 10.01% 

(Q-85) and 8.43% (Q-93), respectively. Furthermore, the 

stability of B-87 based DSSCs with ionic liquid electrolyte was 

evaluated. After optimization of the photoelectrode, a PCE of 

up to 7.16 % has been achieved for B-87 based DSSCs with ionic-

liquid electrolytes, which retained 95% of the initial 

performances after continuous light soaking for 1000 h at 60°C. 

This work demonstrates the potential application of B-87 dyes 

as a promising candidate for highly efficient and stable DSSCs 

devices.  

 

Experimental section 

Materials and reagents.  Fluorine-doped SnO2 conducting glass 

(FTO glass, transparency > 90%, sheet resistance 15 Ω/square 

was obtained from the Geao Science and Educational Co. Ltd. of 

China. Acetonitrile, tetra-n-butyl ammonium hexafluorophos- 

phate (TBAPF6), 4-tert-butylpyridine, and lithium iodide were 

bought from Fluka and iodine (99.999%) was purchased from 

Alfa Aesar. Transparent TiO2 paste (18NR-T) was purchased 

from Dyesol Ltd. Light-scattering anatase particles were 

obtained from the Shanghai Institute of Ceramics. 

Tetrahydrofuran (THF) was pre-dried over 4 Å molecular sieves 

and distilled under argon atmosphere from sodium 

benzophenone ketyl immediately prior to use.  Triethylamine 
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was distillated under normal pressure and dried over potassium 

hydroxide. N, N-dimethyl formamide (DMF), dichloromethane 

(DCM) and chloroform were reflux with calcium hydride and 

distilled before used. The starting materials and intermediates 

1,28  2b,16a 2c,29 430 and 614a  were prepared according to 

published procedures. All other chemicals were purchased from 

Aldrich and used as received without further purification. 
Instruments and characterization.  Chromatographic separations 

were performed using standard flash column chromatography 

methods using silica gel purchased from Sorbent Technologies 

(60 Å, 32-63 µm). A Brücker AMX-400 spectrometer was 

employed to obtain 1H NMR and 13C NMR spectra with TMS as 

the internal standard. Mass spectra were recorded on an 

Applied Biosystems 4700 Proteomics Analyzer at the Mass 

Spectrometry Facility at the Georgia Institute of Technology. 

Elemental analyses were performed by Atlantic Microlabs. UV-

Vis-NIR spectra were recorded in 1 cm quartz cuvette using a 

Varian Cary 5E spectrometer. Electrochemical measurements 

were carried out under nitrogen in dry deoxygenated 0.1 M 

tetra-n-butylammonium hexafluorophosphate in dichlorome- 

thane (ca. 10-4 M of analyte) using conventional three-electrode 

cell with a glassy carbon working electrode, platinum wire 

counter electrode, and a Ag wire coated with AgCl as pseudo-

reference electrode. Potentials were referenced to 

ferrocenium/ferrocene. Cyclic voltammograms were recorded 

at a scan rate of 50 mV/s. 

Synthesis of sensitizers. 5,8-dibromo-2,3-bis(4-(dodecyloxy)- 

phenyl)pyrido[3,4-b]pyrazine (3b): A solution of 1 (0.67 mg, 2.5 

mmol) and 2b (1.45 g, 2.5 mmol) in 35 ml ethanol was added 

acetic acid (15.0 mL). The reaction mixture was heated and kept 

reflux for 6 h. The mixture was cooled to room temperature. 

The reaction mixture was poured into water (150.0 mL). The 

yellow solid was collected with filtration and washed with water. 

After dried, the crude product was purified on a silica gel 

column using hexanes /dichloromethane (volume = 2:1) as the 

elutant to afford pure product 3b as a yellow powder (676 mg, 

yield: 61%). 1H NMR (400 MHz, CDCl3) δ 8.68 (s, 1H), 7.67 (dd, J 

= 10.8, 8.8 Hz, 4H), 6.89 (dd, J = 8.8, 2.4 Hz, 4H), 4.00 (t, J = 6.5 

Hz, 4H), 1.88 – 1.74 (m, 4H), 1.52 – 1.40 (m, 4H), 1.39 – 1.15 (m, 

32H), 0.88 (t, J = 6.8 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 161.29, 

160.96, 157.66, 155.57, 146.66, 145.80, 142.14, 135.61, 131.94, 

131.68, 129.67, 129.49, 119.96, 114.53, 68.21, 68.19, 31.93, 

29.68, 29.65, 29.62, 29.59, 29.41, 29.37, 29.19, 29.17, 26.03, 

22.71, 14.14. HRMS (MALDI) m/z: [M+H]+ calcd. for 

C43H59Br2N3O2: 808.2974; found, 808.3014. Anal. Calcd. for 

C43H59Br2N3O2: C, 63.78; H, 7.34; N, 5.09. Found: C, 63.97; H, 

7.19; N, 5.03. 

10,13-dibromo-3,6-didodecyldibenzo[f,h]pyrido[3,4-

b]quinoxaline (3c): A solution of 1 (0.80 mg, 3.0 mmol) and 2c 

(1.09 g, 2.0 mmol) in 30.0 mL ethanol was added acetic acid 

(10.0 ml). The reaction mixture was heated and kept reflux for 

6 h. The mixture was cooled to room temperature. The reaction 

mixture was poured into water (150.0 mL). The yellow solid was 

collected with filtration and washed with water. After drying, 

the crude product was purified on a silica gel column using 

hexanes /dichloromethane (5:3) as the eluant to afford pure 

product 3c as a yellow powder (1.4 g, yield: 90%). 1H NMR (400 

MHz, CDCl3) δ 9.20 (t, J = 7.6 Hz, 2H), 8.78 (d, J = 0.5 Hz, 1H), 

8.26 (s, 2H), 7.56 (dd, J = 4.0 Hz, J = 8.2 Hz, 2H), 2.92 (t, J = 7.6 

Hz, 4H), 1.86 – 1.78 (m, 4H), 1.49 – 1.28 (m, 36H), 0.90 (t, J = 6.8 

Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 147.87, 147.23, 146.81, 

146.44, 145.65, 144.75, 142.23, 136.05, 133.15, 132.41, 129.04, 

128.95, 127.68, 127.22, 126.63, 126.38, 122.52, 122.45, 120.35, 

36.77, 36.72, 31.94, 31.54, 31.51, 29.71, 29.68, 29.61, 29.49, 

29.38, 22.71, 14.14. HRMS (MALDI) m/z: [M+H]+ calcd. for 

C43H57Br2N3: 774.2919; found, 774.3005. Anal. Calcd. for 

C43H57Br2N3: C, 66.58; H, 7.41; N, 5.42. Found: C, 66.28; H, 7.16; 

N, 5.36. 

4-bromo-7-(4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta 

[b]indol-7-yl)benzo[c][1,2,5]thiadiazole (5a): Under an argon 

atmosphere, a mixture of 3a (1.18 g, 4.0 mmol) and Pd(PPh3)4 

(231 mg, 0.2 mmol) in THF (30 mL) was heated to 60 °C, then 10 

mL of 2 M K2CO3 aqueous solution was added, followed by 

injecting a solution of 4 (1.24 g, 3.3 mmol) in 10 mL THF slowly. 

Then the mixture was heated to refluxed for 8 h. After it was 

cooled, 150 mL water was added to quench to reaction and the 

raw product was extracted using CH2Cl2 and water. The organic 

layers were combined and dried by anhydrous Na2SO4. After 

filtration, the solvent was removed under reduced pressure, 

and the residue was purified by chromatography on a silica gel 

column with hexanes /dichloromethane (volume = 6:1) to give 

5a as red solid (810 mg, yield: 53%). 1H NMR (400 MHz, CDCl3) 

δ 7.86 (d, J = 7.6 Hz, 1H), 7.70 (s, 1H), 7.65 (d, J = 8.4 Hz, 1H), 

7.51 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 8.3 Hz, 2H), 7.18 (d, J = 8.2 

Hz, 2H), 7.00 (d, J = 8.3 Hz, 1H), 4.87 (t, J = 7.0 Hz, 1H), 3.93 (t, J 

= 8.2 Hz, 1H), 2.35 (s, 3H), 2.17 – 2.04 (m, 1H), 2.00 – 1.90 (m, 

2H), 1.87 – 1.75 (m, 1H), 1.73 – 1.56 (m, 2H). 13C NMR (101 MHz, 

CDCl3) δ 153.99, 153.37, 148.77, 140.01, 135.45, 134.49, 132.48, 

131.88, 129.84, 128.88, 126.37, 126.34, 125.50, 120.45, 110.88, 

107.35, 69.32, 45.39, 35.23, 33.69, 24.46, 20.85. HRMS (ESI) m/z: 

[M+H]+ calcd. for C24H21BrN3S: 462.0640; found, 462.0638.  

7-(8-bromo-2,3-bis(4-(dodecyloxy)phenyl)pyrido[3,4-b]pyrazin-

5-yl)-4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b] (5b): 

Under an argon atmosphere, a mixture of 3b (1.6 g, 2 mmol) and 

Pd(PPh3)4 (116.0 mg, 0.1 mmol) in THF (20 mL) was heated to 

60 °C, then 5 mL of 2 M K2CO3 aqueous solution was added, 

followed by injecting a solution of 4 ( 626.7 mg, 1.67 mmol) in 

THF slowly. Then the mixture was heated to refluxed for 8 h. 

After it was cooled, 50 mL water was added to quench to 

reaction and the raw product was extracted using CH2Cl2 and 

water. The organic layers were combined and dried by 

anhydrous Na2SO4. After filtration, the solvent was removed 

under reduced pressure, and the residue was purified by 

chromatography on a silica gel column with hexanes 

/dichloromethane (volume = 2:1) to give 5b as red solid (810 mg, 

yield: 50%). 1H NMR (400 MHz, CDCl3) δ 8.93 (s, 1H), 8.15 (s, 1H), 

8.10 (dd, J = 8.5, 1.7 Hz, 1H), 7.75 (d, J = 8.8 Hz, 1H), 7.63 (d, J = 

8.8 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.03 
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(d, J = 8.5 Hz, 1H), 6.89 (dd, J = 18.3, 8.8 Hz, 4H), 5.18 – 4.77 (m, 

1H), 4.14 – 3.82 (m, 5H), 2.39 (s, 3H), 2.21 – 2.04 (m, 2H), 2.02 – 

1.92 (m, 1H), 1.90 – 1.77 (m, 5H), 1.77 – 1.60 (m, 2H), 1.55 – 

1.42 (m, 4H), 1.40 – 1.23 (m, 32H), 0.90 (dt, J = 6.9, 3.3 Hz, 6H). 
13C NMR (101 MHz, CDCl3) δ 160.87, 160.30, 158.41, 155.43, 

152.79, 149.60, 147.42, 141.73, 139.93, 134.67, 131.96, 131.83, 

131.47, 130.67, 130.21, 129.86, 127.92, 127.25, 120.68, 115.97, 

114.43, 114.34, 106.84, 69.38, 68.16, 68.13, 45.39, 35.22, 33.68, 

31.99, 29.71, 29.67, 29.66, 29.48, 29.42, 29.26, 26.10, 24.51, 

22.76, 20.90, 14.20. HRMS (MALDI) m/z: [M]+ calcd. for 

C61H77BrN4O2: 976.5230; found, 976.5263. Anal. Calcd. for 

C61H77BrN4O2: C, 74.90; H, 7.93; N, 5.73. Found: C, 75.17; H, 7.93; 

N, 5.60. 

13-bromo-3,6-didodecyl-10-(4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indol-7-yl)dibenzo[f,h]pyrido[3,4-

b]quinoxaline(5c): Under an argon atmosphere, a mixture of 3c 

(1.60 g, 2.06 mmol) and Pd(PPh3)4 (92.4 mg, 0.08 mmol) in THF 

(20 mL) was heated to 60 °C, then 5 mL of 2 M K2CO3 aqueous 

solution was added, followed by injecting a solution of 4 (1.58 

mmol, 593.0 mg) in THF slowly. Then the mixture was heated to 

refluxed for 8 h. After it was cooled, 50 mL water was added to 

quench to reaction and the raw product was extracted using 

CH2Cl2 and water. The organic layers were combined and dried 

by anhydrous Na2SO4. After filtration, the solvent was removed 

under reduced pressure, and the residue was purified by 

chromatography on a silica gel column with hexanes 

/dichloromethane (volume = 2.4 : 1) to give 5c as dark red solid 

(850 mg, yield: 57%). 1H NMR (400 MHz, CDCl3) δ 9.39 (d, J = 8.2 

Hz, 1H), 9.11 (d, J = 8.2 Hz, 1H), 9.05 (s, 1H), 8.35 (s, 2H), 8.29 – 

8.21 (m, 2H), 7.62 (dd, J = 8.3, 1.2 Hz, 1H), 7.55 (dd, J = 8.2, 1.3 

Hz, 1H), 7.38 – 7.30 (m, 2H), 7.25 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 

8.4 Hz, 1H), 5.03 – 4.88 (m, 1H), 4.09 – 3.86 (m, 1H), 2.93 (2t, J 

= 7.6, 7.6 Hz, 4H), 2.40 (s, 3H), 2.25 – 2.11 (m, 2H), 2.10 – 1.94 

(m, 1H), 1.94 – 1.66 (m, 7H), 1.52 – 1.20 (m, 36H), 0.95 – 0.83 

(m, 6H). 13C NMR (101 MHz, CDCl3) δ 159.36, 159.34, 149.62, 

146.98, 146.76, 146.08, 144.91, 142.93, 142.43, 139.94, 136.05, 

134.67, 132.90, 132.26, 132.02, 129.89, 128.80, 128.67, 128.29, 

127.71, 127.66, 127.38, 127.24, 126.98, 122.50, 122.46, 120.72, 

116.38, 106.87, 69.41, 45.47, 36.74, 36.67, 35.22, 33.74, 31.94, 

31.65, 31.57, 29.72, 29.68, 29.62, 29.53, 29.49, 29.39, 24.56, 

22.71, 20.90, 14.14. HRMS (MALDI) m/z: [M]+ calcd. for 

C61H75BrN4: 942.5179; found, 942.5199. Anal. Calcd. for 

C61H75BrN4: C, 77.60; H, 8.01; N, 5.93. Found: C, 77.34; H, 7.89; 

N, 5.85. 

4-(6-(5,5-dimethyl-1,3-dioxan-2-yl)-4,4-bis(2-ethylhexyl)-4H-

silolo[3,2-b:4,5-b']dithiophen-2-yl)-7-(4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indol-7-yl)benzo[c][1,2,5]thiadiazole 

(7a): Compound 5a (231.2 mg, 0.5 mmol), compound 6 (658.9 

mg, 1.0 mmol), [1,1’bis(diphenylphosphino)ferrocene] dichloro 

palladium(II) (36.6 mg, 0.05 mmol) and potassium carbonate 

(345 mg, 2.5 mmol) were placed in a dry two-neck round 

bottom flask. Under nitrogen, methanol (5.0 mL) and anhydrous 

toluene (20 mL) were added and the reaction mixture was 

subjected to three freeze/pump/thaw cycles after which the 

reaction flask was refilled with nitrogen. The solution was 

heated to 80 °C for 12 hours. The solvents were removed under 

reduced pressure and the crude product was extracted using 

DCM and water. The DCM extract was filtered through Celite® 

and then passed through a column of silica eluting with hexanes 

/DCM (volume = 3:1) to get purple solid (405 mg, yield: 88%).1H 

NMR (400 MHz, CDCl3) δ 8.14 (t, J = 5.5 Hz, 1H), 7.90 (d, J = 7.6 

Hz, 1H), 7.80 (s, 1H), 7.75 (dd, J = 8.3, 1.7 Hz, 1H), 7.68 (d, J = 7.6 

Hz, 1H), 7.27 (d, J = 9.2 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 7.13 (s, 

1H), 7.06 (d, J = 8.4 Hz, 1H), 5.69 (s, 1H), 4.89 (t, J = 6.6 Hz, 1H), 

3.97 (t, J = 7.6 Hz, 1H), 3.81 (d, J = 11.1 Hz, 2H), 3.69 (d, J = 10.9 

Hz, 2H), 2.37 (s, 3H), 2.24 – 2.06 (m, 1H), 2.05 – 1.92 (m, 2H), 

1.92 – 1.78 (m, 1H), 1.78 – 1.59 (m, 2H), 1.55 – 1.43 (m, 2H), 

1.39 – 1.12 (m, 19H), 1.10 – 0.94 (m, 4H), 0.92 – 0.74 (m, 15H). 
13C NMR (101 MHz, CDCl3) δ 154.16, 152.84, 149.72, 149.37, 

149.34, 149.30, 148.34, 143.87, 142.57, 142.50, 142.43, 142.12, 

142.08, 142.04, 140.67, 140.65, 140.63, 140.22, 135.35, 132.67, 

131.61, 130.13, 130.09, 130.05, 129.81, 128.76, 127.95, 127.33, 

126.32, 125.48, 125.35, 125.27, 120.25, 107.47, 98.45, 69.29, 

45.47, 35.96, 35.90, 35.71, 35.64, 35.20, 33.77, 30.25, 28.96, 

28.88, 28.86, 24.49, 23.07, 23.02, 23.01, 21.89, 20.84, 17.79, 

17.73, 17.69, 17.63, 14.23, 14.20, 10.82, 10.81. (More peaks 

than expected are observed due to the mixture of isomers.) 

HRMS (MALDI) m/z: [M]+ calcd. for C54H67N3O2S3Si: 913.4165; 

found, 914.4054. Anal. Calcd. for C54H67N3O2S3Si: C, 70.93; H, 

7.39; N, 4.60. Found: C, 70.91; H, 7.34; N, 4.47. 

7-(8-(6-(5,5-dimethyl-1,3-dioxan-2-yl)-4,4-bis(2-ethylhexyl)-4H-

silolo[3,2-b:4,5-b']dithiophen-2-yl)-2,3-bis(4-(dodecyloxy) 

phenyl)pyrido[3,4-b]pyrazin-5-yl)-4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indole (7b): Compound 5b (489.1 mg, 

0.5 mmol), compound 6 (658.9 mg, 1.0 mmol), [1,1’bis(diphenyl 

phosphino)ferrocene]dichloro-palladium(II) (36.6 mg, 0.05 

mmol) and potassium carbonate (345 mg, 2.5 mmol) were 

placed in a dry two-neck round bottom flask. Under nitrogen, 

methanol (5.0 mL) and anhydrous toluene (20 mL) were added 

and the reaction mixture was subjected to three 

freeze/pump/thaw cycles after which the reaction flask was 

refilled with nitrogen. The solution was heated to 80 °C for 12 

hours. The solvents were removed under reduced pressure and 

the raw product was extracted using DCM and water. The DCM 

extract was filtered through Celite® and then passed through a 

column of silica eluting with hexanes /dichloromethane 

(volume = 4:3) to get purple solid (579 mg, yield: 81%). 1H NMR 

(400 MHz, CDCl3) δ 9.17 (s, 1H), 8.23 (s, 1H), 8.18 (d, J = 8.5 Hz, 

1H), 7.83 (d, J = 8.6 Hz, 2H), 7.80 (s, 1H), 7.68 (d, J = 8.7 Hz, 2H), 

7.29 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 7.14 (s, 1H), 7.07 

(d, J = 8.5 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 

5.71 (s, 1H), 4.91 (t, J = 6.6 Hz, 1H), 4.07 (t, J = 6.6 Hz, 2H), 4.03 

– 3.94 (m, 3H), 3.83 (d, J = 11.0 Hz, 2H), 3.71 (d, J = 11.0 Hz, 2H), 

2.39 (s, 3H), 2.26 – 2.05 (m, 2H), 2.05 – 1.92 (m, 1H), 1.93 – 1.76 

(m, 5H), 1.76 – 1.61 (m, 2H), 1.59 – 1.44 (m, 6H), 1.39 – 1.13 (m, 

48H), 1.09 – 0.96 (m, 4H), 0.95 – 0.69 (m, 24H). 13C NMR (101 

MHz, CDCl3) δ 160.64, 160.12, 156.40, 154.03, 152.51, 152.47, 

152.43, 151.88, 149.76, 149.73, 149.70, 149.24, 142.95, 142.41, 
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142.34, 142.28, 142.27, 142.22, 142.16, 141.69, 141.66, 141.64, 

140.10, 139.48, 137.33, 137.30, 137.27, 134.63, 133.20, 132.03, 

131.75, 131.73, 131.43, 131.22, 130.52, 129.84, 128.66, 128.63, 

128.59, 128.01, 127.81, 123.98, 120.53, 114.43, 114.34, 106.93, 

98.66, 69.34, 68.20, 68.11, 45.47, 35.97, 35.93, 35.74, 35.67, 

35.20, 33.73, 31.98, 30.27, 29.75, 29.72, 29.70, 29.70, 29.66, 

29.64, 29.50, 29.47, 29.41, 29.34, 29.28, 28.93, 28.91, 26.11, 

26.10, 24.53, 23.10, 23.05, 22.75, 21.92, 20.88, 17.78, 14.25, 

14.23, 14.19, 10.86. (More peaks than expected are observed 

due to the mixture of isomers.) HRMS (MALDI) m/z: [M]+ calcd. 

for C91H124N4O4S2Si: 1428.8833; found, 1429.8869. Anal. Calcd. 

for C91H124N4O4S2Si: C, 76.42; H, 8.74; N, 3.92. Found: C, 76.12; 

H, 8.85; N, 3.75.  

13-(6-(5,5-dimethyl-1,3-dioxan-2-yl)-4,4-bis(2-ethylhexyl)-4H-

silolo[3,2-b:4,5-b']dithiophen-2-yl)-3,6-didodecyl-10-(4-(p-

tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indol-7-yl)dibenzo 

[f,h]pyrido[3,4-b]quinoxaline (7c): Compound 5c (600.0 mg, 

0.64 mmol), compound 6 (836.8 mg, 1.27 mmol), 

[1,1’bis(diphenylphosphino)ferrocene]dichloropalladium(II) 

(46.5 mg, 0.06 mmol) and potassium carbonate (439.5 mg, 3.18 

mmol) were placed in a dry two-neck round bottom flask. Under 

nitrogen, methanol (7.0 mL) and anhydrous toluene (28 mL) 

were added and the reaction mixture was subjected to three 

freeze/pump/thaw cycles after which the reaction flask was 

refilled with nitrogen. The solution was heated to 80 °C for 12 

hours. The solvents were removed under reduced pressure and 

the crude product was extracted using DCM and water. The 

DCM extract was filtered through Celite® and then passed 

through a column of silica eluting with hexanes/DCM (volume = 

2:1) to get dark green solid (532 mg, yield: 60%). 1H NMR (400 

MHz, CDCl3) δ 9.50 (d, J = 8.2 Hz, 1H), 9.29 (s, 1H), 9.16 (d, J = 

8.2 Hz, 1H), 8.42 – 8.27 (m, 4H), 7.89 (s, 1H), 7.75 (d, J = 8.3 Hz, 

1H), 7.56 (d, J = 8.3 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 

8.3 Hz, 2H), 7.20 – 7.12 (m, 2H), 5.75 (s, 1H), 5.06 – 4.86 (m, 1H), 

4.16 – 3.98 (m, 1H), 3.86 (d, J = 11.1 Hz, 2H), 3.73 (d, J = 11.0 Hz, 

2H), 2.95 (2t, J = 7.7, 7.7 Hz, 4H), 2.41 (s, 1H), 2.27 – 2.14 (m, 

2H), 2.11 – 1.98 (m, 1H), 1.97 – 1.68 (m, 7H), 1.63 – 1.10 (m, 

54H), 1.16 – 0.97 (m, 4H), 0.96 – 0.69 (m, 24H). 13C NMR (101 

MHz, CDCl3) δ 157.18, 152.61, 152.58, 152.54, 149.86, 149.16, 

146.52, 145.68, 144.01, 142.46, 142.39, 142.33, 142.20, 142.10, 

141.78, 141.75, 141.72, 140.57, 140.12, 137.61, 134.74, 134.58, 

132.92, 132.09, 132.01, 131.65, 129.86, 128.97, 128.51, 128.31, 

128.18, 128.06, 127.98, 127.84, 126.71, 124.07, 122.48, 122.42, 

120.43, 107.03, 98.74, 83.97, 69.37, 45.56, 36.86, 36.67, 36.04, 

36.01, 35.82, 35.75, 35.21, 33.83, 31.99, 31.68, 30.32, 29.81, 

29.78, 29.73, 29.68, 29.65, 29.57, 29.44, 29.00, 28.97, 28.95, 

24.80, 24.61, 23.16, 23.10, 22.76, 21.96, 20.91, 17.86, 14.29, 

14.27, 14.19, 10.92. (More peaks than expected are observed 

due to the mixture of isomers.) HRMS (MALDI) m/z: [M]+ calcd. 

for C91H122N4O2S2Si: 1395.8857; found, 1395.8927. Anal. Calcd. 

for C91H122N4O2S2Si: C, 78.28; H, 8.81; N, 4.01. Found: C, 78.29; 

H, 8.69; N, 3.87. 

4,4-bis(2-ethylhexyl)-6-(7-(4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indol-7-yl)benzo[c][1,2,5]thiadiazol-4-

yl)-4H-silolo[3,2-b:4,5-b']dithiophene-2-carbaldehyde (8a): 

Compound 7a (230 mg, 0.25 mmol) was dissolved in 

tetrahydrofuran (10.0 mL) and stirred at room temperature for 

5 minutes. Water (2.5 mL) was added and reaction was stirred 

for another 5 minutes. Trifluoroacetic acid (0.39 mL, 5.03 mmol) 

was added and the reaction was stirred at room temperature 

for 12 hours under nitrogen atmosphere. Saturated sodium 

bicarbonate solution (40.0 mL) was added and reaction mixture 

stirred for an additional hour at room temperature. The organic 

layer was extracted from dichloromethane (40 x 3 mL), dried 

over anhydrous sodium sulfate and solvent removed to get the 

crude product which was passed through a column of silica 

eluting with hexanes /dichloromethane (volume = 1:1) to get a 

purple solid (155 mg, yield: 75%). 1H NMR (400 MHz, CDCl3) δ 

9.92 (s, 1H), 8.18 (t, J = 4.0 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.82 

(s, 1H), 7.80 – 7.74 (m, 2H), 7.71 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 

8.5 Hz, 2H), 7.21 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.4 Hz, 1H), 4.97 

– 4.78 (m, 1H), 3.97 (td, J = 8.7, 2.1 Hz, 1H), 2.38 (s, 3H), 2.20 – 

2.05 (m, 1H), 2.05 – 1.93 (m, 2H), 1.91 – 1.78 (m, 1H), 1.78 – 

1.57 (m, 2H), 1.55 – 1.44 (m, 2H), 1.39 – 1.17 (m, 16H), 1.12 – 

1.04 (m, 4H), 0.91 – 0.78 (m, 12H). 13C NMR (101 MHz, CDCl3) δ 

182.65, 158.52, 158.49, 158.46, 154.08, 152.77, 148.63, 148.43, 

148.39, 148.36, 148.20, 144.71, 144.36, 143.77, 143.68, 143.59, 

140.06, 139.74, 135.43, 133.77, 131.81, 129.84, 128.93, 126.99, 

126.18, 126.06, 125.54, 124.40, 120.40, 107.43, 69.33, 45.44, 

35.94, 35.93, 35.72, 35.70, 35.24, 33.72, 28.93, 28.90, 24.47, 

23.01, 22.98, 20.85, 17.63, 17.59, 17.54, 17.49, 14.18, 14.16, 

10.83, 10.82. (More peaks than expected are observed due to 

the mixture of isomers.) HRMS (MALDI) m/z: [M]+ calcd. for 

C49H57N3OS3Si: 827.3433; found, 827.3409. Anal. Calcd. for 

C49H57N3OS3Si: C, 71.05; H, 6.94; N, 5.07. Found: C, 70.90; H, 

6.87; N, 4.98. 

6-(2,3-bis(4-(dodecyloxy)phenyl)-5-(4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indol-7-yl)pyrido[3,4-b]pyrazin-8-yl)-

4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2-

carbaldehyde (8b): Compound 7b (300 mg, 0.2 mmol) was 

dissolved in tetrahydrofuran (8.0 mL) and stirred at room 

temperature for 5 minutes. Water (2.0 mL) was added and 

reaction was stirred for another 5 minutes. Trifluoroacetic acid 

(0.32 mL, 4.2 mmol) was added and the reaction was stirred at 

room temperature for 12 hours under nitrogen atmosphere. 

Saturated sodium bicarbonate solution (40.0 mL) was added 

and reaction mixture stirred for an additional hour at room 

temperature. The organic layer was extracted from 

dichloromethane (40 x 3 mL), dried over anhydrous sodium 

sulfate and solvent removed to get the crude product which was 

passed through a column of silica eluting with hexanes 

/dichloromethane (volume = 5:3) to get a purple solid (161 mg, 

yield: 60%). 1H NMR (400 MHz, CDCl3) δ 9.91 (s, 1H), 9.21 (s, 1H), 

8.24 (s, 1H), 8.20 (d, J = 8.5 Hz, 1H), 7.86 (s, 1H), 7.83 (d, J = 8.7 

Hz, 2H), 7.75 (s, 1H), 7.67 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 9.5 Hz, 

2H), 7.21 (d, J = 8.4 Hz, 2H), 7.05 (d, J = 8.5 Hz, 1H), 6.97 (d, J = 

8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 5.01 – 4.78 (m, 1H), 4.07 (t, 

J = 6.5 Hz, 2H), 4.03 – 3.86 (m, 3H), 2.37 (s, 3H), 2.23 – 2.02 (m, 
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2H), 2.02 – 1.90 (m, 1H), 1.90 – 1.75 (m, 5H), 1.75 – 1.58 (m, 2H), 

1.58 – 1.44 (m, 6H), 1.42 – 1.12 (m, 48H), 1.12 – 1.01 (m, 4H), 

0.96 – 0.75 (m, 18H). 13C NMR (101 MHz, CDCl3) δ 182.74, 

160.87, 160.21, 159.05, 159.03, 159.02, 157.20, 154.34, 152.16, 

150.88, 150.85, 150.82, 149.54, 146.82, 146.74, 146.67, 144.45, 

143.64, 143.55, 143.47, 143.08, 141.17, 141.16, 141.14, 139.94, 

139.47, 134.70, 133.22, 132.01, 131.97, 131.94, 131.42, 131.00, 

130.28, 129.86, 128.26, 128.23 , 128.21, 127.88, 127.76, 123.05, 

120.70, 114.45, 114.37, 106.89, 69.39, 68.27, 68.13, 45.42, 

35.93, 35.72, 35.21, 33.67, 31.95, 29.72, 29.70, 29.67, 29.64, 

29.62, 29.50, 29.45, 29.39, 29.39, 29.33, 29.25, 28.93, 28.89, 

26.11, 26.07, 24.50, 23.02, 22.99, 22.73, 20.88, 17.63, 14.18, 

14.16, 10.85, 10.83. (More peaks than expected are observed 

due to the mixture of isomers.) HRMS (MALDI) m/z: [M]+ calcd. 

for C86H114N4O3S2Si: 1342.8102; found, 1342.8122. Anal. Calcd. 

for C91H124N4O4S2Si: C, 76.85; H, 8.55; N, 4.17. Found: C, 77.03; 

H, 8.60; N, 4.11. 

6-(3,6-didodecyl-10-(4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclo- 

penta[b]indol-7-yl)dibenzo[f,h]pyrido[3,4-b]quinoxalin-13-yl)-

4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2-

carbaldehyde (8c): Compound 7c (532.0 mg, 0.38 mmol) was 

dissolved in tetrahydrofuran (15.0 mL) and stirred at room 

temperature for 5 minutes. Water (3.8 mL) was added and 

reaction was stirred for another 5 minutes. Trifluoroacetic acid 

(0.59 mL, 7.6 mmol) was added, and the reaction was stirred at 

room temperature for 12 hours under nitrogen atmosphere. 

Saturated sodium bicarbonate solution (50.0 mL) was added 

and reaction mixture stirred for an additional hour at room 

temperature. The organic layer was extracted from 

dichloromethane (40 x 3 mL), dried over anhydrous sodium 

sulfate and solvent removed to get the crude product which was 

passed through a column of silica eluting with hexanes 

/dichloromethane (volume = 2:1) to get a dark green solid (204 

mg, yield: 41%). 1H NMR (400 MHz, CDCl3) δ 9.97 (s, 1H), 9.38 

(d, J = 6.5 Hz, 1H), 9.29 (s, 1H), 9.03 (d, J = 6.5 Hz, 1H), 8.44 – 

8.32 (m, 2H), 8.26 (d, J = 7.7 Hz, 2H), 7.93 (s, 1H), 7.81 (s, 1H), 

7.67 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.4 

Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 1H), 4.97 (t, J 

= 6.6 Hz, 1H), 4.09 – 3.87 (m, 1H), 2.91 (2t, J = 7.6, 7.6 Hz, 4H), 

2.42 (s, 3H), 2.25 – 2.13 (m, 2H), 2.08 – 1.96 (m, 1H), 1.95 – 1.66 

(m, 7H), 1.66 – 1.18 (m, 54H), 1.14 (d, J = 6.7 Hz, 4H), 0.99 – 0.79 

(m, 18H). 13C NMR (101 MHz, CDCl3) δ 182.62, 159.20, 157.61, 

150.87, 150.85, 150.82, 149.33, 146.67, 145.59, 144.48, 143.83, 

143.56, 143.51, 142.41, 142.26, 142.12, 141.38, 140.46, 140.23, 

139.95, 134.56, 132.84, 132.81, 132.25, 131.93, 131.76, 129.87, 

128.72, 128.59, 128.37, 128.27, 128.11, 127.95, 127.47, 126.59, 

122.91, 122.35, 120.64, 120.53, 106.91, 69.36, 45.51, 36.88, 

36.70, 36.02, 35.82, 35.26, 33.77, 31.99, 31.70, 29.75, 29.44, 

28.99, 28.96, 24.61, 23.11, 23.09, 22.75, 20.93, 17.68, 14.25, 

14.18, 10.91. (More peaks than expected are observed due to 

the mixture of isomers.) HRMS (MALDI) m/z: [M]+ calcd. for 

C86H112N4OS2Si: 1308.8047; found, 1308.7982. Anal. Calcd. for 

C86H112N4OS2Si: C, 78.85; H, 8.62; N, 4.28. Found: C, 78.88; H, 

8.53; N, 4.36. 

(E)-3-(4,4-bis(2-ethylhexyl)-6-(7-(4-(p-tolyl)-1,2,3,3a,4,8b-hexa- 

hydrocyclopenta[b]indol-7-yl)benzo[c][1,2,5]thiadiazol-4-yl)-4H 

-silolo[3,2-b:4,5-b']dithiophen-2-yl)-2-cyanoacrylic acid (B-87): 

Compound 8a (200.0 mg, 0.24 mmol), and cyanoacetic acid 

(786.0 mg, 18.5 mmol) were placed in a dry two-neck round 

bottom flask with reflux condenser attached. Under nitrogen, 

anhydrous chloroform (16 mL), anhydrous acetonitrile (16 mL) 

and piperidine (912 μL, 9.24 mmol) were added and the solution 

heated to reflux at 65°C for 12 hours. The solvent was removed 

under reduced pressure and the crude mixture passed through 

a column of silica eluting with dichloromethane/methanol 

(volume = 25:1) to give a dark purple powder (120 mg, 56%). 1H 

NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 8.21 (t, J = 3.1 Hz, 1H), 7.94 

– 7.59 (m, 5H), 7.27 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.2 Hz, 2H), 

7.04 (d, J = 8.3 Hz, 1H), 4.89 (t, J = 7.1 Hz, 1H), 3.96 (t, J = 8.1 Hz, 

1H), 2.38 (s, 3H), 2.22 – 2.04 (m, 1H), 2.04 – 1.92 (m, 2H), 1.92 – 

1.78 (m, 1H), 1.78 – 1.46 (m, 4H), 1.45 – 1.19 (m, 16H), 1.12 (s, 

4H), 0.99 – 0.78 (m, 12H). 13C NMR (101 MHz, CDCl3) δ 169.00, 

161.20, 153.93, 152.63, 149.72, 148.62, 147.86, 145.88, 144.61, 

142.64, 140.04, 137.38, 135.42, 133.84, 131.79, 130.12, 129.84, 

128.98, 126.92, 126.24, 125.89, 125.54, 124.11, 124.06, 120.37, 

116.46, 107.42, 93.78, 69.32, 45.43, 35.95, 35.75, 35.24, 33.72, 

28.91, 24.48, 23.04, 23.00, 20.85, 17.65, 17.60, 17.51, 17.45, 

14.19, 10.83. HRMS (MALDI) m/z: [M]+ calcd. for C52H58N4O2S3Si: 

894.3491; found, 894.3494. Anal. Calcd. for C52H58N4O2S3Si: C, 

69.76; H, 6.53; N, 6.26. Found: C, 69.67; H, 6.56; N, 6.21. 

(E)-3-(6-(2,3-bis(4-(dodecyloxy)phenyl)-5-(4-(p-tolyl)-1,2,3,3a, 

4,8b-hexahydrocyclopenta[b]indol-7-yl)pyrido[3,4-b]pyrazin-8-

yl)-4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophen-2-yl)-

2-cyanoacrylic acid (Q-85): Compound 8b (138.0 mg, 0.10 

mmol), and cyanoacetic acid (672.0 mg, 7.80 mmol) were 

placed in a dry two-neck round bottom flask with reflux 

condenser attached. Under nitrogen, anhydrous chloroform (16 

mL), anhydrous acetonitrile (16 mL) and piperidine (381 μL, 3.87 

mmol) were added and the solution heated to reflux at 65°C for 

12 hours. The solvent was removed under reduced pressure and 

the crude mixture passed through a column of silica eluting with 

dichloromethane/methanol (volume = 30:1) to give a dark 

purple powder (110 mg, 78%). 1H NMR (400 MHz, CDCl3) δ 9.23 

(s, 1H), 8.40 (s, 1H), 8.20 (s, 1H), 8.16 (d, J = 8.7 Hz, 1H), 7.93 (s, 

1H), 7.83 (d, J = 8.6 Hz, 2H), 7.80 (s, 1H), 7.68 (d, J = 8.7 Hz, 2H), 

7.30 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.06 (d, J = 8.5 

Hz, 1H), 7.00 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 5.07 – 

4.84 (m, 1H), 4.07 (t, J = 6.3 Hz, 2H), 4.03 – 3.93 (m, 3H), 2.39 (s, 

3H), 2.31 – 2.07 (m, 2H), 2.07 – 1.90 (m, 1H), 1.90 – 1.78 (m, 5H), 

1.76 – 1.63 (m, 2H), 1.59 – 1.43 (m, 6H), 1.44 – 1.16 (m, 48H), 

1.10 (d, 4H), 0.95 – 0.77 (m, 18H). 13C NMR (101 MHz, CDCl3) δ 

167.56, 161.02, 160.32, 160.04, 156.88, 155.02, 152.65, 151.02, 

150.05, 147.62, 147.53, 147.44, 146.72, 144.67, 144.55, 144.45, 

141.95, 141.49, 141.20, 140.00, 139.69, 137.48, 134.87, 133.43, 

132.51, 132.27, 132.01, 131.46, 130.80, 130.07, 129.89, 129.24, 

128.11, 126.15, 123.75, 120.98, 117.26, 114.56, 114.39, 106.80, 

96.17, 69.49, 68.24, 68.15, 45.36, 35.89, 35.72, 35.70, 35.26, 

33.60, 31.94, 29.70, 29.69, 29.66, 29.62, 29.61, 29.48, 29.44, 
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29.37, 29.28, 29.24, 28.90, 28.88, 28.86, 26.11, 26.06, 24.50, 

23.00, 22.98, 22.71, 20.89, 17.63, 14.17, 14.15, 10.81, 10.80. 

(More peaks than expected are observed due to the mixture of 

isomers.) HRMS (MALDI) m/z: [M]+ calcd. for C89H115N5O4S2Si: 

1409.8160; found, 1409.8121. Anal. Calcd. for C91H124N4O4S2Si: 

C, 75.75; H, 8.21; N, 4.96. Found: C, 75.69; H, 8.17; N, 5.04. 

(E)-2-cyano-3-(6-(3,6-didodecyl-10-(4-(p-tolyl)-1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indol-7-yl)dibenzo[f,h]pyrido[3,4-b] 

quinoxalin-13-yl)-4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-

b']dithiophen-2-yl)acrylic acid (Q-93): Compound 8c (204.0 mg, 

0.16 mmol), and cyanoacetic acid (1019.7 mg, 12.0 mmol) were 

placed in a dry two-neck round bottom flask with reflux 

condenser attached. Under nitrogen, anhydrous chloroform (20 

mL), anhydrous acetonitrile (20 mL) and piperidine (592 μL, 5.99 

mmol) were added and the solution heated to reflux at 65 °C for 

12 hours. The solvent was removed under reduced pressure and 

the crude mixture passed through a column of silica eluting with 

dichloromethane/methanol (volume = 40:1) to give a dark 

green powder (150 mg, yield: 70%). 1H NMR (400 MHz, CDCl3) δ 

9.34 (s, 1H), 9.26 (s, 1H), 9.02 (s, 1H), 8.45 (s, 1H), 8.28 (s, 4H), 

7.94 (d, J = 25.3 Hz, 2H), 7.71 (s, 1H), 7.48 (s, 1H), 7.34 (d, J = 7.9 

Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.4 Hz, 1H), 4.98 (s, 

1H), 4.02 (s, 1H), 2.91 (s, 4H), 2.41 (s, 3H), 2.21 (s, 2H), 2.02 (s, 

1H), 1.81 (s, 7H), 1.65 – 1.04 (m, 58H), 0.94 – 0.78 (m, 18H). 13C 

NMR (101 MHz, CDCl3) δ 167.64, 160.00, 157.70, 150.95, 149.93, 

147.52, 147.19, 146.63, 146.05, 144.62, 142.77, 141.73, 140.94, 

139.74, 137.55, 137.53, 134.85, 134.77, 133.14, 132.86, 132.32, 

132.18, 130.16, 129.92, 129.33, 128.64, 128.51, 128.38, 128.27, 

127.81, 127.54, 126.85, 123.76, 122.52, 120.85, 117.30, 106.87, 

69.47, 45.43, 36.84, 36.72, 35.94, 35.78, 35.26, 33.69, 31.94, 

31.71, 31.68, 29.73, 29.68, 29.62, 29.58, 29.38, 28.93, 24.58, 

23.05, 23.02, 22.70, 20.91, 17.65, 14.19, 14.13, 10.86. HRMS 

(MALDI) m/z: [M+H]+ calcd. for C89H113N5O2S2Si: 1376.8183; 

found, 1376.8198. Anal. Calcd. for C89H113N5O2S2Si: C, 77.62; H, 

8.27; N, 5.09. Found: C, 77.73; H, 8.22; N, 5.12. 

Fabrication of DSSCs. The photoelectrode was fabricated by 

repeating screen printing process with commercial colloidal 

paste (Dyesol 18NR-T) layer (12 μm) and scattering layer (4 μm), 

respectively. Afterwards, the TiO2 films were heated gradually 

under an air flow at 325 °C for 5 min, 375 °C for 5 min, 450 °C 

for 15 min, and 500 °C for 15 min. Prior to dye adsorption, the 

TiO2 films were post treated by 0.04 M TiCl4 solution to increase 

the surface area and improve the connectivity of the 

nanoparticles. Subsequently, the photoanodes sintered once 

again and cooled to room temperature. Then they were 

immersed into a binary solvent system (CHCl3:C2H5OH= 6:4) 

with sensitizers (3× 10−4 M), respectively. For the counter 

electrode, the H2PtCl6 in 2-propanol solution presented a 

uniform distribution on FTO glass by spin coating method, and 

the cathode was heated under 400 °C for deposition of platinum. 

Eventually, the two electrodes were sealed with thermoplastic 

Surlyn, and an electrolyte solution was injected through one 

hole in the counter electrode to finish the sandwiches type-

solar cells. The electrolyte is composed of 1.0 M 1,3-

dimethylimidazolium iodide, 0.03 M iodine, 0.1 M guanidinium 

thiocyanate, 0.5 M tert-butylpyridine, 0.05 M lithium iodide in 

acetonitrile:valeronitrile (85:15, v/v). The active area of all 

DSSCs is 0.12 cm2.  

Photovoltaic property measurements. The current-voltage 

photovoltaic characterization was performed using the setup 

consisting of a 450 W xenon lamp (Oriel), a Schott K113 Tempax 

sunlight filter (PräzisionsGlas & Optik GmbH), and a Keithley 

2400 source meter which applies potential bias and measures 

the photogenerated current. Monochromatic incident photon-

to-current conversion efficiency (IPCE) was obtained via the 

setup using a SR830 lock-in amplifier, a 300 W xenon lamp (ILC 

Technology) and a Gemini-180 double monochromator (Jobin-

Yvon Ltd.). A Zahner IM6e Impedance Analyzer (ZAHNER-

Elektrik GmbH & CoKG, Kronach, Germany) was employed to 

carry out the electrochemical impedance spectroscopy. The 

frequency range was 0.1 Hz-100 kHz and the applied bias was 

from -0.5 V to -0.80 V or from -0.55 V to -0.80 V with about 50 

mV progressive increase under dark condition. The magnitude 

of the alternating signal was 5 mV, and the spectra was 

characterized with Z-View software. Dye-loading 

measurements were conducted by immersing dye-coated TiO2 

films with 0.1 M NaOH THF/H2O (v/v = 1/1) solution for 2h to 

perform the dye desorption. The absorption spectra of 

desorbed dye solutions were measured and total dye-loading 

was determined from a plot of standard samples. 
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