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Local field potentials get funny

Matthew F. Nolan
Centre for Integrative Physiology, University
of Edinburgh, Edinburgh EH8 9XD, UK

Email: mattnolan@ed.ac.uk

The local field potential (LFP) is widely used
experimentally to index cortical activity
and information processing. Classic studies
using recordings of LFPs include the first
demonstration of long-term potentiation
(Bliss & Lomo, 1973) and descriptions of
oscillatory brain states (Buzsaki & Draguhn,
2004), while more recent applications
extend as far as control of brain–machine
interfaces by indirect monitoring of single
neurone activity (Hall et al. 2014). The
power of LFP recordings comes from both
their high temporal and spatial resolution,
and the relative ease with which they can be
obtained.

Surprisingly, given their long-standing
importance, it is only relatively recently that
the ionic mechanisms that determine the
waveform of cortical LFPs have begun to be
extensively scrutinized (Buzsaki et al. 2012).
For a long time LFPs were often assumed to
primarily reflect currents through synaptic
receptors in the membrane of pyramidal
cells. However, membrane currents are
also carried by voltage-gated ion channels.
These active membrane conductances
are responsible for generation of action
potentials and for integration of synaptic
responses. Recent modelling studies suggest
important influences on the LFP of voltage-
gated Na+ and K+ channels that mediate
action potential firing (Reimann et al. 2013),
but the contributions of ion channels that
mediate synaptic integration at membrane
potentials below the action potential
threshold have remained unclear.

In this issue of The Journal of Physiology,
Ness et al. (2016) address the influence of
subthreshold ion channel signalling on the
LFP. They begin by considering the LFP
generated in a detailed model of a pyramidal
neurone responding to a single synaptic
input. They show that when the neurone’s
membrane potential is −80 mV, which is
likely to correspond to its resting state, the
LFP response following a synaptic input

to the neurone’s apical dendrite depends
on active conductances in the neurone’s
membrane. When active conductances are
present, the duration of the LFP response
is reduced and the amplitude of the LFP
response measured near to the soma is
attenuated. In contrast, for synaptic inputs
to the soma, or for apical synaptic inputs
arriving when the neurone’s membrane
potential is depolarized to −60 mV, the
presence of active conductances has very
little effect on the LFP response. Thus,
active conductances may make important
contributions to LFPs driven by dendritic
synaptic inputs when neurones are in their
resting state.

Which ionic current mediates these effects?
Ness et al. demonstrate a key role for
the hyperpolarization-activated current (Ih)
found in the apical dendrites of pyramidal
neurones. Ih is a mixed Na+ and K+ current
that is activated by membrane potential
hyperpolarization. In contrast most other
voltage-gated ion channels are activated
by depolarization. This distinct property
of Ih led to early studies referring to
it as the ‘funny’ current. Because of its
unusual voltage dependence, Ih opposes
changes in membrane potential; when a
neurone is hyperpolarized, activation of
Ih causes an opposing depolarization, and
vice versa when a neurone is depolarized.
Because its activation kinetics are relatively
slow compared to the membrane time
constant of a typical neurone, Ih is
most effective at opposing slow changes
in membrane potential. This restorative
action causes the appearance of resonance
when responses to inputs with waveforms
of different frequencies are considered
(e.g. Nolan et al. 2004). Ness et al.
demonstrate that this resonant effect, which
was previously observed when recording
membrane potential, is also present in
LFP responses. Thus, when neurones
are in their resting state and input is
to their apical dendrites, Ih attenuates
LFP responses with frequencies below
approximately 10 Hz. Further analysis by
Ness et al. demonstrates that this effect relies
on the voltage-dependent properties of Ih

and is greatest when inputs target a single
dendritic region and the channels mediating
Ih are in the dendrites close to the input.

What implications do these results have
for experiments measuring the LFP? When
LFPs are used to assess synaptic strength,
as is the case for many investigations of
long-term potentiation, the results suggest
that changes in the duration of LFP
responses could be attributable to active
membrane conductances. For investigation
of oscillatory network activity, the results
of Ness et al. predict that when signals
originating in synaptic input to apical
dendrites are recorded extracellularly at
sites near to the soma, their components
with frequency less than approximately
10 Hz will be attenuated by Ih. From this
perspective, it is intriguing that genetic
deletion of HCN1, one of the major
contributors to Ih in pyramidal neurones,
causes an increase in the amplitude of theta
(4–9 Hz) frequency oscillations recorded
from somatic regions (Nolan et al. 2004).
This corresponds well to the predictions
made by Ness et al. Nevertheless, these pre-
dictions rest on modelling of contributions
of single neurones to the LFP. Critical issues
still to be addressed include the extent
to which Ih, or other active subthreshold
conductances, influences LFPs in network
models containing many neurones, and
identification of the network activity states
in which these influences are most apparent.

In summary, Ness et al. identify a
previously unappreciated role for sub-
threshold active conductances in shaping
the local field potential. This may
be particularly relevant to experimental
investigation of both evoked synaptic
responses and oscillatory network activity
including theta and other lower frequency
network oscillations.
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