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Calcium signals determine, for example, smooth muscle contraction and changes in gene expression. How calcium signals se-
lect for these processes is enigmatic. We build on the “panjunctional sarcoplasmic reticulum” hypothesis, describing our view 
that different calcium pumps and release channels, with different kinetics and affinities for calcium, are strategically positioned 
within nanojunctions of the SR and help demarcate their respective cytoplasmic nanodomains. SERCA2b and RyR1 are pref-
erentially targeted to the sarcoplasmic reticulum (SR) proximal to the plasma membrane (PM), i.e., to the superficial buffer 
barrier formed by PM-SR nanojunctions, and support vasodilation. In marked contrast, SERCA2a may be entirely restricted to 
the deep, perinuclear SR and may supply calcium to this sub-compartment in support of vasoconstriction. RyR3 is also prefer-
entially targeted to the perinuclear SR, where its clusters associate with lysosome-SR nanojunctions. The distribution of RyR2 
is more widespread and extends from this region to the wider cell. Therefore, perinuclear RyR3s most likely support the initia-
tion of global calcium waves at L-SR junctions, which subsequently propagate by calcium-induced calcium release via RyR2 
in order to elicit contraction. Data also suggest that unique SERCA and RyR are preferentially targeted to invaginations of the 
nuclear membrane. Site- and function-specific calcium signals may thus arise to modulate stimulus-response coupling and 
transcriptional cascades. 

calcium, nanojunction, ryanodine receptor, sarco/endoplasmic reticulum calcium ATPase, smooth muscle, 
gene expression, contraction 
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INTRODUCTION 

Ca2+ signals govern a wide variety of cell functions, from 
muscle contraction, exocytosis and cell division to gene 
expression. Cells must therefore provide for the generation 
of different Ca2+ signals that select for one or a combination 
of functions. Given the multiplicity of functional signals we 
must therefore ask: how can fluctuations in the concentra-

tion of one ion, Ca2+, exert such selective and multifaceted 
control? The generally accepted view is that both the spatial 
and temporal characteristics of Ca2+ transients code for se-
lective modulation of molecular targets and thereby engage 
appropriate cell and system function. 

In all cell types stimulus-response coupling is largely 
controlled by interactions between voltage-gated Ca2+ 
channels of the plasma membrane (PM) or its invaginations 
(T-tubules or caveolae) and Ca2+ release channels in the 
sarco/endoplasmic reticulum (S/ER). Pharmaco-response 
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coupling provides for greater signal diversity, via gating of 
the 3 known S/ER resident IP3 receptors (IP3R1-3) by ino-
sitol 1,4,5 trisphosphate (IP3) (Berridge, 2008), modulation 
of the 3 S/ER resident ryanodine receptors subtypes 
(RyR1-3) by Ca2+ and/or cyclic adenosine diphosphate- 
ribose (cADPR) (Evans et al., 2005b; Lee, 2004; Morgan 
and Galione, 2008), and by the gating of the endolysosome 
targeted two pore channels (TPC1-3). Clearly, therefore, the 
spatiotemporal pattern of Ca2+ signals will be governed by 
those Ca2+ mobilising messenger(s) recruited by a given 
stimulus, the Ca2+ release channels expressed by a given 
cell and the consequential selection by these messengers of 
Ca2+ release from designate intracellular Ca2+ stores 
(Churchill et al., 2002; Kinnear et al., 2004; Yamasaki et al., 
2004). However, while there is a degree of flexibility within 
the identified signalling pathways described thus far, the 
current model still appears to be too simplistic to allow for 
the appropriate governance of all known Ca2+-dependent 
processes from, for example, gene expression, autophagy 
and cell proliferation to contraction and programmed cell 
death.  

The present article will focus on the growing body of 
evidence in support of the view that the functional specifi-
cation of Ca2+ signals is determined by the targeting of Ca2+ 
release channels and transporters to junctional complexes 
formed by membrane-membrane pairs that are less than 
30nm apart in all relevant cases reported to date. The speci-
fied distance of separation alone designates these complexes 
as nanojunctions (NOT MICRODOMAINS!) which have 
now been shown to exist between the S/ER and the plasma 
membrane (PM), lysosomes, mitochondria and the nucleus 
(van Breemen et al., 2013). The underlying mechanisms of 
signal generation are likely more elaborate in nature and 
clearly rely on the strategic spatial positioning within each 
nanojunction of different types of Ca2+ transporters and re-
lease channels, each of which may be characterized by dif-
ferent kinetics and affinities for Ca2+ (Clark et al., 2010).  

WHAT ARE NANOJUNCTIONS?  

Perhaps the first nanojunction ever described in terms of its 
functional importance was an intercellular junction, namely 
the neuromuscular junction. Here the pre- and postjunctional 
membranes are approximately 20 nm apart and extend 
roughly parallel to each other for several hundred nm. There 
is no doubt as to the importance of this nanojunction to our 
understanding of how the release of acetylcholine coordi-
nates neuromuscular transmission (Del Castillo and Katz, 
1956). By comparison, however, little attention has been 
given to the presence, function and plasticity of nanojunc-
tions between intracellular membranes. Perhaps the one 
exception is in skeletal and cardiac muscles, where the im-
portance to excitation-contraction coupling of the junctional 
complexes formed between the T-tubules of the sarcolemma 
and terminal cisternae of the sarcoplasmic reticulum is well 

documented. Importantly, in each instance the junctional 
membrane pair  are separated by ~20nm or less 
(Franzini-Armstrong, 1964; Ramesh et al., 1998; 
Rosenbluth, 1962), akin to the neuromuscular junction. In 
cardiac muscle, sarcolemma-SR nanojunctions are essential 
to the targeting of Ca2+ influx to those RyRs located on the 
terminal cisternae of the SR and thus to the coordination of 
contraction by Ca2+-induced Ca2+ release from the SR. We 
can therefore define these sarcolemma-SR junctions as the 
archetypal intracellular nanojunctions that are designed to 
accurately deliver Ca2+ to a defined target, RyR2, above all 
else. Although junctional complexes are formed between 
other organelles, we will concentrate on how the main Ca2+ 
regulatory organelle, the sarco/endoplasmic reticulum 
(S/ER), generates highly localized Ca2+ signals to select for 
different functions. It is now our view that all active 
nanojunctions constitute two biological membranes that are 
separated by a highly structured cytoplasmic space 10 to  
50 nm in width, typically a few 100 nm in extension and 
that, at each side, the membrane pair contain complemen-
tary ion transporters and channels for delivery and/or receipt 
of specified Ca2+ signals. As described previously, we pre-
dict that both the ultra-structure and electrostatic properties 
of the nanojunction together with the composition of 
transport molecules embedded in their limiting membranes 
ensure that cytoplasmic cation concentrations, Ca2+ in par-
ticular, are locally determined. Ca2+ may thus target “recep-
tive sites” of different affinities and modulate function ap-
propriately. Furthermore, we envisage that intracellular 
nanojunctions of the S/ER are widespread across all cell 
types and that they underpin the selective regulation of 
functions as diverse as muscle contraction, gene expression 
and cell division (van Breemen et al., 2013).  

THE PANJUNCTIONAL SARCOPLASMIC 
RETICULUM HYPOTHESIS 

The first convincing evidence of nanojunctions within 
smooth muscle came from electron micrographs that re-
vealed narrow gaps of ~20 nm between the peripheral or 
superficial SR and the PM (Devine et al., 1972; Gabella, 
1971). Once more, it is notable that the distance separating 
the junctional membrane pair is of the order of 20 nm. That 
these junctions were of functional importance was demon-
strated by van Breemen, who showed that peripheral cyto-
plasmic domains between the PM and peripheral SR are 
characterized by restricted diffusion (Van Breemen, 1977). 
In brief, it was concluded that once Ca2+ enters this nano-
space, it is either pumped into the SR or diffuses into the 
bulk myoplasm. Surprisingly, the concept that site- and 
function-specific Ca2+ signals may be supported by 
nanojunctions received little attention thereafter, despite the 
general acceptance of the importance to neurotransmitter 
function of the neuromuscular junction and other “synap-
ses”. Perhaps this is because conceptually there is little need  
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for considerations on junctional signalling beyond a passing 
nod in the direction of membrane “contact sites”, “micro-
domains” and vague considerations on the passive transfer 
of ions between organelles, and, let’s face it, a lack of un-
derstanding of what defining, quantifiable characteristics a 
true nanojunction confers. A model was therefore proposed 
which describes the evidence in support of a “Pan-Junctional 
SR” which incorporates identified nanojunctions between the 
SR and the PM, mitochondria, lysosomes and the nucleus, 
each performing separate, but coordinated functions (van 
Breemen et al., 2013). The most abundant PM-SR junctions 
appear to selectively regulate luminal [Ca2+]SR, hyperpolari-
zation and relaxation, depolarization and vasomotion. These 
aside, mitochondria-SR junctions regulate mitochondrial en-
ergy metabolism, lipid transport, apoptosis and SR Ca2+ 
loading (Rowland and Voeltz, 2012) and lysosome-SR 
junctions underpin evoked calcium-induced calcium release 
(CICR) from the S/ER which may in turn modulate, for 
example, contraction, autophagy and cholesterol metabo-
lism (Fameli et al., 2014; Zhu et al., 2010). 

Due to the fact that their size alone renders nanojunctions 
beyond the resolution of current live cell experimentation, 
their importance to the coordination of ion exchange was 
first truly visualised by 3-D models of Ca2+ flux across the 
PM-SR junction of smooth muscles. These models incorpo-
rated dimensionally realistic intracellular architecture, 
transporter kinetics and density, and outcomes suggested 
that increases of one single Ca2+ ion may raise the local 
concentration from nanomolar to micromolar; i.e., consid-
erations on bulk concentration may become irrelevant. De-
spite the fact that these models only accounted for the sto-
chastic element of diffusion, they also highlighted that the 
functional integrity of PM-SR junctions relies heavily on 
the close apposition of the two membranes, since various 
interrogations of these models demonstrated that a separa-
tion of less than 50 nm adequately provided for compart-
mentalised Ca2+ signalling, and that junctional integrity was 
lost when the separation of PM and the junctional SR was 
raised above 50 nm (Fameli et al., 2007). These studies 
apart, it could be argued that there is perhaps a lack of addi-
tional defining and quantifiable characteristics to extrapo-
late this argument across the cell. However, we would 
counter this position by stating that our studies on pulmo-
nary arterial smooth muscle have provided quantitative evi-
dence in support of a requirement for junctional signalling 
beyond that originally envisaged at the superficial buffer 
barrier created by PM-SR nanojunctions. In order to devel-
op this hypothesis further, we will therefore focus on the 
putative cellular nanojunctions of pulmonary arterial myo-
cytes, with reference to other cell types for comparison. 

PULMONARY ARTERY DILATION MAY BE 
MEDIATED BY CADPR-DEPENDENT 
ACTIVATION OF RYANODINE RECEPTORS 

Our journey towards a realisation of the importance of  

nanojunctions began with the simple assessment of changes 
in cytoplasmic Ca2+ concentration upon intracellular dialy-
sis of cADPR from a patch-pipette. High concentrations of 
cADPR (100 μmol L−1) induced global increases in intra-
cellular Ca2+ concentration (Evans, unpublished). However, 
relatively low concentrations (20 μmol L−1) only increased 
cytoplasmic Ca2+ concentration at the perimeter of the cell 
and elicited a concomitant membrane hyperpolarisation 
(Boittin et al., 2003). The hyperpolarisation was reversed by 
the highly selective BKCa channel antagonist iberiotoxin, by 
chelating intracellular Ca2+ with BAPTA, by selective block 
of RyRs with ryanodine and by “depletion” of SR stores by 
blocking SERCA with cyclopiazonic acid. Most importantly, 
hyperpolarisation by cADPR was blocked by two different 
cADPR antagonists. Given that cADPR synthesis had been 
shown to be up-regulated in a cAMP- and PKA-dependent 
manner in cardiac muscle (Higashida et al., 1999), it seemed 
likely that cADPR could mediate hyperpolarisation by ade-
nylyl cyclase coupled receptors, such as  β-adrenoceptors. 
Consistent with this proposal and previous studies on 
smooth muscle from a variety of tissues (for review see 
(Jaggar et al., 2000)) we found that isoprenaline and cAMP 
induced hyperpolarisation in isolated pulmonary arterial 
myocytes, and demonstrated that in each case hyperpolari-
sation exhibited similar pharmacology to hyperpolarisation 
by cADPR (Boittin et al., 2003). Strikingly, however, the 
selective PKA antagonist H89 blocked hyperpolarisation by 
both isoprenaline and cAMP, but was without effect on  
hyperpolarisation by cADPR. It would appear, therefore, 
that cADPR is a downstream element in this signalling  
cascade. Further support for this proposal was derived from 
studies on isolated pulmonary artery rings without endothe-
lium; vasodilation evoked in response to β-adrenoceptor 
activation by isoprenaline was inhibited (~50%) by blocking 
cADPR with the membrane permeable antagonist 
8-bromo-cADPR, RyRs with ryanodine and, consistent with 
the hyperpolarization, by blocking SERCA pumps by 
pre-incubation with cyclopiazonic acid (Figure 1). We con-
cluded that isoprenaline-induced vasodilation of pulmonary 
arteries was, in part, evoked by cADPR-dependent activa-
tion of RyRs on a cyclopiazonic acid-sensitive SR store,  

 

 

Figure 1  Cyclic ADP-ribose mediates vasodilation by releasing calcium 
from a cyclopiazonic acid-sensitive sarcoplasmic reticulum store. Vasodi-
lation by isoprenaline (100 nmol L−1) of a pulmonary artery ring, without 
endothelium, following preconstriction with prostaglandin-F2α (PGF2α, 
50 μmol L−1) and the effect of (left hand panel) 8-bromo-cADPR (300 
μmol L−1) and (right hand panel) preincubation (20 min) with cyclopia-
zonic acid (CPA, 10 μmol L−1).  
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and the subsequent activation of BKCa upon the mobilisation 
of Ca2+ from this store (Boittin et al., 2003). This seemed 
quite consistent with the view that activation of BKCa chan-
nels resulted from the induction of highly localised (i.e. 
non-propagating) cADPR-dependent Ca2+ sparks. In short, 
at first sight outcomes did not appear to require considera-
tions on junctional coupling between the PM and the SR. 
Our position was, however, altered by observations in  
relation to pulmonary artery constriction in response to  
hypoxia. 

REGULATION BY HYPOXIA OF CALCIUM 
MOBILISATION FROM SARCOPLASMIC 
RETICULUM IN PULMONARY ARTERIAL 
SMOOTH MUSCLE 

Before we can elaborate further we must describe the 
mechanisms that underpin hypoxic pulmonary vasocon-
striction (HPV), the defining characteristic by which pul-
monary arteries contribute to ventilation-perfusion matching 
at the lung; systemic arteries dilate in response to hypoxia.  

In isolated pulmonary arteries, HPV is biphasic when 
induced by switching from normoxic to hypoxic gas mix-
tures (Figure 2), an initial transient constriction (Phase 1) 
being followed by a slow tonic constriction (Phase 2)  
(Dipp et al., 2001; Robertson et al., 1995). Both phases of 
constriction are superimposed upon each other, i.e., they are 
discrete events that are initiated immediately upon exposure 
to hypoxia. The initial transient constriction peaks within 
5–10 min of the hypoxic challenge, whilst the underlying, 
tonic constriction peaks after 30–40 min. When the endo-
thelium is removed the gradual amplification of Phase 2, 
which is driven by the release of an endothelium-derived 
vasoconstrictor, is not observed and the Phase 1 constriction 
now declines to a maintained plateau (Figure 2) (Dipp et al., 
2001). Continued smooth muscle SR Ca2+ release via RyRs 
is required for both the induction (Phases 1 and 2) and 
maintenance (Phase 2) of HPV in isolated pulmonary arter-
ies both with and without endothelium (Dipp et al., 2001). 
This is evident from the fact that: (i) HPV is abolished fol-
lowing block of SR Ca2+ release via RyRs, whilst con-
striction in response to membrane depolarisation (80 mmol L−1 
K+) and consequent voltage-gated Ca2+ influx remains un-
affected; (ii) HPV persists after removal of extracellular 
Ca2+, despite the fact that constriction induced by depolari-
sation is abolished. Maintained constriction of pulmonary 
artery rings is, however, attenuated by up to 50% in Ca2+ 
free medium (Evans et al., 2005a), consistent with the view 
that HPV is supported by consequent activation of store- 
depletion activated Ca2+ entry (Weigand et al., 2005). 
Clearly, therefore, HPV within an intact artery is triggered 
by the mobilization during hypoxia of SR Ca2+ stores via 
RyRs and in manner determined by mechanisms intrinsic to 
pulmonary arterial myocytes. However experimental out- 

 

Figure 2  Hypoxic pulmonary vasoconstriction is mediated by intracellu-
lar calcium release in pulmonary arterial smooth muscles. A(i), record 
indicating Phase 1 and Phase 2 of the response of an intact pulmonary 
artery ring to hypoxia, with the three identified components of HPV: 
cADPR-independent SR calcium release (black) cADPR-dependent SR 
calcium release (grey) and endothelium-dependent constriction (white). 
A(ii), constriction by hypoxia of a pulmonary artery ring without endothe-
lium. B(i), constriction by hypoxia of an intact pulmonary artery ring in the 
absence of extracellular calcium. B(ii), constriction by hypoxia of a pul-
monary artery ring without endothelium in the absence of extracellular 
calcium.  

comes revealed a picture that was yet more complex. 
The first truly unexpected observation was that cyclopi-

azonic acid blocked the Phase 1 constriction but had no  
effect on Phase 2 (Figure 3) (Dipp and Evans, 2001),  
despite the fact that both phases of HPV were entirely  
dependent on the mobilisation of Ca2+ from the SR. This 
presented us with a further paradox, however, given that our 
data already suggested that SR Ca2+ release via RyRs  
underpinned vasodilation consequent to β-adrenoceptor 
activation and also underpinned both phases of HPV (Dipp 
et al., 2001). More curious still, the effect on HPV of 
pre-incubating arteries with cyclopiazonic acid was pre-
cisely the reverse of outcomes following pre-incubation of 
arteries with 8-bromo-cADPR, which abolished Phase 2 of 
HPV without affecting Phase 1 (Figure 2) (Dipp and Evans, 
2001). At the time we concluded that Phase 1 might be me-
diated by the mobilization of an SR compartment served by 
a cyclopiazonic acid-sensitive SERCA that is inhibited by 
hypoxia due to a fall in ATP supply, i.e., a reduction in se-
questration by this pump might facilitate evoked SR Ca2+ 
release. To allow for this and a second phase of constriction 
driven by maintained cADPR-dependent SR Ca2+ release, 
we suggested that one would require the presence of a  
second, spatially segregated SR Ca2+ store that is served by 
a different, cyclopiazonic acid-insensitive SERCA pump 
(Dipp and Evans, 2001; Evans et al., 2005b).  

Although these findings provided our first evidence of 
functionally segregated SR stores and allowed for further 
interrogation of our anomalous findings, they presented us 
with a further paradox. Our data suggested that cADPR- 
dependent SR Ca2+ release via RyRs mediates both vasodi-
lation and vasoconstriction of pulmonary arteries, and in a  
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Figure 3  Pharmacologically distinct components of smooth muscle sar-
coplasmic reticulum calcium release underpin hypoxic pulmonary vaso-
constriction. Constriction by hypoxia (16–21 Torr) of a pulmonary artery 
ring: (A) with and (B) without endothelium following preincubation    
(20 min) with cyclopiazonic acid (10 μmol L−1); (C) with and (D) without 
endothelium following preincubation (20 min) with 8-bromo-cADPR  
(300 μmol L−1). 

stimulus-specific manner. We concluded that this could 
only be explained if β-adrenoceptor signalling targets 
PKA-dependent cADPR synthesis to RyRs of the “periph-
eral” SR that is in close apposition to BKCa channels in the 
plasma membrane (i.e., to PM-SR junctions), whilst 
cADPR-dependent vasoconstriction results from the activa-
tion of a discrete subpopulation of RyRs localized in the 
“central” SR. Clearly, our data suggested that these discrete 
SR compartments would have to be served by different 
SERCA pumps. More precisely, evidence pointed to the 
possibility that one peripheral SR compartment in close 
apposition to the plasma membrane would be served by a 
SERCA pump that is sensitive to cyclopiazonic acid and, by 
contrast, a second, central SR compartment might be in 
close apposition to the contractile apparatus and be served 
by a SERCA pump that is insensitive to cyclopiazonic acid 
(Boittin et al., 2003; Evans et al., 2005b). This conclusion 
gained further support from our finding that both SR Ca2+ 
release in response to hypoxia (Dipp et al., 2001; Salvaterra 
and Goldman, 1993) and HPV are abolished following SR 
store depletion by block of SERCA with thapsigargin (Ev-
ans, unpublished). In complete agreement with our pro-
posal, previous studies on smooth muscle, the pulmonary 
vasculature included, have provided evidence of discrete SR 
compartments (Ethier et al., 2001; Golovina and Blaustein, 
1997; Iino et al., 1988; Janiak et al., 2001; Tribe et al., 
1994; Yamaguchi et al., 1995). Most significantly, some of 
these studies shared one common piece of evidence, that the 
SERCA pump antagonist cyclopiazonic acid selectively 
depleted one of at least two functionally segregated SR 
compartments. We therefore sought to determine whether or 
not multiple SERCA were expressed in pulmonary arterial 
smooth muscle and, if so, their respective spatial distribu-
tion. 

SERCA2A AND SERCA2B SERVE DISCRETE 
SR COMPARTMENTS IN PULMONARY 
ARTERIAL SMOOTH MUSCLE 

In agreement with previous studies on vascular smooth 
muscle (Eggermont et al., 1990), we found that SERCA2a 
and SERCA2b are functionally expressed in pulmonary 
arterial smooth muscle. Most importantly we identified 
striking differences in the spatial organization of each of 
these pumps by visual and semi-quantitative analysis; the 
distribution by density of labelling for each SERCA isoform 
within the subplasmalemmal (within 1 μm of the plasma 
membrane) the perinuclear (within 1.5 μm of the nucleus) 
and the extraperinuclear (remainder of the cell) volumes 
(Clark et al., 2010). The vast majority of SERCA2b label-
ling, ~70%, lay within the subplasmalemmal region, with 
only ~8% and ~20% of labelling present in the extraperi-
nuclear and perinuclear regions, respectively (Figure 4). In 
marked contrast, SERCA2a labelling was almost entirely 
(~90%) restricted to the perinuclear region of pulmonary 
arterial smooth muscle cells (Figure 4). These data suggest, 
therefore, that native SERCA2b may be sensitive to  
cyclopiazonic acid and supply an SR compartment that sits 
proximal to the plasma membrane and underpins 
Ca2+-dependent vasodilation via adenylyl cyclase coupled 
receptors, while SERCA2a may supply the putative central 
SR compartment and represent a cyclopiazonic acid- 
insensitive, thapsigargin-sensitive SERCA that underpins 
pulmonary artery constriction by hypoxia.  

In this respect it was intriguing to note that SERCA2a 
and SERCA2b exhibit distinct kinetics. SERCA2b, which 
may serve PM-SR junctions, has a higher affinity for Ca2+ 
but lower Vmax than the more centrally located SERCA2a 
(Verboomen et al., 1992). SERCA2b may therefore be 
dominant under quiescent conditions and function to main-
tain low levels of cytoplasmic Ca2+ in the vicinity of the 
 

 

Figure 4  SERCA2a and SERCA2b are differentially distributed within 
isolated pulmonary arterial smooth muscle cells and may serve functionally 
segregated SR calcium stores. 3-D reconstruction of deconvolved Z-stacks 
of images showing the distribution of individual volumes of SERCA2b 
(left hand panel) and SERCA2a labelling (right hand panel) coloured to 
indicate distribution by defined regions of the cell; the perinuclear volume, 
extra-perinuclear volume and sub-plasmalemmal volume.  
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contractile apparatus. However, its low Vmax may lead to its 
saturation upon release of Ca2+ from the bulk SR during a 
phase of contraction. This would allow the cytoplasmic Ca2+ 
concentration to rise in the vicinity of the contractile appa-
ratus, until such time as vasodilation is promoted by ade-
nylyl cyclase coupled receptors that may: (i) increase the 
Vmax of SERCA2b by PKA-dependent phosphorylation and 
facilitate the removal of Ca2+ from the greater cytoplasm; 
(ii) trigger PKA-dependent Ca2+ release from the peripheral 
SR, leading to plasma membrane hyperpolarization and 
secondary facilitation of Ca2+ sequestration from the junc-
tional space between the SR and the plasma membrane via 
the Na+/Ca2+ exchanger and/or plasma membrane Ca2+ 
ATPase; importantly this has a physiological precedent in 
that it mirrors the relationship between uptake 1 and uptake 
2 at noradrenergic synapses, the relative affinity and Vmax of 
which determines the concentration-dependent selection of 
pre- and post-junctional catecholamine uptake by these 
transporters. 

These findings began to square the circle when taken to-
gether with our observation that RyR1 is primarily targeted 
to the subplasmalemmal region of the pulmonary arterial 
myocytes (Kinnear et al., 2008), because considerations on 
the kinetics of RyR1 regulation by Ca2+ were equally re-
vealing. RyR1 exhibits relatively little gain in Po (0–0.2) 
with increasing cytoplasmic Ca2+ concentration, and inacti-
vates within the μmol L−1 range with full inactivation 
achieved by 1 mmol L−1 cytoplasmic Ca2+; this may, in part, 
explain the low gain in Po for RyR1 in response to activa-
tion by Ca2+. Due to these facts RyR1 likely provides lim-
ited support for signal propagation by CICR (Yang et al., 
2001). When allied to the high affinity of SERCA2b for 
Ca2+ and their respective targeting to PM-SR junctions, the 
properties of pump and release channel may therefore aid 
the functional segregation of PM-SR junctions from the 
bulk cytoplasm. Furthermore it is now apparent that of the 
available RyRs, RyR1 is most sensitive to activation by 
cADPR (Ogunbayo et al., 2011); as investigations on vaso-
dilation consequent to β-adrenoceptor activation had pre-
dicted the RyR resident within PM-SR junctions might be.  

ARE PM-SR JUNCTIONS POLYMODAL?  

It is possible that PM-SR junction may, given the above, be 
polymodal. This is clear from the fact that the SR retains the 
capacity to not only empty when overloaded with Ca2+ 
(Nazer and van Breemen, 1998a) or signaled to do so by 
vasodilators (Boittin et al., 2003) but to reload its Ca2+ store 
once depleted. In short, in order to support continued Ca2+ 
release into the cytoplasm, the S/ER must be replenished by 
Ca2+ influx from the extracellular fluid, i.e., via store- 
depletion activated Ca2+ entry pathways (Ginsborg et al., 
1980a, b; Putney, 1986). Although we have not studied the 
mechanisms involved in any detail, our findings are entirely 
consistent with the view that HPV is supported, but not ini-

tiated or maintained, by such store-depletion-activated  
calcium entry in pulmonary arterial myocytes (Dipp et al., 
2001; Evans et al., 2005a).  

Refilling of the SR of smooth muscles is accomplished, 
in part, via PM-SR junctions, which facilitate Ca2+ flux 
from the extracellular space into the SR via SERCA during 
activating waves of SR Ca2+ release (Lee et al., 2001). As in 
all cell types, a variety of mechanisms support SR refilling 
during stimulated Ca2+ release. Receptor-operated cation 
channels, such as the transient receptor potential channel 
TRPC6, may deliver Na+ to the junctional nanospace in a 
manner that initiates Ca2+ entry via reverse mode Na+/Ca2+ 
exchangers (NCX) in the PM, and thus supply Ca2+ to 
SERCA on the adjacent, junctional SR membranes (Fameli 
et al., 2007, 2009; Poburko et al., 2007). SR reloading via 
SERCA may also be facilitated by Ca2+ influx through 
VGCCs (Takeda et al., 2011), TRPCs (Albert et al., 2009; 
Rosado et al., 2015; Shi et al., 2016), and the stromal inter-
action molecule (STIM)/Orai system (Berra-Romani et al., 
2008; Soboloff et al., 2012; Takahashi et al., 2007).  

All of these mechanisms appear to contribute to SR 
loading in pulmonary arterial myocytes (Leblanc et al., 
2015; Lu et al., 2008; Ogawa et al., 2012), although it 
should be noted that evidence suggests that discrete path-
ways of receptor-operated Ca2+ influx may be modulated by 
IP3 (Kato et al., 2013; Snetkov et al., 2006). That aside, the 
activation of both TRPCs (Weissmann et al., 2006) and 
STIM/Orai complexes (Lu et al., 2009; Ng et al., 2012) 
likely contributes to store-operated Ca2+ entry during HPV.  

HPV IS DETERMINED BY SR JUNCTIONAL 
COUPLING AT AN “INTRACELLULAR 
SYNAPSE”  

As mentioned previously the effects of a cADPR antagonist, 
8-bromo-cADPR, on HPV in isolated pulmonary artery 
rings were quite different from the effects of ryanodine and 
caffeine. In arteries with and without endothelium, 8- 
bromo-cADPR had no effect on Phase 1 of HPV. However, 
it abolished Phase 2 in the presence of the endothelium and 
blocked the maintained constriction observed in arteries 
without endothelium (Figure 3) (Dipp and Evans, 2001). 
Therefore, while cADPR-dependent SR Ca2+ release is  
required for the initiation and maintenance of Phase 2 of 
acute HPV in isolated pulmonary artery rings, cADPR is not 
required to support the majority of SR Ca2+ release during 
the Phase 1 constriction.  

Surprisingly, however, and against our expectation at the 
time, when arteries were pre-incubated with the cADPR 
antagonist 8-bromo-cADPR, Phase 2 of HPV was blocked 
in an all-or-none manner (Dipp and Evans, 2001). Briefly, 
following pre-incubation of isolated pulmonary arteries with 
1 μmol L−1 8-bromo-cADPR HPV remained unaltered 
(Figure 5), but pre-incubation with 3 μmol L−1 8-bromo-  
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Figure 5  8-bromo-cADPR blocks HPV in an all-or-none manner. Upper 
panels show that pre-incubating intact pulmonary arteries with 
8-bromo-cylic ADP-ribose, a cADPR antagonist, at (i) 1 μmol L−1 has no 
effect but produces all-or-none block of Phase 2 at (ii) 3 μmol L−1. By 
contrast, lower panel shows concentration-dependent reversal of    
maintained HPV by 8-bromo-cylic ADP-ribose in an artery without endo-
thelium. 

cADPR abolished the maintained constriction observed 
during Phase 2. This outcome is incompatible with the 
block by a competitive antagonist, such as 8-bromo- 
cADPR, of a simple process of “agonist-receptor” coupling.  

The aforementioned observations were all the more  
curious given that once initiated the maintained phase of 
constriction (in pulmonary arteries without endothelium) 
was reversed by 8-bromo-cADPR in a concentra-
tion-dependent manner and with complete block requiring a 
concentration of 100 μmol L−1 (Dipp and Evans, 2001), 
approaching 2 orders of magnitude higher than required for 
all-or-none block following pre-incubation with 8-bromo- 
cADPR (Figure 5). Such concentration-dependent reversal 
of maintained HPV is entirely consistent with the inhibition 
by a competitive antagonist of “agonist-receptor” coupling 
at a single population of receptors, quite unlike the 
all-or-none block observed following pre-incubation with 
8-bromo-cADPR.  

These findings are reminiscent of the block by 
α-bungarotoxin (or tubocurarine) of transmission at the 
neuromuscular junction, where inhibition of more than 45% 
of skeletal muscle nicotinic acetylcholine receptors blocks 
neuromuscular transmission in an all-or-none manner (Katz, 
1967; Lee et al., 1977). By contrast, following induction of 
tetanus α-bungarotoxin, for example, is less effective and 
reverses muscle contraction in a concentration-dependent 
manner (Lee et al., 1977). We concluded that a similar 
“margin of safety” may also be built into HPV, and sug-
gested that the cADPR-dependent component of HPV may 
be initiated in an all-or-none manner. In essence, we were 
considering the possible existence of “junctional RyRs” that 
could confer all-or-none block of HPV upon pre-incubation 
with 8-bromo-cADPR, by blocking “activation by cADPR 
of a certain proportion of RyRs”, or by “cADPR-dependent 

Ca2+ mobilisation from a subpopulation of RyRs” that are 
pivotal to the initiation of maintained HPV (Dipp and 
Evans, 2001; Evans et al., 2005b). All things considered, 
our view was that HPV was, in part, determined by the ini-
tiation of a Ca2+ signal within an intracellular junction of the 
SR.  

This proposal offers greater complexity than one might 
imagine, given that RyR subtypes 1, 2 and 3 are highly 
co-expressed in smooth muscles (Herrmann-Frank et al., 
1991; Neylon et al., 1995). Not least because all three RyR 
subtypes can be expressed in a cADPR-sensitive form and 
each may exhibit different sensitivities to both Ca2+ and 
cADPR. In short, the RyR subtype targeted by a given Ca2+ 
signal could affect markedly the characteristics of any sub-
sequent amplification process. 

NAADP INDUCES GLOBAL Ca2+ WAVES AND 
SMOOTH MUSCLE CONTRACTION VIA 
LYSOSOME-SR JUNCTIONS 

The junctional complex via which HPV is initiated may 
have been revealed during subsequent studies on Ca2+ mo-
bilization by nicotinic acid adenine dinucleotide phosphate 
(NAADP). Importantly, these studies suggested that 
NAADP initiates global Ca2+ waves in an all-or-none man-
ner in pulmonary arterial myocytes, and does so via a 
two-pool system (Boittin et al., 2002) that incorporates 
junctional complexes formed between lysosomes and jux-
taposed extensions of the SR. 

That NAADP may selectively elicit Ca2+ signals from 
lysosome-related Ca2+ stores in pulmonary arterial myo-
cytes is supported by the fact that selective depletion of 
acidic Ca2+ stores by bafilomycin A1, which blocks the 
vacuolar H+ ATPase, abolishes NAADP-dependent Ca2+ 
signalling without effect on SR Ca2+ release via either RyRs 
or IP3Rs (Boittin et al., 2002). We subsequently provided 
evidence, in a variety of cell types, that NAADP-dependent 
Ca2+ signals are supported by endolysosome targeted TPCs 
(TPCN1-3, gene name) (Brailoiu et al., 2009, 2010; Cai and 
Patel, 2010; Calcraft et al., 2009; Ruas et al., 2010; Zhu et al., 
2010; Zong et al., 2009); TPC1 was first described by Ishi-
bashi and co-workers although no functional role was iden-
tified (Ishibashi et al., 2000). It should be noted, however, 
that the role of TPCs in endolysosomal Ca2+ signalling  
remains controversial, on the grounds of ion selectivity and 
the capacity for TPC channel gating by the Ca2+ mobilizing 
messenger NAADP (Jha et al., 2014; Morgan and Galione, 
2014; Pitt et al., 2010; Ruas et al., 2015; Schieder et al., 
2010; Wang et al., 2012). Nevertheless, substantial evidence 
suggests that NAADP may trigger intracellular Ca2+ release 
from acidic stores in a manner that may be supported by all 
three subtypes of vertebrate TPCs. Of these, only the lyso-
some targeted TPC2 or TPC3 confer the level of L-S/ER 
coupling necessary for subsequent amplification of Ca2+  
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bursts from acidic stores by CICR from the S/ER 
(Ogunbayo et al., 2015b), and TPCN3 is absent in primates 
(including humans) and some rodents (e.g. mouse, rat) 
(Calcraft et al., 2009). Our preliminary observations on 
pulmonary arterial myocytes are consistent with this view, 
in that NAADP-evoked global Ca2+ waves are abolished in 
myocytes from Tpcn2 knockout mice (Ogunbayo et al., 
2015a). 

In the context of the present article, however, it is per-
haps most significant that depletion of SR Ca2+ stores by 
inhibition of the SERCA pump with thapsigargin (not 
shown) or block of RyRs with ryanodine (Figure 6),  
revealed spatially restricted bursts of Ca2+ release in  
response to NAADP that failed to propagate away from 
their point of initiation in the absence of either SR stores 
replete in Ca2+ or functional RyRs (Boittin et al., 2002; 
Kinnear et al., 2004). In short, NAADP initiates global Ca2+ 
waves in an all-or-none manner by mobilising acidic, lyso-
some-related Ca2+ stores that subsequently evoke 
Ca2+-induced Ca2+ release (CICR) from the SR via RyRs 
(Kinnear et al., 2004). NAADP-induced Ca2+ bursts must 
therefore breach a given threshold in order to elicit a global 
Ca2+ wave by CICR via RyRs on the SR, and in a manner 
reminiscent of excitation-contraction coupling at the neu-
romuscular junction.  

Intriguingly, intracellular dialysis of IP3 evoked regener-  
 

 

Figure 6  NAADP triggers Ca2+ signals via lysosome-related stores in a 
manner that leads to subsequent Ca2+-induced Ca2+ release from the sarco-
plasmic reticulum via ryanodine receptors in isolated pulmonary arterial 
myocytes. Upper panels show a series of pseudocolour images of the 
Fura-2 fluorescence ratio (F340/F380) recorded in a pulmonary artery 
smooth muscle cell during intracellular dialysis of 10 nmol L−1 NAADP, 
and the Fura-2 fluorescence ratio against time. Lower panels show a series 
of pseudocolour images and the F340/F380 against time, obtained during 
the intracellular dialysis of 10 nmol L−1 NAADP after pre-incubation (20 
min) of cells with 20 μmol L−1 ryanodine. Note that in the absence of func-
tional RyRs, spatially restricted “Ca2+ bursts” are triggered without initia-
tion of a global Ca2+ wave. 

ative waves that remained unaffected following depletion of 
acidic stores with bafilomycin or block of RyRs with 
ryanodine. Moreover the IP3- but not NAADP-evoked Ca2+ 
transients were blocked by the IP3R antagonist xestospongin 
C (Boittin et al., 2002). This suggests that in pulmonary 
arterial myocytes lysosomes couple to the SR by CICR via 
RyRs but not IP3Rs, i.e., each may be targeted to different 
regions of the SR. Indirect support for this view has been 
provided by the findings of others (Janiak et al., 2001; 
Subedi et al., 2014). 

LYSOSOME-SARCOPLASMIC RETICULUM 
JUNCTIONS FORM A TRIGGER ZONE FOR 
CALCIUM SIGNALLING BY NAADP 

Using LysoTracker Red as a fluorescent label for acidic 
organelles in acutely isolated pulmonary arterial myocytes, 
we demonstrated that lysosomes form tight perinuclear 
clusters in a manner consistent with the spatially restricted 
nature of Ca2+ bursts triggered by NAADP. Importantly, 
lysosomal clusters were closely associated with a subpopu-
lation of RyRs labelled with Bodipy-Ryanodine (Figure 7) 
and were separated from these RyRs by a narrow junction, 
that was well beyond the resolution of deconvolution mi-
croscopy (0.2 μm) (Kinnear et al., 2004). We proposed, 
therefore, that lysosomal clusters and RyRs form a highly 
organised “trigger zone”, or intracellular synapse, for Ca2+ 
signalling by NAADP. The presence of this trigger zone 
may explain, in part, why Ca2+ bursts by NAADP induce 
global Ca2+ signals in an all-or-none manner by CICR from 
the SR via RyRs. This tight coupling of lysosomal Ca2+ 
stores to a subpopulation of RyRs could also serve to pro-
vide the aforementioned “margin of safety” with respect to 
the initiation of HPV, should lysosome-related Ca2+ release 
play a role, and confer all-or-none block of HPV by 
8-bromo-cADPR due to consequent increases in the thresh-
old for CICR.  

We have recently characterised L-SR junctions of rat 
pulmonary arterial myocytes in greater detail using standard 
(2D) transmission electron microscopy, and found them to  

 

 

Figure 7  Lysosomes co-localize with ryanodine receptors to form a 
trigger zone for calcium signalling in response to NAADP. Left hand panel, 
3-D reconstruction of a deconvolved Z-stack of images from a pulmonary 
artery smooth muscle cell showing co-localization (yellow) of lysosomes 
labelled with LysoTracker Red (red) and ryanodine receptors (RyRs) la-
belled with Bodipy-Ryanodine (green). Right hand panels, show (from left 
to right) the distribution relative to the DAPI labelled nucleus of αIGP120, 
a lysosome-specific marker, and labelling for RyR3, RyR2 and RyR1.  
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be a regularly occurring features of these cells. The L-SR 
widths of pulmonary arterial myocytes, that is the distance 
between lysosomal and SR membranes, were ~16 nm and 
had a lateral extension of ~300 nm (Fameli et al., 2014). 
These L-SR junctions are therefore true nanojunctions and 
exhibit a junctional separation equivalent to the PM-SR 
junction and, once more, akin to that of the neuromuscular 
junction. Moreover, assessment of the 3D morphology of 
L-SR junctions by tomographic transmission electron mi-
croscopy showed that some SR segments actually branched 
out to form narrow cisternae, with a single extension of the 
SR capable of coupling with multiple organelles. Modeling 
of this junctional complex has provided strong mechanistic 
support for our proposals on Ca2+ signaling within L-SR 
junctions. Firstly, localized [Ca2+] transients due to junc-
tional Ca2+ release reach, without fail, values required to 
breach the threshold for CICR from junctional RyRs (see 
below). Perhaps most significantly, however, disruption of 
the nanojunctions decreases the maximum attainable junc-
tional [Ca2+] to values below those required for CICR via 
RyRs. Consistent with previous studies on the PM-SR junc-
tions, these analyses also predicted a 30–50 nm functional 
operating limit for the width of L-SR junctions, above 
which there is loss of junctional integrity and inadequate 
control of ion movements within the junctional space. In 
short, L-SR nanojunctions as reported appear necessary and 
sufficient for the generation of Ca2+ bursts and their subse-
quent amplification into propagating, global Ca2+ waves 
(Fameli et al., 2014).  

LYSOSOMES CO-LOCALIZE WITH RYR 
SUBTYPE 3 TO FORM A TRIGGER ZONE FOR 
CALCIUM SIGNALLING BY NAADP IN 
PULMONARY ARTERIAL SMOOTH MUSCLE 

Given that our findings suggested that a subpopulation of 
RyRs within a junctional complex might underpin HPV and 
Ca2+ signalling via L-SR junctions, we sought to determine 
whether or not lysosomes selectively couple to one of the 
three RyR subtypes expressed in arterial smooth muscle, 
namely RyR1, RyR2, or RyR3 (Kinnear et al., 2008). As 
before, the distribution of labelling for a given protein by 
density was determined for each of three defined regions of 
the cell relative to the nucleus (defined by DAPI labelling), 
namely the perinuclear, the sub-plasmalemmal and the ex-
tra-perinuclear region. The density of labelling for a specific 
lysosome marker (αlgp120) was ~2 fold greater in the peri-
nuclear than observed within the extra-perinuclear region 
and ~4-fold greater than was observed in the sub-        
plasmalemmal region of cells, with dense clusters of label-
ling evident in the perinuclear region compared to a more 
diffuse distribution of labelling outside this region. In 
common with the distribution of lysosomes, RyR3 labelling 
was concentrated within the perinuclear region of the cell 

where it was ~4 and ~14-fold greater than that in the  
extra-perinuclear and sub-plasmalemmal regions, respec-
tively. Furthermore, the density of RyR3 labelling within 
the perinuclear region was ~2-fold higher than that for  
either RyR1 or RyR2.  

The density of colocalization between lysosomes and 
each RyR subtype within the perinuclear region of the cell 
revealed that RyR3 colocalized with ~41% of the total 
volume of lysosome labelling, with the density of colocali-
zation being ~4- and ~60-fold greater than that observed in 
the extra-perinuclear or sub-plasmalemmal regions, respec-
tively. In marked contrast, labelling for RyR2 and RyR1 
colocalized with only 13% and 14%, respectively, of the 
total volume of lysosome labelling within the perinuclear 
region and their respective density of colocalization was 
approximately 2-fold lower than that for RyR3. Further-
more, the mean volume of colocalization between RyR3 
and lysosomes was ~2 fold greater than that for either RyR1 
or RyR2. We concluded, therefore, that lysosomal clusters 
preferentially colocalize with RyR3 in the perinuclear  
region of the cell to from a trigger zone for Ca2+ signalling 
at L-SR junctions.   

WHY MIGHT RYR3 BE TARGETED TO 
LYSOSOME-SR JUNCTIONS? 

A determining factor in this respect could be the relative 
sensitivity of each RyR subtype to CICR, the maximum 
gain in response to Ca2+ and the relative sensitivity of each 
receptor subtype to inactivation by Ca2+ (Chen et al., 1997; 
Li and Chen, 2001). The threshold for activation of RyR1, 
RyR2 and RyR3 is similar, with channel activation at cyto-
plasmic Ca2+ concentrations >100 nmol L−1. However,  
estimates of the EC50 are different, with half maximal acti-
vation at >250 nmol L−1 for RyR2 and >400 nmol L−1 for 
RyR3. The higher EC50 exhibited by RyR3 could be signif-
icant, because this would provide for a higher “margin of 
safety” with respect to the all-or-none amplification of Ca2+ 
bursts from lysosomal Ca2+ stores by CICR via RyRs at the 
lysosome-SR junction, i.e., the probability of false events 
being initiated would be lower for RyR3 than for RyR2.  
For the provision of such a margin of safety by RyR3, but 
not RyR2, our simulations estimate that half maximal SR 
Ca2+ release via RyR3 would need to occur at an L-SR 
junctional Ca2+ concentration of ~10 μmol L−1 (Fameli  
et al., 2014). 

Another factor that may be of significance is that whilst 
the mean open time versus cytoplasmic Ca2+ concentration 
for RyR2 and RyR3 are comparable and increase approxi-
mately 10-fold over their activation range, the mean open 
time for RyR1 is much lower and increases only 2-fold over 
its activation range. Furthermore, comparison of the Po 
versus cytoplasmic Ca2+ concentration curves shows that 
RyR3 (0–1) exhibits a higher gain in Po than does RyR2 
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(0–0.9), whilst RyR1 (0–0.2) exhibits relatively little gain in 
Po with increasing cytoplasmic Ca2+ concentration (Chen et al., 
1997; Li and Chen, 2001). Therefore, once the threshold for 
activation is breached RyR3 would offer greater amplifica-
tion of Ca2+ bursts from lysosomal Ca2+ stores than would 
RyR2, whilst amplification via RyR1 would be marginal 
(see also (Manunta et al., 2000; Yang et al., 2001)). There is 
also marked variation in the relative sensitivity of each RyR 
subtype to inactivation by Ca2+. RyR3 exhibits the lowest 
sensitivity to inactivation by Ca2+ with an IC50 of 3 mmol L−1 
whilst that for RyR2 is 2 mmol L−1; in each case channel 
activity may still be observed at concentrations >10 mmol L−1 
(Chen et al., 1997; Li and Chen, 2001). In marked contrast, 
RyR1 inactivation occurs within the μmol L−1 range and full 
inactivation is achieved by 1 mmol L−1 Ca2+. Its sensitivity 
to inactivation by Ca2+ would therefore render RyR1  
unsuitable for a role in the amplification of Ca2+ bursts at 
lysosome-SR junctions because the local Ca2+ concentration 
may exceed the threshold for RyR1 inactivation. Therefore, 
the functional properties of RyR3 make it best suited to a 
role in the amplification of Ca2+ bursts at lysosome-SR 
junctions.  

HOW MAY Ca2+ SIGNALS PROPAGATE AWAY 
FROM LYSOSOME-SR JUNCTIONS TO THE 
WIDER CELL IF RYR3 IS TARGETED TO THE 
PERINUCLEAR REGION OF CELLS? 

Significantly, the density of RyR3 labelling declines mark-
edly (between 4-and 14-fold by region) outside of the peri-
nuclear region of the cell (Kinnear et al., 2008). It seems 
unlikely, therefore, that RyR3 functions to carry a propa-
gating Ca2+ wave far beyond the point of initiation of CICR 
within the proposed trigger zone for Ca2+ signalling via 
L-SR junctions. Given this finding it may be of significance 
that the density of labelling for RyR2 increases markedly in 
the extra-perinuclear region when compared to the peri-
nuclear region and exhibits a ~3-fold greater density of  
labelling within this region than observed for either RyR3 
or RyR1. This suggests that RyR2, but not RyR1, may func-
tion to receive Ca2+ from RyR3 at the interface of the lyso-
some-SR junction and thereby allow for further propagation 
of the Ca2+ signal via CICR. Such a role would be supported 
by the lower EC50 for CICR via RyR2, which would insure 
that once initiated a propagating Ca2+ wave would be less 
prone to failure. Furthermore, relative to RyR1, its greater 
intrinsic gain and lower sensitivity to inactivation by Ca2+ 
would render RyR2 most suitable to a role in the wider 
propagation of a global Ca2+ wave.  

If clusters of RyR3 do indeed sit within the lysosome-SR 
junction and an array of RyR2 carries propagating Ca2+ 
signals away from this junction to trigger HPV, pre-    
incubation of pulmonary arteries with 8-bromo-cADPR 
could block HPV in an all-or-none manner by increasing the 

threshold for CICR via RyR3 and/or RyR2. Furthermore, 
once initiated, if regenerative, propagating Ca2+ waves via 
RyR2 are maintained by an increase in cADPR accumula-
tion in the absence of further Ca2+ release from lysosome- 
related stores, 8-bromo-cADPR could reverse associated 
pulmonary artery constriction in a concentration-dependent 
manner. In this respect it is important to note that Ca2+ may 
also sensitise RyRs to activation by cADPR (Panfoli et al., 
1999). The combinatorial effects of Ca2+ and cADPR are 
therefore of fundamental importance (Morgan and Galione, 
2008), not least with regard to the threshold for activation of 
RyRs by either agent. Moreover the threshold for CICR via 
RyRs may also be modulated by the luminal Ca2+ concen-
tration of the SR (Beard et al., 2002; Ching et al., 2000; 
Gilchrist et al., 1992; Gyorke and Gyorke, 1998; Tripathy 
and Meissner, 1996), which could in turn be primed by Ca2+ 
taken up via SERCA2a during lysosomal Ca2+ bursts that 
fail to breach the threshold for CICR from the SR.  

At this point it may be important to note that even though 
the Ca2+ signalling domain for contraction may be of a larg-
er scale, its distribution is far from homogeneous. Separate 
PM regions have been described for filament attachment 
and caveolae (Moore et al., 2004) and the density of myosin 
filaments appears to be less in the cell periphery than central 
myoplasm (Lee et al., 2002). In addition, the functional 
Ca2+-binding protein calmodulin is tethered to the myofila-
ments rather than free in solution (Wilson et al., 2002). 
Therefore, we cannot rule out the capacity for SR-     
myofilament coupling along the path of propagating Ca2+ 
waves, with a path length between the SR membrane pairs 
and calmodulin being on the nanoscale. 

IS THERE A FUNCTIONAL REFERENCE 
POINT FOR THE TWO PHASES OF SR 
CALCIUM RELEASE DURING HYPOXIA? 

Given that vasodilation in response to activation of adenylyl 
cyclase coupled receptors and Phase 1 of HPV are inhibited 
by cyclopiazonic acid, they likely utilise a common SR 
store. It is possible, therefore, that SR Ca2+ release by  
hypoxia serves two purposes. Hypoxia may primarily trig-
ger constriction by cADPR-dependent Ca2+ release from a 
central SR compartment(s) that is in close apposition to the 
contractile apparatus and served by a cyclopiazonic  
acid-insensitive SERCA pump (SERCA2a). A secondary 
action of hypoxia may be to deplete a peripheral SR com-
partments, by inhibition of a cyclopiazonic acid-sensitive 
SERCA pump (SERCA2b), that are in close apposition to 
the plasma membrane and which normally mediate vasodi-
lation by releasing Ca2+ via RyR1 within PM-SR junctions 
in order to trigger membrane hyperpolarization and thus 
facilitate Ca2+ sequestration via plasma membrane Ca2+ 
ATPases and forward mode activity of Na+/Ca2+ exchang-
ers. This might explain why pulmonary vasodilation by  
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β-adrenoceptor activation is abolished by hypoxia (Mc- 
Intyre et al., 1995) and why HPV is enhanced by cyclopia-
zonic acid (Morio and McMurtry, 2002) but abolished by 
thapsigargin (Evans unpublished). In this respect it is also 
intriguing to note that in pulmonary arterial myocytes from 
patients with pulmonary arterial hypertension a sustained 
rise in cAMP increases store-operated Ca2+ entry via a 
PKA-dependent pathway, but inhibits store-operated cal-
cium entry in pulmonary arterial myocytes from normoten-
sive patients (Zhang et al., 2007). When considered togeth-
er, these data point to a pathological swing in the balance of 
support for store-emptying towards store-refilling at the 
PM-SR junctions. Consistent with this view, it has been 
proposed that the progression of hypoxic and idiopathic 
pulmonary hypertension may be facilitated by increases in 
expression of TRPC1, 3, 4 and 6, and thus enhanced 
store-operated Ca2+ entry (Liu et al., 2012; Yu et al., 2009; 
Zhang et al., 2007, 2014). This may also support the switch 
from contractile to the proliferative and migratory smooth 
muscle phenotypes that underpins disease progression 
(Fernandez et al., 2015).  

BEYOND THE CONTRACTILE DOMAIN—DO 
NUCLEAR INVAGINATIONS PROVIDE A 
NANODOMAIN FOR THE MODULATION OF 
GENE EXPRESSION? 

The SR is also contiguous with the outer nuclear envelope 
(Lesh et al., 1998) and its tubular invaginations (Echevarria 
et al., 2003; Fricker et al., 1997; Gerasimenko et al., 1995). 
However, despite the pivotal role of SR Ca2+ release in  
excitation-transcription coupling and thus phenotypic mod-
ulation (Cartin et al., 2000; Gomez et al., 2002; Stevenson 
et al., 2001; Wamhoff et al., 2006), there have been few 
detailed investigations on nuclear Ca2+ signalling in native 
smooth muscles (Wray and Burdyga, 2010). The current 
consensus (Bootman et al., 2009; Queisser et al., 2011) is 
that the nuclear envelope and its invaginations provide the 
surface area necessary for direct entry of Ca2+ into the  
nucleus via nuclear pores, driven either by Ca2+ influx 
across the PM or by activation of RyRs (Marius et al., 2006) 
and IP3Rs (Avedanian et al., 2011; Cardenas et al., 2004; 
Gerasimenko et al., 1995; Hirose et al., 2008) resident in the 
deep, perinuclear S/ER. However, early investigations on a 
variety of cell types including arterial smooth muscle 
showed that the nuclear membrane restricts direct Ca2+ flux 
into the nucleus (Himpens et al., 1992a, b; Neylon et al., 
1990; Wamhoff et al., 2006; Waybill et al., 1991; Williams 
et al., 1985), raising the possibility that the nuclear mem-
brane independently regulates Ca2+ signalling. Our pilot 
studies on pulmonary arterial myocytes not only support 
this view, but have now provided evidence to suggest that 
RyR1 and a third subtype of SERCA pump, SERCA1, may 
be preferentially targeted to the outer nuclear membrane 

(Evans, 2013; Navarro-Dorado and Evans, 2015). Although 
the dimensions of nuclear invaginations vary markedly, 
their radii rarely exceed 200 nm and many are blind-ended. 
It is possible, therefore, that nuclear invaginations may in-
corporate unique pumps and transporters and thus provide 
nanodomains within which Ca2+ signals may be segregated, 
and thus contribute to stimulus-transcription coupling 
(Wamhoff et al., 2006).  

SUMMARY 

We should finish with a summary of the properties con-
ferred by the nanojunctions themselves, and do so in the 
knowledge that all nanojunctions presently defined create a 
cytoplasmic nanospace between each junctional membrane 
pair that is approximately 20 nm across, irrespective of 
whether we consider the PM-SR junction, L-SR junction, 
the nuclear invaginations or for that matter the Daddy of 
them all, the neuromuscular junction. Any curious individu-
al must now recognise the consistency of this argument, so 
why ~20 nm? This separation of junctional membranes  
ensures that Ca2+ transients within the junctional nanospaces 
are segregated from those in the bulk myoplasm that deter-
mines, in the case of arterial smooth muscle, contractile 
activity. Several factors contribute to the restriction of 
[Ca2+] transients to nanojunctions: (i) The geometry of the 
junctions, especially the distance between membranes, ap-
pears to control the retention of Ca2+ in the nanospace, as 
suggested by preliminary models (Fameli et al., 2007, 
2014); (ii) The relatively low diffusivity of (free, let alone 
buffered) cytoplasmic Ca2+ (Allbritton et al., 1992; 
Kushmerick and Podolsky, 1969), in combination with the 
restricted junctional geometry, favours Ca2+ buffering by 
nanojunctions; (iii) The kinetics of Ca2+ pumps in the junc-
tions is another important element, tightly linked to the pre-
vious two factors. For example, if, as predicted, SERCA2b 
is resident within PM-SR junctions of pulmonary arterial 
smooth muscle, its high affinity for Ca2+ (Verboomen et al., 
1992) may provide a barrier to Ca2+ flux between the PM 
and the myofilaments and vice versa (Clark et al., 2010); 
(iv) Protein complexes that span junctions likely provide 
physical obstacles to ion mobility in the junctions by in-
creasing path tortuosity (Devine et al., 1972; Poburko et al., 
2008).  

As discussed, the defined properties of a given nanojunc-
tion may allow pulmonary arterial myocytes and other cell 
types to coordinate the delivery of Ca2+ signals in a manner 
that allows for the selective induction of, for example: (i) 
vasoconstriction via L-SR junctions; (ii) vasodilation via 
PM-SR junctions; (iii) gene expression via nuclear invagi-
nations (Figure 8). In each case, however, the view pro-
posed is most likely an oversimplification of the Ca2+  
signalling apparatus available to the cell, a point which is 
articulated by the fact that PM-SR junctions may be poly-
modal (Boittin et al., 2003; Nazer and Van Breemen, 1998b; 
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Figure 8  Schematic diagram highlights putative nanojunctions that  
determine site- and function-specific calcium signals in pulmonary arterial 
smooth muscle cells. PM, plasma membrane. BKCa, large conductance 
calcium- and voltage-activated potassium current. NCX, sodium/calcium 
exchanger. SR, sarcoplasmic reticulum. RyR, Ryanodine receptor. SERCA, 
Sarco/endoplasmic reticulum calcium ATPase. ARC, ADP-ribosyl cylcase. 
PKA, protein kinase A. cADPR, cyclic adenosine diphosphate-ribose. 
MLCK, myosin light chain kinase. NP, nuclear pore. 

van Breemen et al., 1995). The precise configuration of 
junctional complexes may therefore be context dependent, 
and vary not only between cell types but also throughout the 
path of cell differentiation, during repair and aging. In short, 
we are likely at the dawn of a true appreciation of the im-
portance of nanojunctions and the complexity and versatili-
ty they afford cellular Ca2+ signals. 

Compliance and ethics  The author(s) declare that they have no conflict 
of interest. 

Acknowledgements  This work was supported by the British Heart 
Foundation (29885). 

Albert, A.P., Saleh, S.N., and Large, W.A. (2009). Identification of 
canonical transient receptor potential (TRPC) channel proteins in native 
vascular smooth muscle cells. Curr Med Chem 16, 1158–1165. 

Allbritton, N.L., Meyer, T., and Stryer, L. (1992). Range of messenger 
action of calcium ion and inositol 1,4,5-trisphosphate. Science 258, 
1812–1815. 

Avedanian, L., Jacques, D., and Bkaily, G. (2011). Presence of tubular and 
reticular structures in the nucleus of human vascular smooth muscle 
cells. J Mol Cell Cardiol 50, 175–186. 

Beard, N.A., Sakowska, M.M., Dulhunty, A.F., and Laver, D.R. (2002). 
Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor 
calcium release channels. Biophys J 82, 310–320. 

Berra-Romani, R., Mazzocco-Spezzia, A., Pulina, M.V., and Golovina, 

V.A. (2008). Ca2+ handling is altered when arterial myocytes progress 
from a contractile to a proliferative phenotype in culture. Am J Physiol 
295, C779–C790. 

Berridge, M.J. (2008). Smooth muscle cell calcium activation mechanisms. 
J Pphysiol 586, 5047–5061. 

Boittin, F.X., Dipp, M., Kinnear, N.P., Galione, A., and Evans, A.M. 
(2003). Vasodilation by the calcium-mobilizing messenger cyclic 
ADP-ribose. J Biol Chem 278, 9602–9608. 

Boittin, F.X., Galione, A., and Evans, A.M. (2002). Nicotinic acid adenine 
dinucleotide phosphate mediates Ca2+ signals and contraction in arterial 
smooth muscle via a two-pool mechanism. Circ Res 91, 1168–1175. 

Bootman, M.D., Fearnley, C., Smyrnias, I., MacDonald, F., and Roderick, 
H.L. (2009). An update on nuclear calcium signalling. J Cell Sci 122, 
2337–2350. 

Brailoiu, E., Churamani, D., Cai, X., Schrlau, M.G., Brailoiu, G.C., Gao, 
X., Hooper, R., Boulware, M.J., Dun, N.J., Marchant, J.S., and Patel., 
S. (2009). Essential requirement for two-pore channel 1 in NAADP- 
mediated calcium signaling. J Cell Biol 186, 201–209. 

Brailoiu, E., Hooper, R., Cai, X., Brailoiu, G.C., Keebler, M.V., Dun, N.J., 
Marchant, J.S., and Patel, S. (2010). An ancestral deuterostome family 
of two-pore channels mediates nicotinic acid adenine dinucleotide 
phosphate-dependent calcium release from acidic organelles. J Biol 
Chem 285, 2897–2901. 

Cai, X., and Patel, S. (2010). Degeneration of an intracellular ion channel 
in the primate lineage by relaxation of selective constraints. Mol Biol 
Evol 27, 2352–2359. 

Calcraft, P.J., Ruas, M., Pan, Z., Cheng, X., Arredouani, A., Hao, X., Tang, 
J., Rietdorf, K., Teboul, L., Chuang, K.T., Lin, P., Xiao, R., Wang, C., 
Zhu, Y., Lin, Y., Wyatt, C.N., Parrington, J.,Ma, J., Evans, A.M., 
Galione, A., and Zhu, M.X. (2009). NAADP mobilizes calcium from 
acidic organelles through two-pore channels. Nature 459, 596–600. 

Cardenas, C., Muller, M., Jaimovich, E., Perez, F., Buchuk, D., Quest, 
A.F., and Carrasco, M.A. (2004). Depolarization of skeletal muscle 
cells induces phosphorylation of cAMP response element binding 
protein via calcium and protein kinase Calpha. J Biol Chem 279, 
39122–39131. 

Cartin, L., Lounsbury, K.M., and Nelson, M.T. (2000). Coupling of Ca2+ to 
CREB activation and gene expression in intact cerebral arteries from 
mouse: roles of ryanodine receptors and voltage-dependent Ca2+ 
channels. Circ Res 86, 760–767. 

Chen, S.R., Li, X., Ebisawa, K., and Zhang, L. (1997). Functional 
characterization of the recombinant type 3 Ca2+ release channel 
(ryanodine receptor) expressed in HEK293 cells. J Biol Chem 272, 
24234–24246. 

Ching, L.L., Williams, A.J., and Sitsapesan, R. (2000). Evidence for Ca2+ 
activation and inactivation sites on the luminal side of the cardiac 
ryanodine receptor complex. Circ Res 87, 201–206. 

Churchill, G.C., Okada, Y., Thomas, J.M., Genazzani, A.A., Patel, S., and 
Galione, A. (2002). NAADP mobilizes Ca2+ from reserve granules, 
lysosome-related organelles, in sea urchin eggs. Cell 111, 703–708. 

Clark, J.H., Kinnear, N.P., Kalujnaiab, S., Cramb, G., Fleischer, S., 
Jeyakumar, L.H., Wuytack, F., and Evans, A.M. (2010). Identification 
of functionally segregated sarcoplasmic reticulum calcium stores in 
pulmonary arterial smooth muscle. J Biol Chem 285, 13542–13549.  

Del Castillo, J., and Katz, B. (1956). Localization of active spots within the 
neuromuscular junction of the frog. J Pphysiol 132, 630–649. 

Devine, C.E., Somlyo, A.V., and Somlyo, A.P. (1972). Sarcoplasmic 
reticulum and excitation-contraction coupling in mammalian smooth 
muscles. J Cell Biol 52, 690–718. 

Dipp, M., and Evans, A.M. (2001). Cyclic ADP-ribose is the primary 
trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. 
Circ Res 89, 77–83. 

Dipp, M., Nye, P.C., and Evans, A.M. (2001). Hypoxic release of calcium 
from the sarcoplasmic reticulum of pulmonary artery smooth muscle. 
Am J Physiol Lung Cell Mol Physiol 281, L318–L325. 

Echevarria, W., Leite, M.F., Guerra, M.T., Zipfel, W.R., and Nathanson, 
M.H. (2003). Regulation of calcium signals in the nucleus by a 
nucleoplasmic reticulum. Nat Cell Biol 5, 440–446. 

Eggermont, J.A., Wuytack, F., Verbist, J., and Casteels, R. (1990). 



 Evans, A.M., et al.   Sci China Life Sci   July (2016) Vol.59 No.7 13 

Expression of endoplasmic-reticulum Ca2+-pump isoforms and of 
phospholamban in pig smooth-muscle tissues. Biochem J 271, 
649–653. 

Ethier, M.F., Yamaguchi, H., and Madison, J.M. (2001). Effects of 
cyclopiazonic acid on cytosolic calcium in bovine airway smooth 
muscle cells. Am J Physiol Lung Cell Mol Physiol 281, L126–L133. 

Evans, A.M. (2013). From contraction to gene expression: function- 
specific calcium signals are delivered by the strategic positioning of 
calcium pumps and release channels within membrane-membrane 
nanojunctions of the sarcoplasmic reticulum. In Proceedings of Physiol 
Soc 37th Congress of IUPS (Birmingham, UK) SA402. 

Evans, A.M., Mustard, K.J., Wyatt, C.N., Peers, C., Dipp, M., Kumar, P., 
Kinnear, N.P., and Hardie, D.G. (2005a). Does AMP-activated protein 
kinase couple inhibition of mitochondrial oxidative phosphorylation by 
hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280, 
41504–41511. 

Evans, A.M., Wyatt, C.N., Kinnear, N.P., Clark, J.H., and Blanco, E.A. 
(2005b). Pyridine nucleotides and calcium signalling in arterial smooth 
muscle: from cell physiology to pharmacology. Pharmacol Ther 107, 
286–313. 

Fameli, N., Kuo, K.H., and van Breemen, C. (2009). A model for the 
generation of localized transient [Na+] elevations in vascular smooth 
muscle. Biochem Biophys Res Commun 389, 461–465. 

Fameli, N., Ogunbayo, O.A., van Breemen, C., and Evans, A.M. (2014). 
Cytoplasmic nanojunctions between lysosomes and sarcoplasmic 
reticulum are required for specific calcium signaling. F1000Res 3, 93. 

Fameli, N., van Breemen, C., and Kuo, K.H. (2007). A quantitative model 
for linking Na+/Ca2+ exchanger to SERCA during refilling of the 
sarcoplasmic reticulum to sustain [Ca2+] oscillations in vascular smooth 
muscle. Cell Calcium 42, 565–575. 

Fernandez, R.A., Wan, J., Song, S., Smith, K.A., Gu, Y., Tauseef, M., 
Tang, H., Makino, A., Mehta, D., and Yuan, J.X. (2015). Upregulated 
expression of STIM2, TRPC6, and Orai2 contributes to the transition of 
pulmonary arterial smooth muscle cells from a contractile to 
proliferative phenotype. Am J Physiol 308, C581–C593. 

Franzini-Armstrong, C. (1964). Fine structure of sarcoplasmic reticulum 
and tranverse tubular system in muscle fibers. Fed Proc 23, 887–895. 

Fricker, M., Hollinshead, M., White, N., and Vaux, D. (1997). Interphase 
nuclei of many mammalian cell types contain deep, dynamic, tubular 
membrane-bound invaginations of the nuclear envelope. J Cell Biol 
136, 531–544. 

Gabella, G. (1971). Caveolae intracellulares and sarcoplasmic reticulum in 
smooth muscle. J Cell Sci 8, 601–609. 

Gerasimenko, O.V., Gerasimenko, J.V., Tepikin, A.V., and Petersen, O.H. 
(1995). ATP-dependent accumulation and inositol trisphosphate- or 
cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. 
Cell 80, 439–444. 

Gilchrist, J.S., Belcastro, A.N., and Katz, S. (1992). Intraluminal Ca2+ 
dependence of Ca2+ and ryanodine-mediated regulation of skeletal 
muscle sarcoplasmic reticulum Ca2+ release. J Biol Chem 267, 
20850–20856. 

Ginsborg, B.L., House, C.R., and Mitchell, M.R. (1980a). A 
calcium-readmission response recorded from Nauphoeta salivary gland 
acinar cells. J Pphysiol 304, 437–447. 

Ginsborg, B.L., House, C.R., and Mitchell, M.R. (1980b). On the role of 
calcium in the electrical responses of cockroach salivary gland cells to 
dopamine. J Pphysiol 303, 325–335. 

Golovina, V.A., and Blaustein, M.P. (1997). Spatially and functionally 
distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science 
275, 1643–1648. 

Gomez, M.F., Stevenson, A.S., Bonev, A.D., Hill-Eubanks, D.C., and 
Nelson, M.T. (2002). Opposing actions of inositol 1,4,5-trisphosphate 
and ryanodine receptors on nuclear factor of activated T-cells 
regulation in smooth muscle. J Biol Chem 277, 37756–37764. 

Gyorke, I., and Gyorke, S. (1998). Regulation of the cardiac ryanodine 
receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. 
Biophys J 75, 2801–2810. 

Herrmann-Frank, A., Darling, E., and Meissner, G. (1991). Functional 

characterization of the Ca2+-gated Ca2+ release channel of vascular 
smooth muscle sarcoplasmic reticulum. Pflugers Arch 418, 353–359. 

Higashida, H., Egorova, A., Higashida, C., Zhong, Z.G., Yokoyama, S., 
Noda, M., and Zhang, J.S. (1999). Sympathetic potentiation of cyclic 
ADP-ribose formation in rat cardiac myocytes. J Biol Chem 274, 
33348–33354. 

Himpens, B., De Smedt, H., and Casteels, R. (1992a). Kinetics of 
nucleocytoplasmic Ca2+ transients in DDT1 MF-2 smooth muscle cells. 
Am J Physiol 263, C978–985. 

Himpens, B., De Smedt, H., Droogmans, G., and Casteels, R. (1992b). 
Differences in regulation between nuclear and cytoplasmic Ca2+ in 
cultured smooth muscle cells. Am J Physiol 263, C95–C105. 

Hirose, M., Stuyvers, B., Dun, W., Ter Keurs, H., and Boyden, P.A. 
(2008). Wide long lasting perinuclear Ca2+ release events generated by 
an interaction between ryanodine and IP3 receptors in canine Purkinje 
cells. J Mol Cell Cardiol 45, 176–184. 

Iino, M., Kobayashi, T., and Endo, M. (1988). Use of ryanodine for 
functional removal of the calcium store in smooth muscle cells of the 
guinea-pig. Biochem Biophys Res Commun 152, 417–422. 

Ishibashi, K., Suzuki, M., and Imai, M. (2000). Molecular cloning of a 
novel form (two-repeat) protein related to voltage-gated sodium and 
calcium channels. Biochem Biophys Res Commun 270, 370–376. 

Jaggar, J.H., Porter, V.A., Lederer, W.J., and Nelson, M.T. (2000). 
Calcium sparks in smooth muscle. Am J Physiol 278, C235–C256. 

Janiak, R., Wilson, S.M., Montague, S., and Hume, J.R. (2001). 
Heterogeneity of calcium stores and elementary release events in canine 
pulmonary arterial smooth muscle cells. Am J Physiol 280, C22–C33. 

Jha, A., Ahuja, M., Patel, S., Brailoiu, E., and Muallem, S. (2014). 
Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, 
NAADP, PI(3,5)P2 and multiple protein kinases. EMBO J 33, 
501–511. 

Kato, K., Okamura, K., Hatta, M., Morita, H., Kajioka, S., Naito, S., and 
Yamazaki, J. (2013). Involvement of IP3-receptor activation in 
endothelin-1-induced Ca2+ influx in rat pulmonary small artery. Eur J 
Pharmacol 720, 255–263. 

Katz, R.L. (1967). Neuromuscular effects of d-tubocurarine, edrophonium 
and neostigmine in man. Anesthesiology 28, 327–336. 

Kinnear, N.P., Boittin, F.X., Thomas, J.M., Galione, A., and Evans, A.M. 
(2004). Lysosome-sarcoplasmic reticulum junctions. A trigger zone for 
calcium signaling by nicotinic acid adenine dinucleotide phosphate and 
endothelin-1. J Biol Chem 279, 54319–54326. 

Kinnear, N.P., Wyatt, C.N., Clark, J.H., Calcraft, P.J., Fleischer, S., 
Jeyakumar, L.H., Nixon, G.F., and Evans, A.M. (2008). Lysosomes 
co-localize with ryanodine receptor subtype 3 to form a trigger zone for 
calcium signalling by NAADP in rat pulmonary arterial smooth muscle. 
Cell Calcium 44, 190–201. 

Kushmerick, M.J., and Podolsky, R.J. (1969). Ionic mobility in muscle 
cells. Science 166, 1297–1298. 

Leblanc, N., Forrest, A.S., Ayon, R.J., Wiwchar, M., Angermann, J.E., 
Pritchard, H.A., Singer, C.A., Valencik, M.L., Britton, F., and 
Greenwood, I.A. (2015). Molecular and functional significance of 
Ca2+-activated Cl− channels in pulmonary arterial smooth muscle. Pulm 
Circ 5, 244–268. 

Lee, C., Chen, D., and Katz, R.L. (1977). Characteristics of 
nondepolarizing neuromuscular block: (I) post-junctional block by 
alpha-bungarotoxin. Can Anaesth Soc J 24, 212–219. 

Lee, C.H., Poburko, D., Kuo, K.H., Seow, C.Y., and van Breemen, C. 
(2002). Ca2+ oscillations, gradients, and homeostasis in vascular smooth 
muscle. Am J Physiol Heart Circ Physiol 282, H1571–1583. 

Lee, C.H., Poburko, D., Sahota, P., Sandhu, J., Ruehlmann, D.O., and van 
Breemen, C. (2001). The mechanism of phenylephrine-mediated 
[Ca2+](i) oscillations underlying tonic contraction in the rabbit inferior 
vena cava. J Pphysiol 534, 641–650. 

Lee, H.C. (2004). Multiplicity of Ca2+ messengers and Ca2+ stores: a 
perspective from cyclic ADP-ribose and NAADP. Curr Mol Med 4, 
227–237. 

Lesh, R.E., Nixon, G.F., Fleischer, S., Airey, J.A., Somlyo, A.P., and 
Somlyo, A.V. (1998). Localization of ryanodine receptors in smooth 



14 Evans, A.M., et al.   Sci China Life Sci   July (2016) Vol.59 No.7 

muscle. Circ Res 82, 175–185. 
Li, P., and Chen, S.R. (2001). Molecular basis of Ca2+ activation of the 

mouse cardiac Ca2+ release channel (ryanodine receptor). J Gen Physiol 
118, 33–44. 

Liu, X.R., Zhang, M.F., Yang, N., Liu, Q., Wang, R.X., Cao, Y.N., Yang, 
X.R., Sham, J.S., and Lin, M.J. (2012). Enhanced store-operated Ca2+ 
entry and TRPC channel expression in pulmonary arteries of 
monocrotaline-induced pulmonary hypertensive rats. Am J Physiol 302, 
C77–87. 

Lu, W., Wang, J., Peng, G., Shimoda, L.A., and Sylvester, J.T. (2009). 
Knockdown of stromal interaction molecule 1 attenuates store-operated 
Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial 
smooth muscle. Am J Physiol Lung Cell Mol Physiol 297, L17–25. 

Lu, W., Wang, J., Shimoda, L.A., and Sylvester, J.T. (2008). Differences in 
STIM1 and TRPC expression in proximal and distal pulmonary arterial 
smooth muscle are associated with differences in Ca2+ responses to 
hypoxia. Am J Physiol Lung Cell Mol Physiol 295, L104–L113. 

Manunta, M., Rossi, D., Simeoni, I., Butelli, E., Romanin, C., Sorrentino, 
V., and Schindler, H. (2000). ATP-induced activation of expressed 
RyR3 at low free calcium. FEBS Lett 471, 256–260. 

Marius, P., Guerra, M.T., Nathanson, M.H., Ehrlich, B.E., and Leite, M.F. 
(2006). Calcium release from ryanodine receptors in the nucleoplasmic 
reticulum. Cell Calcium 39, 65–73. 

McIntyre, R.C., Jr., Banerjee, A., Hahn, A.R., Agrafojo, J., and Fullerton, 
D.A. (1995). Selective inhibition of cyclic adenosine 
monophosphate-mediated pulmonary vasodilation by acute hypoxia. 
Surgery 117, 314–318. 

Moore, E.D., Voigt, T., Kobayashi, Y.M., Isenberg, G., Fay, F.S., 
Gallitelli, M.F., and Franzini-Armstrong, C. (2004). Organization of 
Ca2+ release units in excitable smooth muscle of the guinea-pig urinary 
bladder. Biophys J 87, 1836–1847. 

Morgan, A.J., and Galione, A. (2008). Investigating cADPR and NAADP 
in intact and broken cell preparations. Methods 46, 194–203. 

Morgan, A.J., and Galione, A. (2014). Two-pore channels (TPCs): current 
controversies. Bioessays 36, 173–183. 

Morio, Y., and McMurtry, I.F. (2002). Ca2+ release from 
ryanodine-sensitive store contributes to mechanism of hypoxic 
vasoconstriction in rat lungs. J Appl Physiol 92, 527–534. 

Navarro-Dorado, J., and Evans, A.M. (2015). Nuclear invaginations 
demarcate cytoplasmic-nanotubes for integrative calcium signalling to 
the nucleus. FASEB J 29, Supplement 1, 728.6. 

Nazer, M.A., and van Breemen, C. (1998a). Functional linkage of Na+-Ca2+ 
exchange and sarcoplasmic reticulum Ca2+ release mediates Ca2+ 
cycling in vascular smooth muscle. Cell calcium 24, 275–283. 

Nazer, M.A., and Van Breemen, C. (1998b). A role for the sarcoplasmic 
reticulum in Ca2+ extrusion from rabbit inferior vena cava smooth 
muscle. Am J Physiol 274, H123–131. 

Neylon, C.B., Hoyland, J., Mason, W.T., and Irvine, R.F. (1990). Spatial 
dynamics of intracellular calcium in agonist-stimulated vascular smooth 
muscle cells. Am J Physiol 259, C675–686. 

Neylon, C.B., Richards, S.M., Larsen, M.A., Agrotis, A., and Bobik, A. 
(1995). Multiple types of ryanodine receptor/Ca2+ release channels are 
expressed in vascular smooth muscle. Biochem Biophys Res Commun 
215, 814–821. 

Ng, L.C., O’Neill, K.G., French, D., Airey, J.A., Singer, C.A., Tian, H., 
Shen, X.M., and Hume, J.R. (2012). TRPC1 and orai1 interact with 
STIM1 and mediate capacitative Ca2+ entry caused by acute hypoxia in 
mouse pulmonary arterial smooth muscle cells. Am J Physiol 303, 
C1156–1172. 

Ogawa, A., Firth, A.L., Smith, K.A., Maliakal, M.V., and Yuan, J.X. 
(2012). PDGF enhances store-operated Ca2+ entry by upregulating 
STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial 
smooth muscle cells. Am J Physiol 302, C405–411. 

Ogunbayo, O.A., Ma, J., Zhu, M.X., and Evans, A.M. (2015a). Lysosome- 
ER coupling supported by two pore channel 2 is required for Nicotinic 
acid adenine dinucleotide phosphate-induced global calcium waves in 
pulmonary arterial myocytes. Proc Physiol Soc 34, PC134. 

Ogunbayo, O.A., Zhu, Y., Rossi, D., Sorrentino, V., Ma, J., Zhu, M.X., and 
Evans, A.M. (2011). Cyclic adenosine diphosphate ribose activates 

ryanodine receptors, whereas NAADP activates two-pore domain 
channels. J Biol Chem 286, 9136–9140. 

Ogunbayo, O.A., Zhu, Y., Shen, B., Agbani, E., Li, J., Ma, J., Zhu, M.X., 
and Evans, A.M. (2015b). Organelle-specific subunit interactions of the 
vertebrate two-pore channel family. J Biol Chem 290, 1086–1095. 

Panfoli, I., Burlando, B., and Viarengo, A. (1999). Cyclic ADP-ribose- 
dependent Ca2+ release is modulated by free [Ca2+] in the scallop 
sarcoplasmic reticulum. Biochem Biophys Res Commun 257, 57–62. 

Pitt, S.J., Funnell, T.M., Sitsapesan, M., Venturi, E., Rietdorf, K., Ruas, 
M., Ganesan, A., Gosain, R., Churchill, G.C., Zhu, M.X., Parrington, J., 
Galione, A., and Sitsapesan, R. (2010). TPC2 is a novel NAADP- 
sensitive Ca2+ release channel, operating as a dual sensor of luminal pH 
and Ca2+. J Biol Chem 285, 35039–35046. 

Poburko, D., Fameli, N., Kuo, K.H., and van Breemen, C. (2008). Ca2+ 
signaling in smooth muscle: TRPC6, NCX and LNats in nanodomains. 
Channels (Austin) 2, 10–12. 

Poburko, D., Liao, C.H., Lemos, V.S., Lin, E., Maruyama, Y., Cole, W.C., 
and van Breemen, C. (2007). Transient receptor potential channel 
6-mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ 
exchanger-mediated Ca2+ entry in purinergically stimulated aorta 
smooth muscle cells. Circ Res 101, 1030–1038. 

Putney, J.W., Jr. (1986). A model for receptor-regulated calcium entry. 
Cell Calcium 7, 1–12. 

Queisser, G., Wiegert, S., and Bading, H. (2011). Structural dynamics of 
the cell nucleus: basis for morphology modulation of nuclear calcium 
signaling and gene transcription. Nucleus 2, 98–104. 

Ramesh, V., Sharma, V.K., Sheu, S.S., and Franzini-Armstrong, C. (1998). 
Structural proximity of mitochondria to calcium release units in rat 
ventricular myocardium may suggest a role in Ca2+ sequestration. Ann 
N Y Acad Sci 853, 341–344. 

Robertson, T.P., Aaronson, P.I., and Ward, J.P. (1995). Hypoxic 
vasoconstriction and intracellular Ca2+ in pulmonary arteries: evidence 
for PKC-independent Ca2+ sensitization. Am J Physiol 268, H301–307. 

Rosado, J.A., Diez, R., Smani, T., and Jardin, I. (2015). STIM and orai1 
variants in store-operated calcium entry. Front Pharmacol 6, 325. 

Rosenbluth, J. (1962). Subsurface cisterns and their relationship to the 
neuronal plasma membrane. J Cell Biol 13, 405–421. 

Rowland, A.A., and Voeltz, G.K. (2012). Endoplasmic reticulum- 
mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol 
13, 607–625. 

Ruas, M., Davis, L.C., Chen, C.C., Morgan, A.J., Chuang, K.T., Walseth, 
T.F., Grimm, C., Garnham, C., Powell, T., Platt, N., Platt, F.M., Biel, 
M., Wahl-Schott, C., Parrington, J., and Galione, A. (2015). Expression 
of Ca2+-permeable two-pore channels rescues NAADP signalling in 
TPC-deficient cells. EMBO J 34, 1743–1758. 

Ruas, M., Rietdorf, K., Arredouani, A., Davis, L.C., Lloyd-Evans, E., 
Koegel, H., Funnell, T.M., Morgan, A.J., Ward, J.A., Watanabe, K., 
Cheng, X., Churchill, G.C., Zhu, M.X., Platt, F.M., Wessel, G.M., 
Parrington, J., and Galione, A. (2010). Purified TPC isoforms form 
NAADP receptors with distinct roles for Ca2+ signaling and 
endolysosomal trafficking. Curr Biol 20, 703–709. 

Salvaterra, C.G., and Goldman, W.F. (1993). Acute hypoxia increases 
cytosolic calcium in cultured pulmonary arterial myocytes. Am J 
Physiol 264, L323–328. 

Schieder, M., Rotzer, K., Bruggemann, A., Biel, M., and Wahl-Schott, 
C.A. (2010). Characterization of two-pore channel 2 (TPCN2)- 
mediated Ca2+ currents in isolated lysosomes. J Biol Chem 285, 
21219–21222. 

Shi, J., Miralles, F., Birnbaumer, L., Large, W.A., and Albert, A.P. (2016). 
Store depletion induces Galphaq-mediated PLCbeta1 activity to 
stimulate TRPC1 channels in vascular smooth muscle cells. FASEB J 
30, 702–715. 

Snetkov, V.A., Knock, G.A., Baxter, L., Thomas, G.D., Ward, J.P., and 
Aaronson, P.I. (2006). Mechanisms of the prostaglandin F2alpha- 
induced rise in [Ca2+]i in rat intrapulmonary arteries. J Physiol571, 
147–163. 

Soboloff, J., Rothberg, B.S., Madesh, M., and Gill, D.L. (2012). STIM 
proteins: dynamic calcium signal transducers. Nat Rev Mol Cell Biol 
13, 549–565. 



 Evans, A.M., et al.   Sci China Life Sci   July (2016) Vol.59 No.7 15 

Stevenson, A.S., Gomez, M.F., Hill-Eubanks, D.C., and Nelson, M.T. 
(2001). NFAT4 movement in native smooth muscle. A role for 
differential Ca2+ signaling. J Biol Chem 276, 15018–15024. 

Subedi, K.P., Paudel, O., and Sham, J.S. (2014). Detection of differentially 
regulated subsarcolemmal calcium signals activated by vasoactive 
agonists in rat pulmonary artery smooth muscle cells. Am J Physiol 
306, C659–C669. 

Takahashi, Y., Watanabe, H., Murakami, M., Ono, K., Munehisa, Y., 
Koyama, T., Nobori, K., Iijima, T., and Ito, H. (2007). Functional role 
of stromal interaction molecule 1 (STIM1) in vascular smooth muscle 
cells. Biochem Biophys Res Commun 361, 934–940. 

Takeda, Y., Nystoriak, M.A., Nieves-Cintron, M., Santana, L.F., and 
Navedo, M.F. (2011). Relationship between Ca2+ sparklets and 
sarcoplasmic reticulum Ca2+ load and release in rat cerebral arterial 
smooth muscle. Am J Physiol Heart Circ Physiol 301, H2285–2294. 

Tribe, R.M., Borin, M.L., and Blaustein, M.P. (1994). Functionally and 
spatially distinct Ca2+ stores are revealed in cultured vascular smooth 
muscle cells. Proc Nat Acad Sci USA 91, 5908–5912. 

Tripathy, A., and Meissner, G. (1996). Sarcoplasmic reticulum lumenal 
Ca2+ has access to cytosolic activation and inactivation sites of skeletal 
muscle Ca2+ release channel. Biophys J 70, 2600–2615. 

Van Breemen, C. (1977). Calcium requirement for activation of intact 
aortic smooth muscle. J Pphysiol 272, 317–329. 

van Breemen, C., Chen, Q., and Laher, I. (1995). Superficial buffer barrier 
function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol 
Sci 16, 98–105. 

van Breemen, C., Fameli, N., and Evans, A.M. (2013). Pan-junctional 
sarcoplasmic reticulum in vascular smooth muscle: nanospace Ca2+ 
transport for site- and function-specific Ca2+ signalling. J Pphysiol 591, 
2043–2054. 

Verboomen, H., Wuytack, F., De Smedt, H., Himpens, B., and Casteels, R. 
(1992). Functional difference between SERCA2a and SERCA2b Ca2+ 
pumps and their modulation by phospholamban. Biochem J 286 (Pt 2), 
591–595. 

Wamhoff, B.R., Bowles, D.K., and Owens, G.K. (2006). Excitation- 
transcription coupling in arterial smooth muscle. Circ Res 98, 868–878. 

Wang, X., Zhang, X., Dong, X.P., Samie, M., Li, X., Cheng, X., Goschka, 
A., Shen, D., Zhou, Y., Harlow, J., Zhu, M.X., Clapham, D.E., Ren, D., 
and Xu, H. (2012). TPC proteins are phosphoinositide- activated 
sodium-selective ion channels in endosomes and lysosomes. Cell 151, 
372–383. 

Waybill, M.M., Yelamarty, R.V., Zhang, Y.L., Scaduto, R.C., Jr., LaNoue, 
K.F., Hsu, C.J., Smith, B.C., Tillotson, D.L., Yu, F.T., and Cheung, 
J.Y. (1991). Nuclear calcium gradients in cultured rat hepatocytes. Am 
J Physiol 261, E49–57. 

Weigand, L., Foxson, J., Wang, J., Shimoda, L.A., and Sylvester, J.T. 
(2005). Inhibition of hypoxic pulmonary vasoconstriction by 
antagonists of store-operated Ca2+ and nonselective cation channels. 
Am J Physiol Lung Cell Mol Physiol 289, L5–L13. 

Weissmann, N., Dietrich, A., Fuchs, B., Kalwa, H., Ay, M., Dumitrascu, 

R., Olschewski, A., Storch, U., Mederos y Schnitzler, M., Ghofrani, 
H.A., Schermuly, R.T., Pinkenburg, O., Seeger, W., Grimminger, F., 
and Gudermann, T. (2006). Classical transient receptor potential 
channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction 
and alveolar gas exchange. Proc Natl Acad Sci USA 103, 
19093–19098. 

Williams, D.A., Fogarty, K.E., Tsien, R.Y., and Fay, F.S. (1985). Calcium 
gradients in single smooth muscle cells revealed by the digital imaging 
microscope using Fura-2. Nature 318, 558–561. 

Wilson, D.P., Sutherland, C., and Walsh, M.P. (2002). Ca2+ activation of 
smooth muscle contraction: evidence for the involvement of calmodulin 
that is bound to the triton insoluble fraction even in the absence of Ca2+. 
J Biol Chem 277, 2186–2192. 

Wray, S., and Burdyga, T. (2010). Sarcoplasmic reticulum function in 
smooth muscle. Physiol Rev 90, 113–178. 

Yamaguchi, H., Kajita, J., and Madison, J.M. (1995). Isoproterenol 
increases peripheral [Ca2+]i and decreases inner [Ca2+]i in single airway 
smooth muscle cells. Am J Physiol 268, C771–779. 

Yamasaki, M., Masgrau, R., Morgan, A.J., Churchill, G.C., Patel, S., 
Ashcroft, S.J., and Galione, A. (2004). Organelle selection determines 
agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J Biol 
Chem 279, 7234–7240. 

Yang, D., Pan, Z., Takeshima, H., Wu, C., Nagaraj, R.Y., Ma, J., and 
Cheng, H. (2001). RyR3 amplifies RyR1-mediated Ca2+-induced Ca2+ 
release in neonatal mammalian skeletal muscle. J Biol Chem 276, 
40210–40214. 

Yu, Y., Keller, S.H., Remillard, C.V., Safrina, O., Nicholson, A., Zhang, 
S.L., Jiang, W., Vangala, N., Landsberg, J.W., Wang, J.Y., 
Thistlethwaite, P.A., Channick, R.N., Robbins, I.M., Loyd, J.E., 
Ghofrani, H.A., Grimminger, F., Schermuly, R.T., Cahalan, M.D., 
Rubin, L.J., and Yuan, J.X. (2009). A functional single-nucleotide 
polymorphism in the TRPC6 gene promoter associated with idiopathic 
pulmonary arterial hypertension. Circulation 119, 2313–2322. 

Zhang, S., Patel, H.H., Murray, F., Remillard, C.V., Schach, C., 
Thistlethwaite, P.A., Insel, P.A., and Yuan, J.X. (2007). Pulmonary 
artery smooth muscle cells from normal subjects and IPAH patients 
show divergent cAMP-mediated effects on TRPC expression and 
capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 292, 
L1202–L1210. 

Zhang, Y., Wang, Y., Yang, K., Tian, L., Fu, X., Wang, Y., Sun, Y., Jiang, 
Q., Lu, W., and Wang, J. (2014). BMP4 increases the expression of 
TRPC and basal [Ca2+]i via the p38MAPK and ERK1/2 pathways 
independent of BMPRII in PASMCs. PLoS One 9, e112695. 

Zhu, M.X., Ma, J., Parrington, J., Calcraft, P.J., Galione, A., and Evans, 
A.M. (2010). Calcium signaling via two-pore channels: local or global, 
that is the question. Am J Physiol 298, C430–C441. 

Zong, X., Schieder, M., Cuny, H., Fenske, S., Gruner, C., Rotzer, K., 
Griesbeck, O., Harz, H., Biel, M., and Wahl-Schott, C. (2009). The 
two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release 
from lysosomal stores. Pflugers Arch 458, 891–899 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 


