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Abstract 

Genetic mutations known to cause intellectual disabilities (ID) are concentrated in specific 

sets of genes including both those encoding synaptic proteins and those expressed during 

early development. We have characterised the effect of genetic deletion of Dlg3, an ID-

related gene encoding the synaptic NMDA-receptor interacting protein SAP102, on 

development of the mouse somatosensory cortex. SAP102 is the main representative of the 

PSD-95 family of postsynaptic MAGUK proteins during early development and is proposed 

to play a role in stabilising receptors at immature synapses. Genetic deletion of SAP102 

caused a reduction in the total number of thalamocortical (TC) axons innervating the 

somatosensory cortex, but did not affect the segregation of barrels. On a synaptic level 

SAP102 knockout mice display a transient speeding of NMDA receptor kinetics during the 

critical period for TC plasticity, despite no reduction in GluN2B-mediated component of 

synaptic transmission. These data indicated an interesting dissociation between receptor 

kinetics and NMDA subunit expression. Following the critical period NMDA receptor 

function was unaffected by loss of SAP102 but there was a reduction in the divergence of TC 

connectivity. These data suggest that changes in synaptic function early in development 

caused by mutations in SAP102 result in changes in network connectivity later in life. 
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Introduction 

Intellectual disability (ID) is one of the commonest neurodevelopmental disorders affecting 

approximately 1-3% of the population (1). While hundreds of genes have been causally 

associated with ID, it is widely believed that many forms share common developmental 

and/or biochemical aetiologies and hence may be amenable to common therapeutic 

intervention. For example, ID-related genes are preferentially expressed at late prenatal 

stages in humans (2) indicating that fundamental aspects of brain development are likely 

disrupted in ID. Additionally many of these genes encode proteins that regulate synaptic 

function and plasticity (3, 4) indicating that altered synaptic development is a central feature 

of many neurodevelopmental disorders. 

Synapse-associated protein (SAP) 102 is a member of the membrane associated guanylate 

kinase (MAGUK) family of scaffold proteins that is present throughout synapse 

development. It is encoded by the DLG3 gene and was first identified as a component of 

glutamatergic synapses through its binding to NMDA receptors (5). SAP102 associates with 

GluN2 subunits of NMDA receptors, particularly GluN2B which is the dominant subunits in 

cortical neurons during early development (6). Furthermore, compared to other postsynaptic 

MAGUK proteins SAP102 is relatively highly expressed early in development (6), 

suggesting a specific role for this protein in synaptic development. 

Mutations in the DLG3 gene have been identified in 5 independent families causing non-

syndromic X-linked ID in males (7, 8). Mutations are predicted to lead to truncated proteins 

(due to frame shifts resulting in premature stop codons) which contain the first 2 PDZ 

domains but lack the SH3 and guanylate kinase (GK) domains. It is likely that these 

mutations lead to a loss of SAP102 at synapses as the deleted domains are required for 

synaptic clustering of SAP102 (9). 
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 Consistent with an important role for SAP102 in synaptic development and plasticity,  adult 

mice lacking SAP102 show impaired hippocampus-dependent spatial learning and altered 

synaptic plasticity but normal hippocampal synaptic transmission (10). Furthermore 

knockdown of SAP102 is required for delivery of both AMPA and NMDA receptors only at 

immature synapses (11). These findings indicate that SAP102 may regulate synaptic function 

early in development, however, little is known of how its loss alters synaptic development. 

To study the development of the cerebral cortex in the absence of SAP102 we examined the 

morphological and functional development of thalamocortical (TC) synapses in primary 

somatosensory cortex (S1, barrel cortex) of SAP102 knockout mice. We focussed our studies 

on the critical period for experience-dependent plasticity; an age that is equivalent to the late 

prenatal period in humans(12). The formation of “barrels” which characterize the sensory 

representation of individual whiskers is dependent on cortical NMDA receptors (13). An 

increase in connection probability between thalamic and cortical cells depends on sensory 

experience during this neonatal period (14). We find that, in mice lacking SAP102, TC 

synapses transiently display altered NMDA receptor function. This altered NMDA receptor 

function is enough to support formation of barrels but with abnormal dimensions. After the 

critical period TC synapses function normally but TC connectivity on to layer 4 (L4) cells is 

greatly reduced compared to wildtype. Electrophysiology and a range of anatomical 

approaches also demonstrate reduction in the total thalamocortical innervation of barrel 

cortex. 
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Results 

Reduced TC Axon Patches but No Change in Barrel Patterning in SAP KO Mice 

As cortical NMDA receptors are required for barrel formation (13) and SAP102 is required 

for normal synaptic expression of NMDA receptors in immature synapses (11) we 

hypothesised that loss of SAP102 would disrupt the development of barrels. The two main 

components of barrels are bundles of TC axons in the centre of the barrel and a preferential 

distribution of L4 stellate cell bodies surrounding these bundles in the barrel wall. To 

examine the formation of TC axon bundles we stained for SERT, which specifically labels 

the presynaptic terminals of TC axons (15), in P7 SAP102 knockout male mice (SAP KO) 

and wild-type male littermates (WT). We found that brain mass (WT brain mass 274 ± 5 mg, 

N = 16, SAP KO 241 ± 5 mg, N = 12, p = 8 x 10
-5

,
 
Fig 1A), total neocortical area (WT area 

28.4 ± 0.7 mm
2
, N = 16, SAP KO 25.0 ± 0.9, N = 10, p = 0.006, Fig 1B, D), area of PMBSF 

(WT area 1.21 ± 0.03 mm
2
, N = 16, SAP KO 1.09 ± 0.03 mm

2
, N = 12, p = 0.02, Fig 1B,C,D) 

and combined area of all TC axon patches (WT 0.165 ± 0.007 mm
2
, N = 16, SAP KO 0.134 ± 

0.003 mm
2
, N = 12, p = 0.002 Fig 1B,C,E)) were all reduced in SAP KO mice. Whilst the 

area of PMBSF was not reduced beyond the overall reduction in neocortex (data not shown, p 

= 0.38) the total area of TC axon patches within PMBSF was further reduced relative to the 

area of PMBSF (WT proportion PMBSF 0.135 ± 0.004, N = 16, SAP KO 0.124 ± 0.004, N = 

12, p = 0.04 Fig 1B, E) indicating a reduction in the areal extent of TC innervation from 

ventral posteromedial thalamus of the barrel cortex. 

This reduction in TC axon area in SAP KO animals is consistent with a decrease seen in the 

cortex specific deletion of GluN1 (13) in which the distribution of barrel cells was also 

disrupted. Therefore, we next examined the segregation of L4 cells, which was absent in 

cortex-specific GluN1 knockout mice (13). Using the nuclear stain TO-PRO3, we found no 
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change in segregation ratio (relative density of cells in the barrel wall to hollow) in SAP KO 

mice (WT ratio = 1.6 ± 0.1, N = 5, KO 1.8 ± 0.2, N = 6, fig 1F,G, p = 0.4). 

Faster NMDA Receptor Kinetics Independent of GluN2 Subunit Identity 

SAP102 was previously shown to regulate NMDA receptor localisation to developing 

synapses (11); however, the clear cellular segregation of L4 cells  to form barrel walls 

suggests the at least the presence of surface NMDA receptors. We directly examined NMDA 

receptor function at TC synapses in L4 stellate cells. A reduction in synaptic expression of 

NMDA receptors would be expected to result in a reduction in the ratio of NMDA:AMPA 

EPSCs. We recorded AMPA-mediated EPSCs at -70 mV and NMDA-mediated EPSCs at 

+40 mV and found there was no change in the NMDA:AMPA ratio in SAP KO mice (WT 

ratio 0.84 ± 0.25, N = 8, n = 10, SAP KO 0.83 ± 0.24, N = 10, n = 10, p = 0.97, Fig 2 A,B,). 

However, NMDA EPSCs showed faster decay kinetics than those recoded in WT mice (WT 

NMDA decay tau 71 ± 13 ms, N = 8, n =10, SAP KO 43 ± 6, N = 9, n = 9, p = 0.02, Fig 2 

A,C). Indeed, the decay kinetics in the SAP KO animals were more typical of GluN2A-

containing receptors rather GluN2B-containing receptors (16). However, at the ages used, 

NMDA receptors in neonatal barrel cortex contain primarily GluN1 and GluN2B subunits. In 

typical development the contribution of GluN2A increase around the end of the first postnatal 

week, correlating well with the critical period for synaptic plasticity (16). As SAP102 

preferentially associates with GluN2B subunits (6) we hypothesised that loss of SAP102 may 

result in premature expression of GluN2A subunits.  

To examine the relative contributions of GluN2B- and GluN2A-containing receptors we 

examined the extent of inhibition of pharmacologically-isolated NMDA EPSCs by the 

GluN2B-specific antagonist ifenprodil.  We found no difference in the ifenprodil inhibition of 

NMDA EPSCs between genotypes (WT inhibition by ifenprodil 66 ± 5%, N = 12, n = 12, 
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SAP KO 72 ± 7%, N = 7, n = 7, p = 0.5, Fig 2 D,E) despite confirming the difference in 

kinetics of NMDA receptors (WT NMDA decay tau 53 ± 5 ms, N = 18, n = 19, SAP KO 37 ± 

7 ms, N = 11, n = 12, p = 0.019, Fig 2 D,F). Furthermore, as expected, the remaining NMDA 

EPSC in the presence of ifenprodil had faster kinetics in WT animals (WT control tau = 55 ± 

6 ms, ifenprodil-resistant 44 ± 6 ms, N = 11, n = 11, p = 0.04, Fig 2 D,F) however, in SAP 

KO mice ifenprodil did not alter the kinetics of NMDA EPSCs (SAP KO control tau 33 ± 5 

ms, ifenprodil-resistant, 31 ± 8  N = 7, n = 7, p = 0.8, Fig 2 D,F) indicating that the loss of 

SAP102 changes the kinetics of GluN2B-mediated EPSCs.  

Reduced Number of TC Axons in SAP KO Mice 

Intriguingly, these bulk stimulation experiments revealed a substantial reduction in peak 

EPSC amplitude in SAP KO mice (WT 60 ± 17 pA, N = 8, n = 10, SAP KO 25 ± 4 pA, N 

=10, n = 10, p = 0.03, data not shown) suggesting a decrease in the number or the strength of 

thalamocortical synapses in the absence of SAP102. Unfortunately, these bulk excitation 

experiments cannot control for differences in stimulation intensity, complicating direct 

comparison of EPSC amplitudes.  Therefore we first examined whether individual TC axons 

showed a decrease in efficacy in SAP102 KO mice using minimal stimulation. We found no 

difference in minimal stimulation EPSC amplitude between genotypes (WT 39 ± 10 pA, N = 

14, n = 15, SAP KO 28 ± 3 pA, N = 12, n = 12, p = 0.7, Mann-Whitney test, Fig 2 G,H). To 

examine whether the number of TCA synapses was altered in the absence of SAP102, we 

first labelled the neurofilament medium polypeptide (NFM), the earliest-expressed subunit of 

the neurofilament triplet (17) which is strongly expressed in axons. In P6-7 S1 NFM is 

localized to TC patches in the barrel field (Fig 3A). To determine the location of NFM-

labelled axons relative to cortical layers and barrel boundaries we stained nuclei with TO-

PRO3 and immunostained for calretinin, which specifically labels the layer 4/5 border and 

barrel septa (18). The number of NFM positive fibres crossing regions of interest in either 
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barrel centre (WT 12.4 ± 0.8, N = 5, SAP KO 7.1 ± 1.6, N = 4, p = 0.008, Fig 3 B,C,D) or 

septa (WT 9.8 ± 0.9, N = 5, SAP KO 6.3 ± 1.0, N = 4, p = 0.03, Fig 3 B,C,D) was lower in 

SAP KO compared to WT mice giving a profound reduction in total axon number across L4 

(WT 22.2 ± 1.6, N = 5, SAP KO 13.4 ± 2.6, N = 4, p = 0.01, Fig 3B,C,D). The pattern of 

NFM suggests a restriction to TCA axons at this age, however, we could not rule out the 

possibility that we also labelled some axons which are not of TC origin. Therefore, we 

specifically labelled TC axons by placing crystals of the lipophilic tracer DiI in the white 

matter of flattened intact neocortex from P7 mice. This approach also demonstrated a 

reduction in total TC axon number (WT 17.5 ± 1.4, N = 4, SAP KO 11.5 ± 1.2, N = 6, p = 

0.007, Fig  4 A,B) and number of axons in the centre of barrels (WT 11.8 ± 0.9, N = 4, SAP 

KO 7.5 ± 0.8, N = 6, p = 0.004, Fig 4 A,B) although there was no significant reduction in 

septa (WT 5.8 ± 1.5, N = 4, SAP KO 4.0 ± 0.8, N = 6, p = 0.2, Fig 4 A,B). Taken together 

our data clearly indicate a decrease in the number of TC axons. 

Reduced Connectivity of Individual TC Axons despite Normal NMDA Receptor 

Function after the Critical Period  

The experiments above address the total TC axon number, however, we recently 

demonstrated that individual TC axons undergo an experience-dependent increase in 

divergence of connectivity during the critical period (14).  

As SAP102 acts preferentially at immature synapses to regulate NMDA receptor function 

(11) we next investigated whether loss of SAP102 alters the connectivity of individual 

thalamocortical axons onto L4 neurons using simultaneous recordings from pairs of L4 cells 

from P8-10 mice during minimal thalamic stimulation. These experiments directly elucidate 

whether the same axon makes functional synapses on to two adjacent cells – determined by 

coincident EPSCs and failures (Fig 5A), or whether that the stimulated axon only makes a 
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functional synapse on one cell – the EPSCs are seen in only one cell or EPSC events and 

failures are not coincident (Fig 5B). Consistent with previous results in vitro (14) and in vivo 

(19) we found that approximately 50% of L4 cells are contacted by each axon at this age in 

WT mice (5/9 experiments, 56% Fig 5H). However, in SAP KO mice the proportion of cells 

contacted by each axon is substantially lower (4/21 experiments, 19%, Fig 5C, p = 0.04) 

supporting the hypothesis that altered NMDA receptor function during the critical period 

prevents the experience-dependent increase in TC connectivity.  

Furthermore, we confirmed that there is no difference in strength of single axon EPSCs 

between genotypes at this age (WT minimal stimulation EPSC amplitude 41 ± 7 pA, N= 17, 

SAP KO 34 ± 16 pA, N = 8, Fig 5 D,E, p = 0.15). We next examined if NMDA EPSCs are 

altered in L4 barrel cortex after the critical period (P8-11) at which age GluN2A receptors are 

also expressed at TC synapses (16). NMDA:AMPA ratio remains unaltered in older SAP KO 

mice (WT ratio 0.38 ± 0.06, N = 11, SAP KO 0.44 ± 0.06, N= 13, p = 0.4, Fig 5 F,G) and, as 

expected, for WT mice the decay kinetics of NMDA EPSCs are faster in older animals 

(NMDA tau 38 ± 5 ms, N = 12, p = 0.003 vs P 4-5, Fig 5 F,H). In contrast there is no further 

speeding of NMDA EPSC decay kinetics in SAP KO mice (NMDA tau 51 ± 7 ms, N  = 13, p 

= 0.4, Fig 5 F,H) and there is no longer any difference between genotypes at this age (p = 

0.18).  

 

Discussion 

Genetic studies show that neurodevelopmental disorders including ID are often associated 

with mutations in glutamatergic synapse proteins (3, 4, 20) and that mutations in these 

conditions are enriched in prenatally-expressed genes in humans (2). Animal model studies 

have also demonstrated specific periods in which neural development is particularly sensitive 
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to the effects of disease causing mutations (21). Together these studies indicate that altered 

synaptic function early in life leads to lasting alterations in the arrangement and function of 

neuronal circuits that underlie sensory and cognitive dysfunction. Here we have shown that 

loss of SAP102 results in a premature speeding of NMDA kinetics at TC synapses and a 

reduction in the connectivity of individual TC axons that persists at an age at which synaptic 

function recovers despite the persistence of the mutation. 

SAP102 Deletion and NMDA Receptor Kinetics 

In agreement with our findings here from post-critical period mice, previous studies have 

shown no change in NMDA EPSC kinetics after loss of SAP102 in adult hippocampal 

neurons when  NMDA currents are mediated mainly by GluN2A-containing receptors (10). 

In contrast to our results, however, Elias et al (2008) observed no change in NMDA receptor 

kinetics following reduction of SAP102 by in utero electroporation in immature hippocampal 

neurons. These apparently contradictory findings could be explained by differences in species 

(rat vs mouse), cell type, method of SAP102 removal and/or timing of SAP102 removal 

(constitutive vs E16).  

Furthermore the unchanged NMDA EPSC kinetics were recorded at room temperature (11) 

whilst our experiments were recorded at near physiological temperature (33-35 ˚C). 

Temperature has a profound effect on synaptic kinetics.  (22) demonstrated that the time 

constant for GluN1/2B heteromers was 2.4 fold faster at 32˚C compared to 23˚C.  Similarly, 

we find 3.4-fold faster NMDA receptor decay kinetics at 33-35˚C compared to those reported 

at room temperature (25-28˚C) by Elias et al., (2008), at ages that should be predominantly 

GluN2B containing receptors.  Hence the differences between our studies could simply be 

due to temperature.  Irrespective of the mechanism of the differences, our findings clearly 
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indicate that genetic deletion of SAP102 has a profound effect on the decay kinetics of 

GluN2B-containing receptors. 

Mechanism by which SAP102 selectively regulates GluN2B-dependent NMDA receptor 

kinetics 

NMDA receptor kinetics can be altered by numerous mechanisms, the most well-

characterised being a change in the GluN2 subunits.  However, we find an increase in the 

decay kinetic without the expected relative increase in the GluN2A to 2B ratios, indicating 

another mechanism must account for these changes in NMDA receptor function.  One 

possibility is that binding of SAP102 to GluN2B-containing NMDA receptors may directly 

alter the deactivation kinetics. This has not been tested directly but an effect of C-terminal 

domain interactions is plausible as deletion of the C-terminal domain of GluN2B does, 

indeed, speed deactivation kinetics (23). The deactivation kinetics of GluN1/GluN2B (24) but 

not GluN1/GluN2A heteromers (25) are also strongly influenced by alternative splicing of 

GluN1. The GluN1a splice variant is most widely expressed, particularly in young animals, 

(26) and results in relatively slow deactivation compared to GluN1b (24). The magnitude of 

this effect is such that, if loss of SAP102 altered GluN1 splicing, a relatively small increase in 

GluN1b expression could result in the changes we observe. The lack of effect of GluN1 

splicing on GluN2A-containing receptors would also explain why we do not observe a 

difference in kinetics of TC NMDA EPSCs in P8-11 mice. An alternative mechanism is that 

constitutive genetic deletion of SAP102 results in an up- or down-regulation of a yet 

unknown molecule; however, while receptor binding proteins are known to regulate AMPA 

receptor kinetics (27), to our knowledge no such channel modifier has been described for 

NMDA receptors.  This could explain why previous studies using acute knockdown of 

SAP102 did not find changes to NMDA receptor kinetics.  Finally, without changing GluN2 

subunit identity kinetics may be altered by phosphorylation of GluN2 subunits at least in the 
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case of GluN2C where phosphorylation of Ser1244 accelerates both the rise and decay of 

NMDA receptor-mediated currents (28). To our knowledge there are, however, no reports of 

phosphorylation changing the kinetics of GluN2B-containing NMDA receptors. Although the 

time course of synaptic glutamate may affect the observed EPSC kinetics, this is more likely 

to affect the kinetics of fast receptors such as AMPA receptors. We found that the fast decay 

of AMPA EPSCs was not altered in P4-5 SAP KO mice (WT tau = 3.3 ± 0.5 ms, n = 10, N = 

8, SAP KO tau = 4.7 ± 1.7, n = 10, N = 8, p = 0.5, data not shown) so that an alteration in 

synaptic glutamate profile is unlikely to account for the speeding of NMDA receptor-

mediated currents. 

SAP102 and Barrel Formation 

Interestingly we found that, whilst altered NMDA receptor function in the absence of 

SAP102 cannot support the normal developmental increase in TC connectivity (14), the 

cellular segregation required for barrel formation occurs normally.  Complete absence of 

cortical NMDA receptors prevents cellular segregation (13) demonstrating a separation in the 

roles of NMDA receptors in experience-dependent development of sensory representations in 

L4 and the initial formation of barrels, the substrate for this sensory representation.  

We also demonstrated a reduction in the total TC innervation of barrel cortex. As SAP102 is 

predominantly expressed postsynaptically (5) this may suggest an important role in the 

thalamus where SAP102 is expressed throughout development (29). This correlates with 

reductions in both anatomical and functional TC connectivity to somatosensory cortex 

observed in patients with autism spectrum disorder (30), a condition highly comorbid with 

ID. It would be interesting in future to see if there is a reduction in neuronal cell number in 

VPM thalamus. An alternative explanation may be that synaptic transmission between TC 

axons and subplate neurons is altered.  These synapses are formed transiently early in 
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development and are important for the correct development of TC innervation patterns as 

ablation of subplate neurons results in the loss of ocular dominance bands in cat visual cortex 

(31) and correct barrel formation in rodent somatosensory cortex (32). TC axons also 

transiently synapse on to a population of layer 5B interneurons and silencing these cells 

results in delayed innervation of L4 SCs (33). If loss of SAP102 reduces the activity of these 

interneurons this may explain the reduced TC connectivity we observe. 

SAP102 and ID/ASD 

In addition to SAP102, mutations in many other synaptically-expressed proteins lead to ID 

and ASD (3, 4). Consistent with our findings of reduced TC connectivity mutations or loss of 

many of these proteins also result in reductions in glutamatergic synapse number or 

excitatory drive including SHANK 3 (34), MeCP2 (35) and oligophrenin 1 (36); the latter 

two, like SAP102, encoded by X-lined genes. In our study this reduction in TC connectivity 

is preceded by altered synaptic function in early life suggesting a mechanism for the widely 

observed reductions of long-range connectivity observed in patients with ASD (37).This 

illustrates the importance of studying synaptic function during these important periods of 

development when neuronal circuitry is being established and vulnerable to perturbation. 

Indeed, two other models of ID show transient alterations in function of TC synapses. As in 

SAP KO mice, in SynGAP heterozygous mice, there is a premature development of faster 

NMDAR kinetics. In these mice, however, faster kinetics result from premature incorporation 

of GluN2A in to TC synapses (38). This may suggest that multiple mechanisms can lead to 

the same deleterious phenotypes although in Fmr1 knockout mice, there is, instead, delayed 

development of NMDA receptor function at TC synapses (39). This demonstrates that any 

deviation from the normal timetable of synaptic development may impact network and 

cognitive development. Interestingly, a large proportion of disease-causing mutations 

identified in the GluN2B receptor itself also result in severe ID and or ASD (40, 41). 
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However, where the functional effect of these mutations have been identified none has yet 

been show to result in faster decay kinetics. Such specificity demonstrates the importance of 

studying a wide range of ages and cell types to establish common themes in disease-causing 

mutations that may lead to new, stratified therapeutic approaches. 

Materials and Methods  

Animals 

All animal procedures were performed in accordance with the University of Edinburgh 

animal care committee's regulations and the UK Animals (Scientific Procedures) Act 1986. 

All experiments were carried out in Dlg3 knockout  (10) male mice or wild-type male 

littermate control mice on a C57/Bl6J/Ola (Harlan) background. All experiments were carried 

out blind to genotype. Polymerase chain reaction was used to identify the genotype after 

experiment and analysis of data using one forward primer (GGT CTC TGA TGA AGC AGT 

GAT TTT T) and 2 reverse primers: wild-type reverse: TGA TGA CCC ATA GAC AGT 

AGG ATC A;  knock-out reverse: CTA AAG CGC ATG CTC CAG AC. Amplification was 

conducted by 33 cycles of 30s at 94⁰C, 30s at 56⁰C and 60s at 72⁰C, this produced a wild 

type 215 bp product and a 535bp band corresponding to the knockout allele. 

Histology 

Mice were anaesthetized with sodium pentobarbital (Euthatal 200mg/kg, ip) prior to 

transcardial perfusion with PBS followed by 4% paraformaldehyde in 0.1 M phosphate 

buffer. Brains were removed from the skull, post-fixed in 4% paraformaldehyde for a 

minimum of 12 hours at 4⁰C. For all immunohistochemistry brains were cryoprotected in a 

30% sucrose in phosphate buffered saline (w/v) overnight. To investigate TC axons TC 

sections were prepared as described by (42). To visualise L4 patterning of the barrel cortex, 
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cortices were flattened and cut tangentially to the pial surface. All tissue sectioned for 

immunohistochemistry was cut at 48 µm using a microtome with a freezing stage. Tissue 

sectioned for DiI labelling was cut on a vibrating microtome at 100 µm. 

For cell counts sections were incubated in TO-PRO3 (1:1000, Invitrogen) for 20 min and 

subsequently mounted in Vectashield (Vector Labs). For TC axon patch area measurements, 

axon terminals were labelled with an antibody to serotonin reuptake transporter (1:2000; 

PC177L Millipore). TC axons were also labelled using either with an antibody to 

neurofilament M (1:3000; ab7794, Abcam) or small pieces of 1,1'-dioctadecyl-3,3,3'3'-

tetramethylindocarbocyanine perchlorate (DiI) crystals placed in the  white matter of 

flattened intact neocortex and left for approximately 1 week. Regions of interest 100 x 30 µm 

were placed in the centre of the barrel (labelled by TO-PRO3) and the septal region, and the 

number of DiI labelled axons crossing these regions of interest was quantified. The area of 

posteromedial barrel subfield (PMBSF) was defined as the area surrounding barrel in row A-

C in arcs 1-4 and in rows D and E in arcs 1-8, the total area of these barrels was traced and 

measured in mm
2
. The individual TCA patch size was obtained by tracing the individual 

serotonin transporter (SERT)-positive area corresponding to barrels in rows B and C in arcs 

1-3, the sum of these areas was recorded for each animal in ImageJ (NIH). 

Barrel segregation scoring 

A series of confocal optical sections of barrel C3 were taken at 3 µm intervals at ×20 

magnification from TO-PRO 3-labeled tangential sections through the PMBSF. Segregation 

was scored by calculating the ratio of cell density of the barrel wall to hollow for individual 

optical sections. The optical section with the highest score for each animal was used for 

genotype comparison. 

Electrophysiology.  
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Thalamocortical slices were prepared from P4 to P11 (P0 is designated as the day of birth) 

mice as described previously (Agmon and Connors, 1991). Brains were sliced in ice-cold 

partial sucrose cutting solution: 80 mM NaCl, 2.5 mM 

KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 10 mM glucose, 90 mM sucrose, 0.5 mM CaCl2 

and 4.5 mM MgSO4 saturated with 95% O2/5% CO2, pH 7.4. Slices were kept in oxygenated 

sucrose cutting solution at 35˚C for 30 min then maintained at room temperature until 

recording. For recording slices were perfused with an extracellular solution as follows: 130 

mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 25 mM NaHCO3, 10 mM glucose, 2.5 mM 

CaCl2 and 1.5 mM MgSO4, saturated with 95% O2/5% CO2, pH 7.4, at 33–35°C. 5µM 

picrotoxin was included to block GABAA receptors. Patch-clamp recordings were made from 

neurons in L4 using infrared illumination and differential interference contrast (DIC) optics. 

Whole-cell recordings were made with patch electrodes (4–7 MΩ) filled with 135 mM 

caesium methane sulfate, 8 mM NaCl, 10 mM HEPES, 0.5 mM EGTA, 0.5 mM Na-GTP, 4 

mM Mg-ATP and 5mM QX 314, pH 7.3, 290 mOsm. Thalamocortical EPSCs were evoked at 

a frequency of 0.2 Hz by electrical stimulation of thalamocortical axons by a bipolar 

stimulating electrode placed in the ventral posteromedial thalamus. For dual minimal 

stimulation experiments the intensity was that at which an EPSC was first seen in either cell. 

The average failure rate for the first cell to respond to TC stimulation (cell A) in these 

experiments is 0.48 and each experiment consisted of an average of 28 trials. The same axon 

was deemed to contact both cells if the probability of producing the same or greater number 

of trials in which both cells displayed EPSCs < 0.05 tested using the binomial distribution vs 

the chance level of coincident successes given the success rate in each cell. 

In experiments when the axon was deemed to contact both cells the proportion of successes 

in cell A in which both cell responded = 0.92 ± 0.04, n = 9, range = 0.68 - 1 (1 for 4/9 
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experiments). In experiments when same the axon was not deemed to contact both cells 

coincident successes = 0.03 ± 0.03 n = 20, range = 0 – 0.4 (0 for 18/20 experiments) 

Recordings were made using a Multiclamp 700B (Molecular Devices). Signals were filtered 

at 4 kHz, digitized at 10 kHz (except for recordings of firing patterns, which were filtered at 

10 kHz and digitized at 40 kHz) and stored on computer using Signal 4 software (Cambridge 

Electronic Design). We did not correct for junction potential. Series resistance (10–30MΩ) 

was analysed in voltage clamp throughout the experiments and displayed on-line. Cells were 

rejected if series resistance changed by >20% during data collection. 

Data Analysis 

All electrophysiological parameters were determined in Signal 4 and decay kinetics were 

based on single exponential fit. For all experiments number of experiments is denoted by n 

whilst number of animals is denoted by N. Within-animal averages were first calculated and 

all statistical analyses carried out on these values. Mann-Whitney tests were used for 

comparison of NMDA:AMPA ratios (Fig 2B) and NMDA (Fig 2H) and AMPA (Fig 2H, Fig 

5E) msEPSC amplitudes between genotypes as these data were not normally distributed. A 2-

way ANOVA with post-hoc Holm-Sidak test for pairwise comparisons (SigmaPlot) was used 

to examine NMDA receptors kinetics. Connectivity rates were tested using Barnard’s exact 

test in Matlab. Paired T-tests were used for effect of ifenprodil (Fig 2F). Unpaired T tests 

were used for all other statistics. 
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Legends to Figures 

Figure 1 Reduced TC Axon Patch Area in the Barrel Cortex 

A. Bar graph showing total brain mass of P7 WT (black) and SAP KO (red) mice.. For this 

and subsequent graphs (unless otherwise stated) bars show mean value and points show 

values for individual animals. B. Representative images form WT (top) and SAP KO 

(bottom) mice showing cortical arealisation with SERT labelling. C. Representative images 

showing TC axon patches with SERT labelling.  D. Bar graph of total neocortical area and 

area of PMBSF. E. Bar graph of absolute area of TC axon patches (left) and as a proportion 

of PMBSF (right). F. Representative images showing TO-PRO3 labelled cell bodies used to 

calculate barrel segregation at low (upper image) and high (lower image) magnification. G. 

Bar graph showing barrel cellular segregation ratio. For this and subsequent figures * 

represents p < 0.05, ** represents p < 0.01 and *** represents p < 0.001. 

Figure 2 Altered NMDA receptor kinetics in neonatal SAP KO mice 

A. Example traces showing TC AMPA- (upper trace recorded at -70 mV) and NMDA-

(lower, +40mV)-mediated EPSCs in WT (black) and SAP KO (red) mice. Inset shows 

NMDA EPSCs scaled to peak amplitude to show difference in kinetics. B. Bar graph showing 

NMDA:AMPA ratio. C. Bar graph showing NMDA EPSC decay tau. D. Example traces 

showing pharmacologically isolated NMDA EPSCs in control (WT black, SAP KO red) and 

in the presence of ifenprodil (WT grey, SAP KO pink). E. Bar graph showing inhibition by 

ifenprodil. F. Bar graph showing NMDA decay kinetics in absence and presence of 

ifenprodil. G. Amplitude vs time plot showing example minimal stimulation experiment. 

Black points show amplitude at a holding potential of -70 mV blue at +40 mV. Traces show 

averages at -70 mV and +40 mV excluding failures for experiment in plot. H. Bar graph 
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showing peak amplitude of minimal stimulation TC EPSCs recorded at -70 mV (AMPA) and 

+40 mV (NMDA). Bars show median values. 

Figure 3 Reduction in NFM-labelled axons in barrel cortex in P6-7 mice 

A. Flattened cortical section showing selective labelling of TC patches by NFM. B. 

Representative images at low magnification showing NFM-labelled axons (red). Calretinin 

stain (green) was used to label layer 4/5 boundary and barrel locations were identified by TO-

PRO3 staining (blue). C. Representative images at high magnification showing NFM and 

calretinin labelling in WT (left) and SAP KO (right) mice. Insets show expanded view of 

individual regions of interest used to calculate axon crossings.  D. Bar graph showing number 

of axons crossing a region of interest in barrel centres, septa/barrel wall and total (sum of 

centres and septa). 

Figure 4 Reduction in DiI-labelled axons in barrel cortex 

A. Representative images showing DiI-labelled axons (red) in flattened cortical sections with 

barrel locations identified by TO-PRO3 staining (blue). B. Graph showing number of axons 

crossing a region of interest in barrel centres, septa and total (sum of centres and septa) in P7 

mice. 

Figure 5 Reduced thalamocortical connectivity in P8-11 SAP KO mice 

A. Example 2-cell minimal stimulation experiment showing coincident EPSCs and failures in 

both cells. Traces show average of all trials excluding failures in cell 1 (black) and cell 2 

(blue) B. As for A except showing EPSCs in cell 1 coinciding with failures in cell 2. Traces 

for both cells show average of all trials in which an EPSC was seen in cell 1. C. Bar graph 

showing proportion of experiments in which both cells showed coincident EPSCs and failures 

(as for experiment in A) in WT and SAP KO mice. D. Representative traces showing 
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minimal stimulation TC EPSCs (average of all sweeps excluding failures). E. Bar graph 

showing minimal stimulation TC EPSC amplitude in P8-11 mice. F. Example traces showing 

NMDA (upper traces) and AMPA (lower) EPSCs in WT (black) and SAP KO (red) mice. 

Inset shows NMDA EPSCs scaled to peak amplitude showing similar decay kinetics G. Bar 

graph showing TC NMDA:AMPA ratio. H. Bar graph showing NMDA EPSC decay kinetics 

in P4-5 and P8-11 mice. P4-5 data is replotted from figure 2 for comparison.  
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Abbreviations 

Intellectual disabilities (ID) 

Thalamocortical (TC) 

Synapse-associated protein 102 (SAP102) 

Membrane associated guanylate kinase (MAGUK) 

Layer 4 (L4) 

SAP102 knockout (SAP KO) 

Wildtype (WT) 

Neurofilament medium polypeptide (NFM), 

Postnatal day (P) 

 

 at E
dinburgh U

niversity on A
ugust 9, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


  

 

 

Figure 1 Reduced TC Axon Patch Area in the Barrel Cortex  

121x82mm (300 x 300 DPI)  

 

 

 at E
dinburgh U

niversity on A
ugust 9, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


  

 

 

Figure 2 Altered NMDA receptor kinetics in neonatal SAP KO mice  

199x282mm (300 x 300 DPI)  

 

 

 at E
dinburgh U

niversity on A
ugust 9, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


  

 

 

Figure 3 Reduction in NFM-labelled axons in barrel cortex  
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Figure 4 Reduction in DiI-labelled axons in barrel cortex  
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Figure 5 Reduced thalamocortical connectivity in P8-11 SAP KO mice  
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