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Abstract 28 

Study question: Does the Irinotecan metabolite 7-ethyl-10-hydroxycamptothecan (SN38) damage 29 
the gonads of male and female prepubertal mice? 30 
 31 
Summary answer: The Irinotecan metabolite SN38 reduces germ cell numbers within the 32 
seminiferous tubules of mouse testes at concentrations that are relevant to cancer patients, while in 33 
contrast it has little if any effect on the female germ cell population. 34 
 35 
What is known already: Little is known about the role of the chemotherapeutic agent Irinotecan on 36 
female fertility, with only one article to date reporting menopausal symptoms in perimenopausal 37 
women treated with Irinotecan, while no data are available either on adult male fertility or on the 38 
impact of Irinotecan on the subsequent fertility of prepubertal cancer patients, female or male.  39 
 40 

Study design, size, duration: Male and female gonads were obtained from postnatal day 5 C57BL/6 41 

mice and exposed in vitro to a range of concentrations of the Irinotecan metabolite SN38: 0.002, 42 

0.01, 0.05, 0.1 or 1 µg ml-1 for the testis and 0.1, 1, 2.5 or 5 µg ml-1 for the ovary, with treated gonads 43 

compared to control gonads not exposed to SN38: SN38 was dissolved in 0.5% dimethyl sulfoxide, 44 

with controls exposed to the same concentration of diluent. The number of testis fragments used for 45 

each analysis ranged between 3 and 9 per treatment group, while the number of ovaries used for 46 

each analysis ranged between 4 and 12 per treatment group. 47 

Participants/materials, setting, methods: Neonatal mouse gonads were developed in vitro, with 48 

tissue analysed at the end of the 4-6 day culture period, following immunofluorescence or 49 

hematoxylin and eosin staining. Statistical analyses were performed using one-way ANOVA followed 50 

by Bonferroni post-hoc test for normally distributed data and Kruskal-Wallis test followed by Dunns 51 

post-test for non-parametric data. 52 

Main results and the role of chance: Abnormal testis morphology was observed when tissues were 53 

exposed to SN38, with a smaller seminiferous tubule diameter at the highest concentration of SN38 54 

(1 µg ml-1, p<0.001 versus control) and increased number of Sertoli cell-only tubules at the two 55 

highest concentrations of SN38 (0.1 µg ml-1, p<0.001; 1 µg ml-1, p<0.0001, both versus control). 56 

Within seminiferous tubules, a dose response decrease was observed in both germ cell number 57 

(determined by the number of mouse vasa homologue (MVH)-positive cells) and in proliferating cell 58 

number (determined by the number of bromodeoxyuridine (BrdU)-positive cells), with significance 59 

reached at the two highest concentrations of SN38 (0.1 µg ml-1, p<0.01 for both; 1 µg ml-1, p<0.001-60 

MVH, p<0.01-BrdU; all versus control). No change was seen in protein expression of the apoptotic 61 

marker cleaved caspase 3. Double immunofluorescence showed that occasional proliferating germ 62 

cells were present in treated testes, even after exposure to the highest drug concentration. When 63 

prepubertal ovaries were treated with SN38, no effect was seen on germ cell number, apoptosis, or 64 

cell proliferation, even after exposure to the highest drug concentrations. 65 

Limitations, reasons for caution: As with any study using in vitro experiments with an experimental 66 

animal model, caution is required when extrapolating the present findings to humans. Differences 67 

between human and mouse spermatogonial development also need to be considered when 68 

assessing the effect of chemotherapeutic exposure. However, the prepubertal testes and ovaries 69 

used in the present studies contain germ cell populations that are representative of those found in 70 
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prepubertal patients, and experimental tissues were exposed to drug concentrations within the 71 

range found in patient plasma.  72 

Wider implications of the findings: Our findings demonstrate that the prepubertal mouse ovary is 73 

relatively insensitive to exposure to the Irinotecan metabolite SN38, while it induces a marked dose-74 

dependent sensitivity in the testicular germ cell population. The study identifies the importance of 75 

further investigation to identify the risk of infertility in young male cancer patients treated with 76 

Irinotecan. 77 

Large scale data: n/a 78 

Study funding and competing interest(s): Work supported by Medical Research Grant (MRC) grant 79 

G1002118 and Children with Cancer UK grant 15-198. The authors declare that there is no conflict of 80 

interest that could prejudice the impartiality of the present research. 81 

 82 

Key words: chemotherapy, fertility preservation, testis, spermatogonia, ovary, oocyte, 83 

gonadotoxicity, tissue culture, apoptosis, cell proliferation 84 
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Introduction 86 

Recent advances in cancer treatment have significantly increased life expectancy, especially for 87 

young patients. Since most of these oncological therapies do not have cancer cell-specific action, 88 

they can also affect healthy cells, impairing important physiological processes. One of the major 89 

concerns for younger cancer patients is the risk of infertility as a result of treatment (Anderson et al. 90 

, 2015). Although not every chemotherapeutic drug impairs fertility, some (e.g. alkylating agents) are 91 

recognised to be particularly gonadotoxic (Meistrich, 2013, Meistrich et al. , 1992). Specifically, 92 

chemotherapy drug treatment of childhood cancers can result in varying degrees of gonadotoxicity, 93 

which can negatively impact future fertility (Chow et al. , 2016, Meirow, 2000). Nevertheless, for 94 

many drugs, the magnitude of any potential long-term effect remains to be elucidated, for both 95 

males and females, as well as for both adult and pre-pubertal patients. The precise percentage of 96 

patients experiencing infertility after cancer therapy, and the degree of this dysfunction, is unknown. 97 

In the majority of cases, it is a consequence of spermatogenic impairment for men or premature 98 

ovarian failure for women. In the 0-14 years age group, cancer occurs in approximately 1 in 500 99 

children (Cancer Research UK, 2011, www.cancerresearchuk.org, date of access 11/12/2015) and 100 

gonadotoxicity for childhood cancer survivors may only become apparent after many years, even 101 

decades, of clinical follow-up due to a failure of normal gonadal function in adulthood. The ability to 102 

identify agents and regimens that confer a significant risk of gonadal damage will enable patients 103 

and their families to make informed decisions regarding the use of available strategies for fertility 104 

preservation. Furthermore, understanding the specific mechanisms of action for the effects of 105 

different classes of chemotherapeutic drugs on the reproductive system is pivotal to the 106 

development of tailored protective tools.  107 

  108 

Assessing fertility after chemotherapy is the first step toward any type of investigation into 109 

preserving the functionality of the reproductive system. However, in both males and females it is a 110 

difficult task that requires long-term follow up and is complicated by the large number of co-existing 111 
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variables in addition to the chemotherapy itself (i.e. type of malignancy, age, and pubertal status). 112 

To date, many clinical and experimental studies have increased our knowledge about the degree of 113 

ovotoxicity induced by several chemotherapeutic drugs (Gracia et al. , 2012, Levine et al. , 2015, 114 

Waimey et al. , 2015). Some studies have been able to identify the specific cellular target of each 115 

individual drug in the female gonad and the degree of ovotoxicity that results from exposure (Ben-116 

Aharon and Shalgi, 2012, Meirow, 2000, Meirow et al. , 2007, Morgan et al. , 2012, Sanders et al. , 117 

1996, Thomas-Teinturier et al. , 2015) .  This information is of particular importance because, 118 

although prepubertal females with a good prognosis and high risk of infertility cannot opt for 119 

oocyte/embryo cryopreservation as adult women are able to do, they still have the option of ovarian 120 

cortical tissue cryopreservation in order to preserve their subsequent fertility (extensively reviewed 121 

in Anderson and Wallace, 2011, Levine et al., 2015, Oktay and Oktem, 2009, Waimey et al., 2015, 122 

Wallace, 2011). For prepubertal males, it is known that some chemotherapeutic agents impair 123 

fertility, however, in many cases, azoospermia is only a temporary outcome and after a variable 124 

length of time spermatogenesis recovers (Meistrich, 1986, Schrader et al. , 2001). Moreover, much 125 

of the knowledge we have about the impact of chemotherapy on spermatogenesis has been 126 

obtained from adult patients, with markedly fewer studies about the chemotherapy-induced 127 

damage to the reproductive system in male childhood cancer patients, in which spermatogenesis 128 

has not yet been established (Bordallo et al. , 2004, Meistrich et al., 1992, Nurmio et al. , 2009, 129 

Wallace et al. , 1991).  While adult male patients can preserve reproductive potential using the well-130 

established option of sperm cryobanking, for pre-pubertal boys the only potential option is 131 

cryopreservation of testicular tissues, a technique that is currently experimental, at the time of 132 

writing proven to work only in animal models (Picton et al. , 2015).  133 

 134 

Irinotecan is a chemotherapeutic drug commonly administered to both male and female patients 135 

and represents the first and second-line therapy for the treatment of metastatic and recurrent 136 

colorectal cancer. It is also used in the treatment of several other malignancies, including lymphoma, 137 
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lung, gastrointestinal and pancreatic tumours (Li et al. , 2014). In the late 1990s, clinical trials were 138 

set up to evaluate its use in paediatric cancers and it is now part of the treatment of refractory solid 139 

tumours in young patients (Brennan et al. , 2014, Mugishima et al. , 2002, Norris et al. , 2014). 140 

Irinotecan is a water-soluble synthetic version of the alkaloid camptothecin (CPT), initially isolated 141 

from the Chinese tree Camptotheca acuminate, and then synthesized for medical use as 7-ethyl-10-142 

(4-[1-piperidino]-1piperidino)-carbonyl-camptothecin hydrochloride trihydrate (namely CTP-11 or 143 

irinotecan) (Mugishima et al., 2002). Irinotecan works as an S phase-specific inhibitor of 144 

topoisomerase I, a key nuclear enzyme for the relaxation of DNA double helix super-coiling during 145 

replication (Voigt et al. , 1998, Zhang et al. , 2004): as such, irinotecan impairs cell proliferation. In 146 

vivo, irinotecan is converted by hydrolysis into its active metabolite, 7-ethyl-10-147 

hydroxycamptothecan (SN38) which is a thousand times more cytotoxic than irinotecan itself 148 

(Kawato et al. , 1991). Pharmacokinetic studies show plasma concentrations of SN38 in adults 149 

ranging between 0.01 and 0.1 µg ml-1 within the first 10 h after CPT-11 administration (Xie, 2002), 150 

while plasma concentration of SN38 documented in paediatric patients are around 0.005-0.05 µg ml-151 

1 after infusion of 200mg/m2 of CPT-11 per day over 3 days (Mugishima et al., 2002). Irinotecan 152 

results in a range of severe acute effects, such as diarrhoea, nausea, vomiting and neutropenia; 153 

however, the long-term effects of this chemotherapeutic drug metabolite are less clear.  154 

 155 

The effect of irinotecan on fertility has not been described. One research group documented 156 

menopausal symptoms in perimenopausal women after administration of irinotecan in combination 157 

with other drugs (Tanaka, 2008). However, multiple-agent therapies render it difficult to identify the 158 

specific contribution of each individual compound, on top of which menopausal symptomatology 159 

can only be an indicative parameter of fertility. Only one study investigated the mechanism of action 160 

of irinotecan using a mouse model, showing an increase in granulosa cell (GC) apoptosis after 161 

irinotecan administration (Utsunomiya, 2008). However these data are limited to the adult female 162 

mouse, with no information regarding the effect on earlier stages of ovarian follicles, particularly 163 
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those constituting the ovarian reserve.  Men undergoing chemotherapy that includes irinotecan are 164 

generically advised of a possible subsequent impairment in sperm production (Cancer Research UK, 165 

www.cancerresearchuk.org, date of access 28/2/2016), despite the fact that there are no data 166 

available regarding the role of irinotecan on spermatogenesis. Most importantly, there is no 167 

information available about future fertility following irinotecan administration to prepubertal 168 

patients of either gender. 169 

 170 

Using an in vitro mouse model, we have previously demonstrated that different classes of 171 

chemotherapeutic drugs display variable degrees and mechanisms of ovotoxicity (Lopes et al. , 2014, 172 

Morgan et al. , 2013). Furthermore, since male and female germ cells have undergone markedly 173 

different early specialisation supported by different populations of somatic cells, it cannot be 174 

assumed that the same drug will have the same effect on male and female gonads. Here, we have 175 

used an established mouse ovary culture model and developed an equivalent mouse testis culture 176 

model to examine the specific role of irinotecan on prepubertal male and female gonads. For this 177 

work, testicular and ovarian tissue were exposed to SN38 in vitro, at concentrations spanning those 178 

found in the serum of patients treated with irinotecan.  179 

 180 

Materials and methods 181 

 182 

Mice 183 

C57BL/6 mice were kept under 14h:10h light:dark cycle in an approved animal facility, with food and 184 

water provided ad libitum. Experiments were approved by the University of Edinburgh’s Local Ethical 185 

Review Committee with procedures performed in accordance with UK Home Office regulations.   186 

 187 

Testis culture 188 
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Testes were collected from post-natal day (pnd) 5 male mice and placed in Leibovitz (L-15, 189 

Invitrogen, UK) medium supplemented with 3 µg ml-1 of bovine serum albumin (BSA: Sigma-Aldrich 190 

Ltd, UK) after the removal of non-gonadal tissue. Each testis was cut into small fragments of roughly 191 

0.5 mm3 using a small scalpel blade (Altomed Ltd, UK), with each piece placed on a floating 192 

polycarbonate membrane (Whatman Nucleopore Polycarbonate Membrane, Camlab Ltd, 193 

Cambridge, UK) in a 24-well plate (Grenier Bio-one, Stonehouse, UK) containing 1 ml of α-minimum 194 

essential media (MEM) culture medium (Invitrogen, UK). As with Sato and colleagues (Sato et al. , 195 

2011), culture medium was supplemented with 10% knockout serum replacement (KSR, Invitrogen, 196 

UK) and incubated under a controlled atmosphere with 5% CO2 at 37°C for 24 hours (Day 1). On Day 197 

2 of culture, vehicle-control 0.5% dimethyl sulfoxide (DMSO; Sigma-Aldrich Ltd, UK) or SN38 (Sigma-198 

Aldrich Ltd, UK) dissolved in DMSO, was added to the medium. Concentrations of SN38 used were: 199 

0.002, 0.01, 0.05, 0.1 or 1 µg ml-1, all in 0.5% DMSO. On Day 3, testes were moved into drug-free 200 

medium. For cell proliferation experiments, culture medium was supplemented on Day 4 with 15 µg 201 

ml-1 of bromodeoxyuridine (BrdU; Sigma-Aldrich Ltd, UK) for the final 24h of culture. At the end of 202 

Day 4, tissues were fixed and processed as detailed below. 203 

 204 

Ovary culture 205 

Ovaries were collected from pnd 4 female mice and placed in L-15 medium supplemented with 3 µg 206 

ml-1 BSA for removal of non-gonadal tissue. Ovaries were placed on floating polycarbonate 207 

membranes in 24-well plates containing α-MEM culture medium supplemented with 3 µg ml-1 BSA 208 

and incubated under a controlled atmosphere with 5% CO2 at 37°C for 24 hours (Day 1). On Day 2, 209 

medium was supplemented with vehicle-control 0.5% DMSO or increasing concentration of SN38: 210 

0.1, 1, 2.5 or 5 µg ml-1 in 0.5% DMSO. After 24 hrs (Day 3), ovaries were moved into drug-free 211 

medium. For cell proliferation experiments, culture medium was supplemented with 15 µg ml-1 BrdU 212 

for the final 24h of culture. Ovaries were kept in culture until Day 6, when tissues were processed for 213 

analyses as detailed below.  214 
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 215 

Morphological evaluation 216 

At the end of culture, testes and ovaries were fixed in Bouin’s fluid and embedded in paraffin wax. 217 

Serial sections of 5 µm thickness were cut and stained with haematoxylin and eosin (H&E).  218 

Three testis sections, taken from the beginning, middle and end of each piece of tissue, were 219 

photomicrographed (DMLB Leica microscope, Leica Microsystem Ltd, UK) and used for 220 

morphological examination by a blind-to-treatment assessor using ImageJ software. In each section, 221 

the total number of seminiferous tubules was noted, along with the number of seminiferous tubules 222 

that lacked visible germ cells on the basement membrane (Sertoli cell-only tubules). Within each 223 

section, the diameter of every spherical tubule was measured. Total section area and seminiferous 224 

tubule area were also recorded. 225 

 226 

Every 6th ovarian section was photomicrographed and used for ovarian follicle counts and health 227 

assessment using ImageJ software by a blind-to-treatment assessor, as detailed in Morgan et al. 228 

(2013). In brief, follicles were staged as: primordial, when an oocyte with a visible germinal vesicle 229 

(GV) was surrounded only by flattened GCs; transitional, when an oocyte with a visible GV was 230 

surrounded by a mixture of flattened and cuboidal GCs; primary, when an oocyte with a visible GV 231 

was surrounded only by cuboidal GCs. Follicles were further classified as unhealthy when containing:  232 

an oocyte with eosinophilic and shrunk cytoplasm, and/or condensed nuclear chromatin; GCs, the 233 

majority of which were irregularly shaped and/or had condensed chromatin; or those follicles with a 234 

combination of unhealthy oocytes and GCs. The total number of follicles was estimated by correcting 235 

the count of any visible GV in each section using the Abercrombie formula (Abercrombie, 1946). 236 

 237 

Immunofluorescence 238 

At the end of the culture period, ovarian and testis tissue was fixed in 10% neutral buffered formalin 239 

(Sigma-Aldrich Ltd, UK) and embedded in paraffin wax. Serial sections of 5 µm thickness were cut 240 
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and 3 sections, from the beginning, middle and end of each piece of tissue, were used for 241 

immunofluorescence as previously described (Lopes et al., 2014). In brief, after rehydration, slides 242 

underwent antigen retrieval in sodium citrate (10mM, pH6; Fisher Chemical, Loughborough, UK) and 243 

blocking in 20% normal goat serum in PBS (Fisher Scientific UK Ltd, UK) with 0.1% Triton X-100 244 

(PBST) and 5% BSA.  Primary antibody incubation was performed overnight at 4°C with mouse anti-245 

mouse vasa homologue (MVH; 1:100; Abcam, UK), rabbit anti-cleaved caspase 3 (CC3; 1:500; Cell 246 

Signalling Technology, USA) or with rat anti-BrdU (1:200; Abcam, UK) either alone or alongside the 247 

antibody for MVH. Slides were incubated for 1h at room temperature with secondary antibodies: 248 

Alexa Fluor 568 goat anti-mouse IgG1 (1:200; Invitrogen, UK) for MVH, goat anti-rabbit biotinylated 249 

(1:200; DakoCytomation, Denmark) for CC3 and rabbit anti-rat biotinylated (1:200; Vectors Lab, UK) 250 

for BrdU, with the latter two reactions followed by 30 min at room temperature with Alexa Fluor 488 251 

streptavidin conjugate (1:200; Invitrogen, UK). Slides were counterstained with DAPI (Invitrogen, 252 

UK), mounted in Vectashield mounting medium (Vector Laboratories, USA) and photomicrographs 253 

obtained (Leica DM5500B microscope on a DFC360FX camera). Image analysis was performed with 254 

ImageJ software, with the assessor blind to treatments. The degree of expression of germ cell 255 

(MVH), apoptotic (CC3) and proliferation markers (BrdU) was given by the area of immunoreactivity 256 

relative to the section area as previously described (Lopes et al., 2014). Randomly selected images 257 

were used to compare manual counting of MVH positive cells versus semi-automated analysis using 258 

ImageJ software.  259 

 260 

Statistical analysis 261 

Statistical analyses of data were performed using GraphPad Prism software (GraphPad Software, Inc, 262 

CA, USA). Treatments groups were checked for statistical significance compared to control. The non-263 

parametric Kolmogorov-Smirnov test was used to assess normal distribution. For data with a normal 264 

distribution, one-way ANOVA and Bonferroni post-hoc test were applied, while data that were not 265 

normally distributed were assessed for statistical significance using the Kruskal-Wallis test followed 266 
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by Dunns post-test. Pearson’s correlation coefficient was used to determine the correlation between 267 

manual count and automated measurement of the immunofluorescence staining. Results were 268 

considered statistically significant where p <0.05. 269 

 270 

Results 271 

 272 

SN38 impairs testis morphology 273 

In order to assess whether irinotecan affects the morphology of mouse testis, tissue was treated 274 

with increasing doses of SN38 (0.002, 0.01, 0.05, 0.1 or 1 µg ml-1) and histological sections were 275 

assessed (Fig.1A). Seminiferous cord structure was maintained across the experimental groups, but 276 

examination of the histological sections shows that highest concentration of SN38 led to a dramatic 277 

increase in Sertoli cell-only tubules.  While the density of seminiferous tubules was unaffected by 278 

treatment (Fig.1Bi), seminiferous tubule diameter decreased significantly at the highest SN38 279 

concentration (Fig.1Bii), along with a dose-response increase in the number of Sertoli cell-only 280 

tubules that reached significance at 0.1 and 1 µg ml-1 SN38, rising from around 2% in control to 15% 281 

and 52% of tubules respectively (Fig.1Biii). 282 

 283 

Manual counting validates semi-automated measurement of immunoreactivity 284 

To compare manual counting versus semi-automated measurement of immunofluorescence cells, 3-285 

4 randomly selected testis sections immunostained for MVH for each experimental group (control, 286 

0.002, 0.01, 0.05, 0.1 or 1 µg ml-1 SN38) were analysed using both systems (Fig.2). Manual counts of 287 

MVH positive cells per section showed a significant decrease in germ cell number with a reduction 288 

from 134 cells per 100 mm2 in control group to 75, 55 and 6 cells per 100 mm2 in 0.05, 0.1 or 1 µg ml-289 

1 SN38 groups, respectively (Fig.2A). A similar decrease was demonstrated with the semi-automated 290 

measurement, where the percentage of section area expressing MVH immunostaining was reduced 291 

by 15% in control group to 8%, 4% and 0.9% in the 0.05, 0.1 or 1 µg ml-1 SN38 groups respectively 292 
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(Fig.2B). Both measurement systems showed that germ cell number and percentage immunostained 293 

area decreased by approximately 2, 3 and 20 fold in the groups treated with the highest SN38 294 

concentration compared with control, demonstrating a highly significant correlation between the 295 

two methods, (r=0.954, p<0.0001; Fig.2C). 296 

 297 

SN38 affects testicular germ cell number and proliferation, but not apoptosis 298 

Immunohistochemistry was used to assess whether SN38 affected the number of germ cells (MVH 299 

expression; Fig.3A), the amount of apoptosis (CC3 expression; Fig.3B) or the level of cell proliferation 300 

(BrdU expression; Fig.3C). MVH-expression, correlating with germ cell numbers, decreased markedly 301 

in a dose dependent manner, reaching statistical significance at concentrations of 0.1 and 1 µg ml-1 302 

SN38 when compared with the control group (Fig.3Aiii), with MVH-expression falling from 13.9% to 303 

4.3% and 0.4% of tubule area, respectively. No difference was observed in the percentage of CC3-304 

positive, apoptotic cells across treatments (Fig.3Biii). There was a decrease in the percentage of 305 

proliferating cells within tubules, becoming significantly lower after exposure to 0.1 and 1 µg ml-1 306 

SN38 (Fig.3Ciii), with the BrdU expression falling from 20.5% to 13.4% and 12.8% of the tubule, 307 

respectively.  308 

 309 

Double immunofluorescence for MVH and BrdU was carried out on randomly selected sections from 310 

control tissue and from tissue exposed to the two highest concentrations of SN38, 0.1 and 1 µg ml-1,  311 

to determine if any of the spermatogonia remaining were still proliferating (Fig.4). In the control 312 

group, the majority of the germ cells were actively proliferating, but, even at the highest 313 

concentration of SN38, with very few germ cells remaining, occasional proliferative germ cells could 314 

still be found (Fig.4). 315 

 316 

Ovarian follicle morphology is unaffected by SN38 317 
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To assess whether the ovarian follicle reserve was affected by exposure to SN38, neonatal mouse 318 

ovaries were cultured in the presence or absence of SN38. Initial experiments exposing ovaries to 319 

concentrations up to the highest levels found in the plasma of adult patients treated with irinotecan 320 

(0.1g ml-1) found no evidence of damage (data not shown). In order to determine if a dose-321 

response pattern could be found, concentrations were therefore increased markedly, exposing 322 

ovaries to 0.1, 1, 2.5 or 5 µg ml-1 of SN38. Overall, effects of SN38 on the ovary were not observed 323 

until the concentration of SN38 was much higher than the highest concentrations found in the 324 

plasma of patients treated with irinotecan, and even then effects observed were not marked (Fig.5). 325 

Examination of histological sections (Fig.5Ai-iii) revealed signs of stromal cell damage only after 326 

exposure to 5 µg ml-1 SN38. Total follicle number was unaffected by drug treatment (Fig.5Bi), while 327 

the percentage of follicles assessed as unhealthy was significantly increased only in the 2.5 µg ml-1 328 

SN38 treatment group, rising from 23% to 40% (Fig.5Bii). To determine whether a specific stage of 329 

early follicle development was affected by SN38 treatment, the percentage of follicles assessed as 330 

unhealthy was examined separately for primordial, transitional and primary follicles (Fig.5C): only 331 

primary follicles exposed to 1 µm ml-1 SN38 showed a significant increase in the percentage deemed 332 

to be unhealthy, rising from 27% to 57% (Fig.5Ciii).  333 

 334 

SN38 does not affect ovarian germ cell number, ovarian cell apoptosis or proliferation 335 

As with the testis, the effect of SN38 exposure on germ cell number, apoptosis and proliferation was 336 

assessed using immunohistochemistry, by examining expression of the germ cell marker MVH 337 

(Fig.6A), apoptotic cell marker CC3 (Fig.6B) and proliferation marker BrdU (Fig.6C). Relative to 338 

section area, the area of immunoreactivity of all three markers (MVH, CC3 and BrdU) was unaffected 339 

by the drug, even after exposure to 5 µm ml-1 SN38 (Fig.6).  340 

 341 

Discussion 342 

 343 
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The present study shows that SN38, the active metabolite of irinotecan, is cytotoxic to male germ 344 

cells in the prepubertal mouse testis, whilst no similar effect was demonstrated in the prepubertal 345 

ovary. An in vitro mouse model was used to expose male and female gonadal tissue to 346 

concentrations of SN38 that are clinically relevant, covering the range of reported concentrations 347 

found in the serum of patients shortly after administration of irinotecan. Results show that the 348 

prepubertal testis is affected by exposure to the high end of clinically relevant concentrations of 349 

SN38 (0.1 µg ml-1 SN38 and above). In contrast, there was little effect of SN38 on the ovary even 350 

when concentrations were increased to 50-fold higher concentrations of SN38 that have been found 351 

in patients.    352 

 353 

To the best of our knowledge, there is no published information about the effect of SN38 on the 354 

prepubertal testis or ovary. Work here shows that SN38 targeted spermatogonia, significantly and 355 

markedly reducing germ cell number, leading to a 3.5-fold and 35-fold reduction in MVH protein 356 

expression after exposure to 0.1 and 1 µg ml-1 SN38 respectively, accompanied by an equally 357 

dramatic 7.5- and 26-fold increase in Sertoli cell-only tubules. SN38 is a potent inhibitor of cell 358 

proliferation (Bomgaars et al. , 2006). It is believed that the high growth rate of the germ cell 359 

population renders the testis particularly sensitive to chemotherapeutic drugs whose principal 360 

mechanism of action is to impair the replication ability of cancer cells. Here, germ cells decreased 361 

significantly in tubules of testis tissue exposed to high SN38 concentrations, as did all proliferating 362 

cells in the seminiferous tubule. However, the high proliferation rate may not be the only 363 

explanation for the specific vulnerability of spermatogonial germ cells, since other factors could also 364 

be involved. This could include factors intrinsic to the germ cells or indirect actions via somatic cells 365 

that impair signalling to germ cells, resulting in germ cell loss. Indirect effects on spermatogonial 366 

proliferation and differentiation via the somatic Sertoli cells have been shown (Brilhante et al. , 367 

2012). For example, KIT-ligand (also known as stem cell factor) produced by Sertoli cells is required 368 

to support differentiation of spermatogonia through interaction with the c-kit receptor on 369 
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differentiated spermatogonia (Ohta et al. , 2000). In addition, irradiation in the rat testis has been 370 

demonstrated to block spermatogonial differentiation as a result of damage to the somatic 371 

compartment (Zhang et al. , 2007). Results here suggest that chemotherapeutic drugs have 372 

differential effects on germ cells rather than Sertoli cells in terms of cell loss within the seminiferous 373 

tubules; however, effects of SN38 exposure on other testis somatic cell types (e.g. Leydig or 374 

peritubular myoid cells) require further investigation.  375 

 376 

Whilst the present study has demonstrated clear and dramatic effects of SN38 on the germ cells of 377 

the prepubertal mouse testis, extrapolation of these results to prepubertal human must take into 378 

account variations in spermatogonial development between these species.  The germ cell population 379 

in rodents arises from spermatogonial stem cells (SSCs) that are generally classified as Asingle, which 380 

regularly, although infrequently, self-renew and Apaired/Aaligned which are committed progenitor cells 381 

with only a few cycles of self-renewing divisions (Hermann et al. , 2010). In primates, including 382 

humans, two separate spermatogonial cell populations make up the SSC pool: a stem cell reserve 383 

with a low/none proliferative activity under physiological conditions (Adark) and a separate functional 384 

pool of highly proliferative progenitors (Apale) (Mitchell et al. , 2009). However, functional and 385 

molecular similarities and/or differences between human and rodent SSCs are still to be fully 386 

elucidated, mainly because of the lack of information about the regulation of human SSCs (Nagano 387 

et al. , 2002, Wu et al. , 2009). As such, species-specific differences in sensitivity to cytotoxic agents 388 

would require further investigation, possibly by using an experimental animal species more closely 389 

related to humans. As with all in vitro work, it will be important to perform in vivo studies to further 390 

validate our findings. These results provide valuable information about specific effects of exposures, 391 

based on dosage and timing, able to inform any future in vivo studies. 392 

 393 

 In addition, the present model investigates the effect of SN38 at 4-6 days after a single exposure, as 394 

opposed to administration over several cycles, as in the regimens used in patients. In this respect, 395 
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the present results may underestimate the fertility impairment that may occur after repeated 396 

Irinotecan administration to young male cancer patients (Ise et al. , 1986, Nurmio et al., 2009). 397 

Importantly, amongst the very few remaining spermatogonial cells exposed to high SN38 398 

concentrations, some retained their proliferative ability, leaving open the possibility that the 399 

seminiferous tubules could be repopulated over time, giving the potential for future fertility. 400 

 401 

It has been proposed that male gonads are more sensitive to chemotherapy than female gonads 402 

(Ajala et al. , 2010). Work here has also evaluated the impact of SN38 on the ovarian follicle reserve 403 

and on early stages of follicle development. Damage to these quiescent/early growing ovarian 404 

follicles can have a major impact on the subsequent reproductive capability of females, particularly 405 

on long-term fertility. However, data here suggest that irinotecan administration is unlikely to 406 

impact on female fertility. No sign of damage was observed when mouse ovarian tissue was exposed 407 

to concentrations of SN38 comparable to those found in cancer patients. Even when SN38 408 

concentrations were further increased to up to 50-fold higher concentrations than those found in 409 

patient plasma, there was little effect, with no morphological changes evident in primordial or early 410 

growing follicles, and with apoptosis and cell proliferation unaffected by drug exposure. Utsunomiya 411 

et al. (2008) also failed to find damage in small or medium follicles in response to irinotecan 412 

administration in mice, although apoptosis of GCs was observed in larger follicles. Here, it is 413 

impossible to exclude the possibility that SN38 has produced subtle damage to early-stage follicles, 414 

the effects of which might not become apparent until later developmental stages, but the simplest 415 

and most parsimonious hypothesis is that early ovarian follicle stages are not sensitive to SN38 416 

insult.  417 

 418 

Work here used a new tissue culture system to support short-term survival and development of the 419 

early neonatal testis in vitro, modified from ovary culture systems used by our laboratories (Lopes et 420 

al., 2014, Morgan et al., 2013) and other testis culture systems (Sato et al., 2011). Examination of 421 
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the control photomicrographs and data show that the culture system maintains the structural 422 

integrity of the seminiferous tubules, and that the tubules contain proliferating germ and somatic 423 

cells.  424 

 425 

In summary, we have investigated the gonadotoxicity of irinotecan, a chemotherapeutic drug widely 426 

administered to patients of both sexes and of all ages, pre-pubertal and adult. Results show that the 427 

irinotecan-metabolite SN38 results in damage to testes, significantly affecting germ cells following 428 

exposure to clinically relevant concentrations of SN38, in contrast to only minor effects on the ovary, 429 

with no effects on germ cell number even following exposure to 50 times higher concentrations of 430 

SN38 than those reported to date in patients following irinotecan administration. As such, our 431 

results using a prepubertal mouse model could indicate that germ cells in the ovaries of prepubertal 432 

girls may be less susceptible to damage by irinotecan administration than those in the testes of 433 

prepubertal boys; however, further studies, using non-human primate or human models, are 434 

necessary to confirm these results. In addition, an examination of long-term effects of 435 

irinotecan/SN38, and investigation into ways of protecting against damage, is of major importance. 436 

The retention of some proliferative germ cells after exposure to SN38 does allow for the possibility 437 

of germ cells repopulating the seminiferous tubules, which could in turn lead to recovery of fertility, 438 

although this will require further study. More generally, our results highlight the fact that 439 

chemotherapy drugs can have differential effects on the gonads of males and females. 440 
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Figure legends 588 

 589 

Figure 1. Exposure of mouse testis to SN38 affects tissue morphology. Testis tissue exposed in vitro 590 

to varying concentrations of the irinotecan metabolite 7-ethyl-10-hydroxycamptothecan (SN38: 591 

0.002, 0.01, 0.05, 0.1, 1 µg ml-1, all in 0.5% dimethylsulphoxide (DMSO) as diluent) were processed 592 

for morphological examination. A: Representative photomicrographs of haematoxylin and eosin 593 

(H&E) stained sections from 3 experimental groups: control (Ai), middle (Aii) and highest (Aiii) SN38 594 

concentrations. Insets are higher magnification of framed areas. The highest SN38 concentration 595 

caused a dramatic increase in Sertoli cell-only tubules (arrowhead). B: SN38 treatment did not affect 596 

the density of seminiferous tubules (Bi). Tubule diameter was significantly smaller in testis exposed 597 

to the highest SN38 concentration (Bii); and the number of Sertoli cell-only tubules increased in the 598 

two highest SN38 concentrations (Biii). A minimum of 3 pieces were analysed for each treatment 599 

and for the corresponding control (in 0.5% DMSO). Scale bars = 50 µm. Graphs show mean ± SEM. 600 

Data were analysed using Kruskal-Wallis test followed by Dunns post-test; ** p<0.001, *** p<0.001 601 

versus control.   602 

 603 

 604 

Figure 2. Validation of the semi-automated measurement of immunofluorescence. Immunostained 605 

sections for the germ cell marker mouse vasa homologue (MVH) were randomly selected from each 606 

experimental group and analysed using both the manual counting of germ cells and the percentage 607 

of the section area expressing the germ cell marker. A strong correlation is present between the 608 

number of germ cells per 100 mm2 (A) and the percentage of stained area (B) across all the 609 

experimental groups (r = 0.954, p<0.0001) (C). Histograms show mean ± SEM. Data were analysed 610 

using Kruskal-Wallis test followed by Dunns post-test (A, B) and by Pearson’s correlation coefficient 611 

(C); * p<0.05, **** p<0.0001 versus control. 612 

 613 
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Figure 3. Seminiferous tubules of mouse testes treated with SN38 contain fewer germ cells and 614 

proliferating cells.  Testis tissue exposed in vitro to varying concentrations of SN38 (0.002, 0.01, 615 

0.05, 0.1, 1 µg ml-1) were analysed for the protein expression of: (A) germ cell marker MVH (red), (B) 616 

apoptotic marker cleaved Caspase 3 (CC3; green), and (C) proliferation marker bromodeoxyuridine 617 

(BrdU; green). Sections were counterstained with DAPI (blue). Photomicrographs of representative 618 

immunostained sections from control (Ai, Bi, Ci) and 0.1 µg ml-1 SN38 (Aii, Bii, Cii) groups. Insets are 619 

higher magnification of framed areas. Graphs show protein expression calculated as a percentage of 620 

tubule (Aiii and Ciii) or section (Biii) area. MVH and BrdU expression dramatically declined at the two 621 

highest SN38 concentrations (Aiii and Ciii), while CC3 is unaffected by drug treatment (Biii). The 622 

number of testis pieces analysed for each experimental group were between 5 and 9 in the MVH and 623 

CC3 assessments and 5-8 in the BrdU staining, all from at least 3 independent experiments. Scale 624 

bars = 100 µm. Graphs show mean ± SEM. Data were analysed using Kruskal-Wallis test followed by 625 

Dunns post-test; * p<0.05, ** p<0.01 versus control. 626 

 627 

Figure 4. Proliferative germ cells are still present in mouse testis treated with SN38. Testis tissue 628 

exposed in vitro to 0.1 or 1 µg ml-1 SN38 were analysed for co-expression of germ cell marker MVH 629 

(red) and proliferation marker BrdU (green), with DAPI (blue) used as counterstain. 630 

Photomicrographs of representative immunostained sections from control (A), 0.1 µg ml-1 (B) and 1 631 

µg ml-1 SN38 (C) groups. Insets are magnification of framed areas. The number of proliferating germ 632 

cells decreased in treated tissues, but they were still occasionally found even at in the highest SN38 633 

concentration group (arrowheads). Scale bars = 50 µm. 634 

 635 

Figure 5. Exposure of mouse ovaries to SN38 does not impair tissue morphology. Whole ovaries 636 

exposed in vitro to high concentrations of SN38 (0.1, 1, 2.5, 5 µg ml-1) were processed for 637 

morphological examination and follicle count. Representative photomicrographs of H&E stained 638 

sections from 3 experimental groups: control (Ai), lowest (Aii) and highest (Aiii) SN38 639 
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concentrations. Insets are magnification of framed areas. Follicles with an unhealthy oocyte (black 640 

arrowhead) or unhealthy granulosa cells (white arrowhead), as well as degenerated stroma cells 641 

(arrow) were more often present in the highest SN38 group (Aiii). SN38 did not affect total ovarian 642 

follicle number (Bi) and only 2.5 µg ml-1 SN38 concentration increased the percentage of unhealthy 643 

follicles (Bii). SN38 did not affect the percentage of unhealthy primordial or transitional follicles (Ci 644 

and Cii) whilst the number of unhealthy primary follicles was significantly increased only following 645 

treatment with 1 µg ml-1 SN38 (Ciii). The number of ovaries analysed was between 8 and 12 for each 646 

treatment/control group. Graphs show mean ± SEM. Data were analysed using one-way ANOVA 647 

followed by Bonferroni post-hoc test; * p<0.05 versus control. Scale bars = 50 µm. 648 

 649 

Figure 6 SN38 does not affect the expression of germ cell, apoptosis and proliferation markers in 650 

the mouse ovary.  Whole ovaries exposed in vitro to high concentrations of SN38 (0.1, 1, 2.5, 5 µg 651 

ml-1) were analysed for the expression of: (A) the germ cell marker MVH, (B) the apoptotic marker 652 

CC3; and the (C) proliferative marker BrdU.  Photomicrographs are representative of sections from 653 

control (Ai, Bi, Ci) and 0.1 µg ml-1 SN38 concentration (Aii, Bii, Cii) groups. Graphs show MVH (Aiii), 654 

CC3 (Biii) and BrdU (Diii) expression levels as a percentage of section area: expression was 655 

unaffected by SN38 treatment in all cases. A minimum of 4 ovaries were analysed in each 656 

experimental group in MVH and CC3 assessments and 5 ovaries in the BrdU staining, all from at least 657 

3 independent experiments. Scale bars = 100 µm. Graphs show mean ± SEM. Data were analysed 658 

using one-way ANOVA. 659 
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