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Abstract 

Biochar can contain volatile organic compounds (VOCs), formed and introduced 

during the pyrolysis process. In some pyrolysis units or under specific conditions 

during production, pyrolysis vapours can deposit on biochar in significant amounts. 

In this study, it was tested to which extent VOCs are released from such high-VOC 

biochars when openly stored, which post-treatment measures are most effective in 

reducing phytotoxic potential and whether the VOC emissions could exceed human 

health-related threshold values. It was shown that the initial VOC release of high-

VOC biochars can exceed occupational exposure limit values and even after 2 

months the biochar still emitted VOCs exceeding air quality guideline values. 

Consequently, the investigated high-VOC biochars pose health risks when handled 

or stored openly. Simple open-air storage turned out not to be sufficient for VOC-

removal. Low temperature treatment on the other hand removed VOCs from the 

high-VOC biochar effectively and alleviated any human health risks and phytotoxic 

effects. The low-VOC biochar not only did not emit any VOCs, but was even able to 

sorb VOCs from the VOC-rich biochar to a certain extent. Thermal treatment and 

blending with low-VOC biochar are methods which could be used in practise to treat 

high-VOC biochar to reduce VOC emissions. 
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1 Introduction 

Pyrolysis, which is thermal treatment of biomass at temperature of 350-750°C under 

oxygen limited condition, alters the physical and chemical characteristics of the 

processed material significantly (Brown et al. 2015). The solid product is a carbon-

rich material, which, when intended for soil application, is called biochar (Sohi et al. 

2010). Biochar has shown to possess a range of beneficial properties which make it 

suitable for various purposes, e.g. carbon storage, soil remediation, soil 

improvement and wastewater treatment (Lehmann and Joseph 2015).  

However, in some studies, biochar has shown to cause adverse effects on plants 

and soil organisms (Deenik et al. 2010; Gell et al. 2011; Rogovska et al. 2012; 

Rajkovich et al. 2012; Smith et al. 2013; Oleszczuk et al. 2013; Jones and Quilliam 

2014; Buss and Mašek 2014; Domene et al. 2015). High salinity and nitrogen 

immobilization after biochar application have been suggested to be two of the factors 

that led to inhibitions of plant growth (Deenik et al. 2010; Gell et al. 2011; Rajkovich 

et al. 2012; Domene et al. 2015), yet, the majority of studies identified contaminants 

to be responsible for observed phytotoxicity (Gell et al. 2011; Smith et al. 2013; 

Oleszczuk et al. 2013; Jones and Quilliam 2014; Buss et al. 2015). For application of 

biochar to soil, as well as for general handling of biochar, it needs to be ensured that 

biochar does not pose any excessive risk to plants, humans and the ecosystem. 

Consequently, conducting phytotoxicity tests and analysing contaminants in biochar 

is essential and different groups of contaminants have been found; inorganics, as 

well as organics.  

Potentially toxic elements (PTEs) in biochar most often originate from the feedstock 

but sometimes also from materials used for construction of the processing 

equipment (Buss et al. 2016b). Organic contaminants in biochar are a more complex 

issue, as these are formed in elaborate reactions during the high-temperature 

treatment in pyrolysis units; the relevant groups are volatile organic compounds 

(VOCs), polycyclic aromatic hydrocarbons (PAHs) and dioxins (Bucheli et al. 2015; 

Buss et al. 2015; Buss et al. 2016a). It has been shown that, while total 

concentrations of dioxins are typically below threshold values for soils (Hale et al. 

2012; Bucheli et al. 2015), concentrations of PAHs can, in some cases, exceed 
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values recommended in current legislation (Hilber et al. 2012; Hale et al. 2012; Buss 

et al. 2016a). However, concentrations of available dioxins were below the detection 

limit of analytical equipment and available PAH levels were lower than clean urban 

sediments (Hale et al. 2012). The third category, i.e. VOCs, on the other hand, are 

not studied very well in biochar, but the studies that exist indicate that a wide 

selection of VOCs are present with considerable potential for negative or positive 

impact on plants and soil due to their high mobility (Elad et al. 2011; Spokas et al. 

2011; Buss et al. 2015). Consequently, phytotoxicity tests were conducted 

investigating the effect of vapours from VOC-rich biochars and indeed strong 

inhibitions were observed (Buss and Mašek 2014). Post-treatment measures 

showed only partly to be successful in alleviating negative effects and there is a 

need for understanding the VOC-removal mechanisms and developing more 

effective methods for post-treating biochars.  

VOCs are defined as organic compounds that have boiling points of ≤ 250°C and 

due to their volatility are often considered contaminants that can threaten air quality 

(Directive 2004/42/CE of the European parliament and of the council 2004). During 

handling or storage of VOC-rich biochars, people involved could be exposed to 

VOCs which could be a health and safety hazard. Depending on the use of biochars, 

different threshold values for human health would apply. When used at a work place, 

occupational exposure limit values regulate the VOC concentration thresholds, which 

exist in most countries (EU Commission Directive 91/322/ECC 1991; Aussschuss für 

Gefahrstoffe 2006; US Department of Health and Human Services 2007). When 

biochar is used privately e.g. in growing media, VOCs released from biochar would 

have to be evaluated differently. E.g. in Germany, guideline values for indoor air 

pollution in private and public buildings were introduced to assess the toxicological 

risk for long-term exposure to VOCs (Arbeitsgemeinschaft Ökologischer 

Forschungsintitute 2013) or to regulate the maximum permissible VOC release for 

construction products which was also partially implemented in EU legislation 

(Ausschuss zur Gesundheitlichen Bewertung von Bauprodukten 2012; European 

Union Joint Research Centre 2013). To our knowledge, compliance of biochar with 

existing VOC threshold values has not been tested before which could be highly 

relevant for human health and safety. 
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This study focused on the release mechanisms of VOCs from biochar to understand 

the effects of vapours from VOC-rich biochars on plant growth and the way post-

processing affects VOC-release. Furthermore, the potential impact of VOCs from 

biochar on humans during biochar handling and storage was assessed by comparing 

VOC concentrations with threshold values for human health. The release of VOCs 

from two types of biochar during open storage was investigated: a) biochar 

contaminated during production with pyrolysis vapours (high-VOC) and b) 

comparable biochar (same feedstock and pyrolysis conditions) with low 

concentration of VOCs (low-VOC). Mass change of the biochars during open storage 

was measured to see if it is possible to use this easy-to-perform method to assess 

the volatile carbon fraction that is already emitted at room temperature and if this can 

be correlated with VOC concentration in the head-space of the samples measured 

with a VOC analyser. Furthermore, potential mitigation measures, such as sorption 

of VOCs onto low-VOC biochar and low-temperature oxidation were tested. The 

objective of this research was to assess the release dynamics of VOCs from 

contaminated biochars and to develop effective post-treatment measures for 

reducing VOC concentrations.
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2 Materials and Methods 

An overview of all the experiments that were conducted in this study can be found in 

Figure 1. 

2.1 Biochars 
Three biochars, produced in the same pyrolysis unit (rotary kiln), under identical 

process conditions (550°C highest treatment temperature, 20 min mean residence 

time) and from the same feedstock (softwood pellets) were investigated in this study. 

The only difference between the biochars was the fact that two of these were 

contaminated due to condensation of pyrolysis vapours in the chamber where 

biochar was separated from pyrolysis gases (discharge chamber). As a result, the 

two contaminated biochars had high content of VOCs (high-VOC) and henceforth, 

will be referred to as gas contaminated (GC) and liquid contaminated (LC) biochar, 

to reflect the different mechanisms of contamination. The third biochar is a low-VOC 

biochar, produced under standard operating conditions and will be referred to as 

non-contaminated (NC) biochar. Although the extent of contamination of GC and LC 

biochar with pyrolysis vapours in this study was unusual for the investigated 

pyrolysis unit (Buss and Mašek 2014), a study testing several commercial biochars 

found similar phytotoxic effects and PAH concentrations as observed for the tested 

biochars (Buss et al. 2015; Kołtowski and Oleszczuk 2015), showing that such 

contamination can occur. 

2.2 VOC measurements 
For the VOC measurements, a miniRAE lite VOC analyser (RAE Systems, Inc, San 

Jose, California) with a photoionisation detector and a 10.6 eV gas-discharge lamp 

was used. The instrument has a flow rate of around 0.5 L min-1 and detects VOCs 

with a resolution of 0.1 ppm. A two-point calibration using fresh air (0 ppm) and 

isobutylene standard reference gas (100 ppm) was performed. As control, the air in 

the lab was sampled for each measurement.  

2.3 VOC emissions of fresh biochar samples 
To analyse the initial VOC release of the three biochars, 10 g of ‘fresh’ (stored in a 

sealed container after production) NC, GC and LC biochar pellets were added into 

125 mL glass jars and the VOC concentration in the head-space above the biochar 
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samples was measured. The biochars were not ground prior to analysis to be able to 

measure the VOC concentration released from the undisturbed samples (the same 

for thermally treated samples in 2.3). The concentration in the head-space of the 

biochar samples was measured for 10 s and the peak VOC concentration within this 

time period was reported. Triplicate analysis were performed by measuring the VOC 

concentration in the head-space of the container after 5 min sealed storage (open 

container, measure for ~10 s, close container for 5 min, open container and measure 

for ~10s, repeat all).  

2.4 Time series measurements of VOC release dynamics 
Three different experiments were performed to investigate the VOC release 

dynamics by high- and low-VOC biochars when openly stored (exposed to air), after 

storage in sealed containers since the day of production. The VOC concentration in 

the head-space above the samples, the change of mass of the samples and the 

change of pH of a water reservoir surrounding the samples was determined (grey 

underlined experiments in Figure 1). For the following time series of VOC 

measurements during open storage, the samples were ground using pestle and 

mortar. 2 g of ground NC, GC and LC biochar were filled in 125 mL glass vials, 

respectively.  

2.4.1 VOC measurement in the head-space of biochar 
Prior to the first VOC measurement, the samples were stored openly for 5 min 

because the VOC concentrations of the freshly ground samples fluctuated 

significantly. To investigate the release of VOCs during open storage, the VOC 

concentration in the head-space of the biochar samples were measured every 30 

min over the course of 50 h using the miniRAE lite VOC analyser as described. To 

eliminate short-term fluctuations, instead of taking one measurement every 30 min, 

at each stage the concentration was measured four times within 40 s and an 

average was reported. Cross-contamination was avoided by conducting the 

experiments with the different biochars individually, at different days. The 

temperature was kept at ~17±1°C. Afterwards, the samples were stored openly in 

the lab for 2 month (17-22°C) before the VOC concentration in the head-space was 

measured again. 
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2.4.2 Change of mass of biochar sample 
To determine the change in biochar mass as a result of VOC release, ~2 g of each of 

NC, GC and LC biochar was added to pre-weighed aluminium foil cups (25 mm 

height, 70 mm diameter at the top, 40 mm at the bottom) and the mass was 

measured over 50 h. Variations of relative humidity in the lab led to significant 

fluctuations of the mass of the samples and to account for this, the same experiment 

was performed with samples that were stored in the lab for several weeks prior to the 

experiment (no net change of mass). The change in mass of these samples was 

subtracted from the fresh samples for the different points in time. The analyses were 

performed in triplicates.  

2.4.3 Change of pH of water reservoir affected by biochar vapours 
To investigate the acidity of the vapours released, the change of pH of a water 

reservoir surrounding, but not in direct contact with the biochar samples, was 

measured. Again 2 g of ground NC, GC and LC biochar was added to aluminium 

cups and placed into plastic jars on an elevated platform above 100 mL of a 0.1 mol 

L-1 KCl solution. The KCl was added because resistance errors can occur measuring 

the pH of distilled water and the resulting value can differ significantly (Youmans 

1972). The pH was measured with a pH meter (Mettler Toledo FE 30) over the 

course of 50 h. The change in H+ concentration was calculated from the pH. The 

analyses were performed in triplicates. 

2.5 Blending of low-VOC and high-VOC biochars 
To evaluate if low-VOC biochar had the ability to sorb measurable amounts of VOCs 

from high-VOC biochar, fresh samples of LC biochar were mixed in ratios of 1 g : 9 g 

and 2 g : 8 g with NC biochar (same ratio as used in the germination test in Buss and 

Mašek (2014)). The biochars were ground, mixed together and 10 g of the mixture 

was placed into a 125 mL glass jar. In the following, the blends will be referred to as 

LCB 1:9 and LCB 2:8. The VOC concentration in the head-space was measured 

(section 2.2). The experiment was not performed for 50 h as for the experiment with 

the unblended biochars, but for 60 h as the VOC concentration was still changing 

after 50 h.  
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2.6 Thermal post-treatment 
Samples of all three uncrushed biochars (NC, GC and LC biochar) were spread in 

aluminium trays in one layer and exposed to air at 200°C for 20 h in a laboratory 

oven. 10 g of each of the thermally treated biochars was placed in a 125 mL glass jar 

and the VOC concentration in the head-space was measured as described in 2.2. 

The treated samples were used for germination tests (section 2.7) and parts were 

stored openly for 14 days and the VOC emission was measured again. 

2.7 Germination tests 
‘Volatiles only’ and ‘all exposure routes’ cress seed germination tests (Buss and 

Mašek 2014) were performed using 1, 2 and 5 g of ground NC, GC and LC biochar 

treated at 200°C for 20 h (for ‘volatiles only’ test) and 1, 2 and 5% of the three 

biochars in sand (for ‘all exposure routes’ test). In the 'volatiles only' germination test, 

seeds were not directly exposed to the biochar but only to its vapours. In the 'all 

exposure routes' germination test, seeds were either only exposed to the vapours 

from a biochar-sand mixture, exposed to the vapours and leachate from the mixture 

or were in direct contact with biochar. For the ‘volatiles only’ germination test, length 

of shoots and roots were determined, while in the ‘all exposure routes’ germination 

test the roots were categorized in three fractions (roots < 15 mm, roots between 15-

60 mm and roots > 60 mm). More details can be found in Buss and Mašek (2014). 

The tests were performed in triplicates. 

2.8 PAH analysis 
Concentrations of total and water extractable PAHs were determined using 36 h 

toluene extraction and shaking of biochar in DI water with a ratio of 1:10, 

respectively. PAH analyses were performed by Northumbrian Water Scientific 

Services (Newcastle, United Kingdom), laboratories accredited by United Kingdom 

Accreditation Service (UKAS). More details can be found in Buss et al (2015). 

2.9 Data analysis 
Freundlich-langmuir sorption isotherms were fitted to the data for VOC release and 

change of H+ concentration according to a best fit model. R² was used to show the 

deviation of the data from this fit. For the evaluation of the germination tests the 
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difference to the control was determined using one-way ANOVAs in SigmaPlot 12.5 

(Systat Software Inc). 

 
Figure 1 Schematic of the experiments conducted in this project. The low-VOC biochar and the 
two high-VOC biochars were tested in all five tests. Results for experiment 1 can be found in 
Table 1, the results for the grey underlined experiments which were all performed on the same 
time scale are depicted in Figure 2, the results of experiment 4 are shown in Figure 3 and 
results of experiment 5 can be found in Table 1 and in the SI. More details about the 
experiments can be found in materials and methods  
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3 Results and discussion 
3.1 VOC release of fresh and stored biochars and implications for 

plant growth 
To investigate the VOC release of biochars, two high- and one low-VOC biochar 

were tested in three times series experiments conducted over 50 h. The 

experimental set-ups can be found in Figure 1 (grey underlined area). VOC release 

characteristics of GC, LC and NC biochars were investigated by measuring the 

head-space VOC concentration, the change of mass of the biochars and the change 

of the pH of a water reservoir surrounding the samples (measured as change of H+ 

concentration). The combined results are shown in Figure 2.  

The low-VOC, NC biochar increased in mass rapidly within the first 5-6 h of open 

storage, saturation was reached at around 6% with barely any additional weight 

change until the end of the experiment (freundlich-langmuir sorption isotherm, R² = 

0.999). The mass gain can be attributed to uptake of moisture from the air which is 

typical for hygroscopic, porous carbons (Li et al. 2008). Measurement of 

concentrations of VOCs in the head-space showed that the NC biochar did not 

release any detectable levels of VOCs and there was also no noticeable change in 

the pH of the water reservoir surrounding it (Figure 2). 

Unlike the NC, both the GC and LC biochar released considerable amount of VOCs. 

The head-space concentrations of VOCs for fresh (crushed) samples were 2.9 ppm 

for GC and 8.5 ppm for LC biochar (Table 1) which reduced dramatically with 

exposure to air, dropping to 1 ppm after 10 h open storage and then to 0.4 ppm until 

the end of the experiment (50 h) for GC biochar (Figure 2). For LC biochar the 

concentration declined to 1.8 ppm after 10 h exposure to air and in the following 40 h 

it decreased slowly to 0.7 ppm. During the 50 h VOC release period under ambient 

conditions, the GC biochar sample increased in mass by around 2% while the mass 

of LC biochar remained constant. This could mean that LC, in contrast to NC 

biochar, did not take up any moisture and the mass of the VOCs released was too 

small to be captured with the balance. However, in Buss and Mašek (2014), using 

thermogravimetric analysis, it was shown that, when heated to 110°C for 15 min, 

there was an extra mass loss of ~5% in the LC biochar sample compared to the NC 

biochar, indicating that measurable amount of VOCs were released. This 5% extra 
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loss of mass of the LC biochar matches the 6% mass uptake of the NC biochar very 

closely, suggesting that VOC release and moisture uptake happened simultaneously 

and to a similar extent in LC biochar, overall, resulting in no change in mass. In 

addition, the mass gain curve (moisture uptake) of the NC sample and the VOC 

release curve of the LC sample are inversely correlated (Figure 2), which means the 

moisture uptake and VOC release dynamics and rate were similar. Overall, the 

simultaneous release of VOCs and uptake of moisture resulted in constant weight of 

the LC biochar confirming that moisture uptake masked the release of VOCs. This 

highlights an issue with using gravimetric methods for simple assessment of VOC 

release in biochar. 

Furthermore, the high-VOC biochars (GC, LC) increased the H+-concentration in the 

water reservoir surrounding the samples (this corresponds to a pH decrease) (Figure 

2). The VOC release and change of H+-concentration were inversely correlated, 

which, in addition to high concentrations of LMW aliphatic acid detected in the 

samples in Buss et al. (2015), strongly indicates that the pH change indeed 

originated from VOCs emitted by biochar. The change of the pH of the water 

reservoir was very similar for both high-VOC biochars (~6*10-6 mol L-1) which 

showed to have the same pH (3.64) and very similar amounts of volatile, LMW, 

aliphatic acids (~1600 mg kg-1) (Buss and Mašek 2014; Buss et al. 2015) (the higher 

amounts of phenols detected in LC biochar is the likely cause of the difference in 

head-space VOC concentrations). The starting pH in the tests varied slightly, 

nevertheless, change of H+ concentration of 6*10-6 mol L-1 corresponds to a pH 

decrease of 1.8 units when starting at a pH of 7. Here it was shown that VOCs 

emitted by biochar indeed have the ability to change the pH of a water reservoir to a 

significant extent which means emissions of VOC from biochars could lead to 

corrosion of metal containers or metal structures close to the area these biochars are 

stored.  

Overall, after 50 h of storage in open air and even after open storage for 2 months in 

the lab, still, VOC emissions from GC and LC biochars were at detectable levels 

(Table 1). It shows the ineffectiveness of simple, open storage as post-treatment for 

removing VOCs from these specific biochars. In Busch et al. (2012), on the contrary, 

storage of char from hydrothermal carbonization for 2 weeks showed to reduce VOC 

emissions successfully and cress seeds were able to grow unhampered. The 
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phenomenon of constant release of VOCs shown by the two highly contaminated 

biochars, even after long-term storage could be a hazard for application of such 

biochar to soil. However, previously, it was shown that incorporation of biochars into 

wet sand or washing of biochar alleviated phytotoxic effects of VOCs to a large 

extent (Bargmann et al. 2013; Buss and Mašek 2014). Consequently, under natural 

conditions, biochar will be exposed to natural weathering and precipitation/irrigation 

which will reduce effects of VOCs significantly.  

Table 1 VOC concentrations (ppm) in the head-space of low-VOC (NC) and two high-VOC (GC 
and LC) biochars treated in different ways 

  low-VOC  high-VOC  
  NC biochar GC biochar LC biochar 
treatment unit AV SD AV SD AV SD 
* fresh (0 min) ppm 0.0 0.0 7.3 0.9 13.7 2.2 
# crushed and stored for 5 min ppm 0.0 0.0 2.9 0.2 8.5 0.7 
# open storage for 50 h ppm 0.0 0.0 0.4 0.0 0.7 0.0 
# open storage for 2 months ppm 0.0 0.0 0.2 0.1 0.3 0.1 
* 200°C for 20 h from fresh ppm 0.0 0.0 0.0 0.0 0.7 0.2 

* + 14 days of storage ppm 0.0 0.0 0.0 0.0 0.0 0.0 
* 10 g of uncrushed biochar were measured in 125 mL vials in triplicates 
# 2 g of crushed biochar was measured in 125 mL vials in quadruplicates   
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Figure 2 Mass change (%), VOC concentration in the head-space (ppm) (both left axis) of non-
contaminated (NC), gas contaminated (GC) and liquid contaminated (LC) biochar when 
exposed to air and the change of H+ concentration (mol L-1) of a water reservoir surrounding 
the samples is shown (right axis). H+ concentration and mass change are given with standard 
deviation (n = 3). R² are depicted where freundlich-langmuir sorption isotherms were fitted to 
the data. The small graphs in each figure show the same data over the whole duration of the 
experiment, i.e. 50 h  
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3.2 Blending of low-VOC and high-VOC biochars as a measure for 
mitigation risk for plant growth 

In this experiment, it was tested, whether low-VOC biochar can sorb measureable 

amounts of VOCs from high-VOC biochar. The initial (0 h) VOC concentration in the 

head-space above LC biochar samples amended with low-VOC (NC) biochar was 0 

ppm for both blends (LCB 1:9 and LCB 2:8) (Figure 3). Compared to the initial 

concentration of VOCs above the pure 2 g LC sample (8.5 ppm, added in Figure 3), 

it shows that blending with NC was effective and that NC biochar was able to sorb 

most, if not all, of the VOCs released by LC biochar. However, after a few hours the 

VOC concentration in the head-space of LCB 2:8 increased and a peak 

concentration of 0.9 ppm after around 14 h was detected. Consequently, it seems 

that NC biochar reached its maximum sorption capacity and could not take up more 

of the VOCs. Subsequently, the VOC concentration slowly decreased until it reached 

0.1 ppm after 52 h. The situation was different for the LCB 1:9, which showed no 

detectable VOC release for the duration of the experiment, confirming NC biochar’s 

ability to prevent VOC release from the LC sample at lower concentrations (Figure 

3).  

In the case of activated carbon, the VOC sorption capacity in two studies was tested 

with gaseous benzene and different activated carbons were able to take up around 

0.4 g benzene/g on average (Chiang et al. 2001; Rodríguez-Mirasol et al. 2005). Our 

biochars clearly did not have the capacity to sorb an amount as high. Still, blending 

high-VOC and low-VOC biochars could be used to help controlling the desorption 

rate of VOCs, providing more time for their degradation in soil or for deliberate 

release of small amounts of VOCs to trigger positive effects on plant growth as 

observed in several studies (Keeley and Pizzorno 1986; Kwapinski et al. 2010; Elad 

et al. 2011).  
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Figure 3 VOC concentration (ppm) in the head-space of LC biochar samples blended in 
different ratios when exposed to air for 60 h. 1 g of LC biochar was mixed with 9 g of NC 
biochar (LCB 1:9) and 2 g LC mixed with 8 g NC biochar (LCB 2:8). For comparison the VOC 
concentration in the head-space of 2 g LC biochar as in Figure 2 is shown (measured for 50 h) 
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3.3 Thermal post-treatment for VOC-removal and alleviation of 
phytotoxic effects 

As long-term open-storage did not show to be promising in terms of VOC release 

mitigation and blending was effective only at relatively low concentrations of 

contaminated biochar, we investigated low-temperature oxidation/devolatilisation 

(200°C for 20 h) as another method for VOC content management. Thermal 

treatment reduced the VOC content in the head-space in GC biochar to 0 ppm and in 

LC biochar to 0.7 ppm (Table 1). In combination with open-air storage for 14 days, 

the VOC concentration in the head-space of LC biochar also dropped to 0 ppm in the 

LC biochar sample. 

In Kołtowski and Oleszczuk (2015), a similar thermal treatment approach was tested 

for removal of PAHs in biochars with similar PAH concentrations (3.5, 20 and 40 mg 

kg-1) as determined in the biochars investigated in this study (6, 28 and 53 mg kg-1) 

(analysed in Buss et al. (2015)). As in Kołtowski and Oleszczuk (2015), thermal 

treatment effectively reduced the total concentrations of PAHs to 1.79 mg kg-1 for 

NC, 2.79 mg kg-1 for GC and 1.21 mg kg-1 for LC biochar and the water-extractable 

concentrations to below 0.001 mg kg-1 (SI Table 1) (fresh GC biochar contained 1.6 

and LC 2 mg kg-1 water extractable PAHs (Buss et al. 2015)). This shows that 200°C 

treatment for 20 h can remove VOCs as well as PAHs from biochar. 

The thermally treated biochars were tested in 1, 2 and 5 g in ‘volatiles only’ cress 

seed germination tests and where vapours from fresh and 4 week-stored biochars 

resulted in 100% germination inhibition (Buss and Mašek 2014), low-temperature 

thermal treatment alleviated all toxic effects (SI Figure 1) (100% germination rate 

was observed in all treatments and the shoot and root growth did not differ 

statistically from the control). Analysing all three biochars in ‘all exposure routes’ 

seed germination tests revealed the same, seeds affected by vapours, seeds 

affected by the leachate from biochar-sand and seeds in direct contact with biochar-

sand showed no inhibition of germination rate and early seedling growth compared 

to the control (SI Figure 2). In Kołtowski and Oleszczuk (2015), thermal treatment did 

remove PAHs, however, the thermally treated biochars showed inconclusive effects 

(positive and negative) on growth of shoots and roots in the same plant species as 
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tested here, suggesting that other than VOC or PAH effects were responsible for the 

toxicity. 

Overall, in the current study, thermal treatment showed to be effective in reducing 

PAHs and VOCs in both contaminated biochars (GC and LC biochar) and in 

alleviating previously observed phytotoxicity. 
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Table 2 Threshold values for individual VOCs based on German, EU and US guidelines and 
legislations 

  occupational exposure limits indoor air quality 
 short-term 40 h-week GV II LCI 
 1EU 2NIOSH  1EU/3TRGS 2NIOSH 4AGÖF 2013 5AgBB 2012 
 ppm ppm ppm ppm ppm ppm 
phenol 4 +15.6 2 5 0.052   
cresol    2.3 *0.011  
naphthalene  15 0.1 10 0.006 0.0001 
formic acid   5 5  0.66 
acetic acid  15 10 10  0.13 
propionic acid 20 15 10 10  0.12 
TVOC3      2.6 
TVOC28           0.26 
* sum of three cresols   
+ ceiling value: should not be exceeded at any time   
1 EU Commission Directive 2000/39/EC, 2000; EU Commission Directive 2006/15/EC, 2006; EU 
Commission Directive 2009/161/EU, 2009; EU Commission Directive 91/322/ECC, 1991 
2 US Department of Health and Human Services, 2007, "Pocket Guide to Chemical Hazards". 
3 Aussschuss für Gefahrstoffe, 2006 (Germany), "Technische Regeln für Gefahrenstoffe, 
Arbeitsplatzgrenzwerte". 
4 Arbeitsgemeinschaft Ökologischer Forschungsintitute, 2013 (Germany), "Guidance Values for 
Volatile Organic Compounds in Indoor Air". GV II, reference value, for indoor air quality of private 
and public homes, based on toxicological studies, when exceeded countermeasures to be taken. 
5 Ausschuss zur Gesundheitlichen Bewertung von Bauprodukten, 2012 (Germany), "Health-related 
evaluation procedure for volatile organic compounds emissions (VOC and SVOC) from building 
products". LCI, lowest concentration of interest, threshold value emitted by construction products in 
a test chamber after 28 days. TVOC3, total VOCs after 3 days. TVOC28, total VOCs after 28 days. 
123 Occupational exposure limits based on weighted-averages in a 40 h work-week and short-term 
(15 min) exposure limits. 
13 lower of the EU/German occupational limit value depicted.   
45 Values of GV II and LCI in µg m-3 were converted into ppm based on 25°C and 1 bar pressure, 
for TVOC3 and TVOC28 in addition the molecular weight of phenol was used.  
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3.4 Potential human health and safety risks associated with VOC 
release from fresh and treated biochars 

During handling and storage of contaminated biochar, such as GC and LC used in 

this study, relatively high amounts of VOCs can be released, leading to risk of 

exposure for anyone working with these materials, particularly in enclosed areas with 

poor ventilation. Fresh LC and GC biochar resulted in head-space concentrations of 

VOCs of up to 13.7 ppm (LC) and 7.3 ppm (GC) directly after removing from closed 

containers. In a previous study, the individual composition of LMW-hydrocarbons in 

GC and LC biochar was analysed. Although measured in water extracts from the 

samples, a very similar composition can be assumed in the head-space above the 

biochars as the identified compounds are typical VOCs which partially vaporize at 

room temperature (Buss et al. 2015). Methanol, phenol, cresols and LMW aliphatic 

acids were the compounds in the highest concentrations; naphthalene was also 

present but in comparably low concentrations (Buss et al. 2015). 

According to EU and US legislation, short-term occupational exposure limits for 

workers for the described VOCs are in the range of 4-20 ppm (Table 2). The 

exposure to phenol should not exceed 4 ppm for 15 min and 15.6 ppm should never 

be exceeded. Naphthalene, acetic and propionic acid short-term exposure threshold 

values, as defined by the US National Institute for Occupational Safety and Health, 

were set to 15 ppm (US Department of Health and Human Services 2007). Based on 

results obtained in this study, 13.7 and 7.3 ppm release of a mixture of VOCs by 

high-VOC biochar, it seems feasible for short-term exposure values for certain VOC 

constituents to be exceeded, under certain conditions, especially during handling. 

Risks related to long-term exposure can also be foreseen, as limits in this case are 

much lower than for short-term exposure, e.g. phenol should not exceed 2-5 ppm, 

acetic acid 5 ppm and cresol 2.3 ppm (Table 2). Overall, long-term exposure could 

be an issue where, for example, VOC-contaminated biochar would be stored openly 

next to a work place. Considering that biochars stored for 50 h showed head-space 

concentrations of VOCs of 0.4 ppm (GC) and 0.7 ppm (LC) (Table 1), it seems rather 

improbable that threshold values would be exceeded. Furthermore, low-VOC 

biochar, e.g. NC biochar in this study, did not emit any detectable concentrations of 

VOCs and would definitely comply with occupational exposure limits. 
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In addition to risks to workers handling contaminated biochar, public and private 

indoor air quality could also become an issue for use of high-VOC biochar. This 

could be the case, for example, if such contaminated biochar was used in growing 

media used for potted plants in residential or commercial buildings. VOC-rich 

biochars stored for 2 months still emitted measurable amounts of VOCs (0.2, 0.3 

ppm) (Table 1) which could exceed the toxicological reference values for phenol 

(0.052 ppm), sum of the three cresols (0.011) and naphthalene (0.006) of indoor air 

quality guidelines in Germany (Table 2). Another concept for monitoring indoor air 

quality which could apply for biochar, is VOC testing of building products in a 

ventilated test chamber after 3 and 28 days (Ausschuss zur Gesundheitlichen 

Bewertung von Bauprodukten 2012). As an example, in Germany the total values of 

VOCs emitted by construction products (materials used in buildings and furniture) as 

well as so-called “lowest concentration of interest (LCI)” for individual VOCs were 

established and were partially incorporated into EU legislation (Ausschuss zur 

Gesundheitlichen Bewertung von Bauprodukten 2012; European Union Joint 

Research Centre 2013). In this study, high-VOC biochar openly stored for 50 h (0.4, 

0.7 ppm) did not exceed the total VOC threshold value for 3 days (2.6 ppm) but 

biochars stored for 2 months (0.2, 0.3 ppm) exceeded the value for 28 days (0.26 

ppm). Again, the low-VOC biochar did not show any VOC emissions, therefore, did 

not exceed any of the threshold values for VOC exposure and in fact can act as a 

sorbent for VOCs, subsequently, improving indoor air quality.  

Overall, it shows that handling of high-VOC biochar, as well as the use in closed 

spaces can pose hazards to human health and where handling of contaminated 

biochar cannot be avoided, appropriate measures need to be implemented. Further 

processing of such high-VOC biochar is highly recommended to allow safe handling 

and use, such as, blending with low-VOC biochar or thermal post-treatment.  
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4 Conclusions 

In this study, the VOC release dynamics from biochars contaminated by deposition 

of pyrolysis vapours during biochar production was investigated and the 

effectiveness of potential post-treatment measures aimed at reducing VOC 

contamination were assessed. It was shown that simply measuring the mass change 

of biochar sample when openly stored is not a sufficient indicator for assessing 

changes in VOC content due to the simultaneous uptake of water vapour. From 

three measures for reducing VOC content in contaminated biochar reported in this 

study, open air storage proved to be the least effective. Blending of contaminated 

biochar with clean biochar yielded promising results and showed biochar’s ability to 

take up VOCs from its surroundings, however, for the biochar studied, this method 

was effective only at relatively low concentrations of contaminated biochar (1 g high-

VOC biochar in 9 g of low-VOC biochar). The most effective post-treatment method 

was thermal treatment at relatively low temperature (200°C), as such treatment 

removed VOCs and previously observed phytotoxic effects. Furthermore, it was 

shown that under certain circumstances, high-VOC biochars can pose a risk to 

human health. However, this is limited only to extreme cases and in general most 

biochars are likely to sorb VOCs from the environment rather than to release them.  
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