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Evidence for sex-specific genetic
architectures across a spectrum
of human complex traits
Konrad Rawlik1, Oriol Canela-Xandri1 and Albert Tenesa1,2*

Abstract

Background: Sex differences are a common feature of human traits; however, the role sex determination plays in
human genetic variation remains unclear. The presence of gene-by-sex (GxS) interactions implies that trait genetic
architecture differs between men and women. Here, we show that GxS interactions and genetic heterogeneity
among sexes are small but common features of a range of high-level complex traits.

Results: We analyzed 19 complex traits measured in 54,040 unrelated men and 59,820 unrelated women from
the UK Biobank cohort to estimate autosomal genetic correlations and heritability differences between men
and women. For 13 of the 19 traits examined, there is evidence that the trait measured is genetically different
between males and females. We find that estimates of genetic correlations, based on ~114,000 unrelated individuals
and ~19,000 related individuals from the same cohort, are largely consistent. Genetic predictors using a sex-specific
model that incorporated GxS interactions led to a relative improvement of up to 4 % (mean 1.4 % across all relevant
phenotypes) over those provided by a sex-agnostic model. This further supports the hypothesis of the presence of
sexual genetic heterogeneity across high-level phenotypes.

Conclusions: The sex-specific environment seems to play a role in changing genotype expression across a range of
human complex traits. Further studies of GxS interactions for high-level human traits may shed light on the molecular
mechanisms that lead to biological differences between men and women. However, this may be a challenging
endeavour due to the likely small effects of the interactions at individual loci.

Keywords: Gene-by-sex interactions, Sex-specific genetic architecture, Genomic prediction

Background
Phenotypic differences between men and women are a
pervasive feature of quantitative traits. Sex provides two
different environmental contexts determined by the hor-
monal milieu, differential gene expression between the
sexes [1, 2], and lifetime systematic differences in general
environmental exposures arising, for instance, as a conse-
quence of different gender roles in society. This raises the
possibility of sex-specific autosomal genetic effects, in-
duced by gene–environment interactions, and differences
in heritability among sexes that contribute to inter-sex
phenotypic variation [3–8].

Previous studies have used pedigrees to show that
heritability differs between the sexes for a range of,
mainly, low-level phenotypes [3]. However, to what ex-
tent differences observed in low-level phenotypes affect
high-level complex traits and whether such differences
can be observed in high-level complex traits remains un-
clear. Furthermore, differences in heritability do not
imply differences in genetic architecture as they could
arise as a consequence of differences in environmental
variances between the sexes. It is important, therefore, to
further examine differences in genetic effects directly or
by estimating genetic correlations between sexes.
Studies of high-level complex traits which have exam-

ined differences in genetic effects between sexes have,
however, been largely restricted to various anthropomet-
ric traits. Although familial studies have repeatedly re-
ported differences between the genetic architecture for
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these phenotypes [4, 9], such findings have contrasted
with studies on cohorts of unrelated individuals which
have failed to find significant differences in genetic effects
[5, 6, 8] or to identify significantly associated sex-specific
single-nucleotide polymorphisms (SNPs) for traits such as
height and body mass index (BMI) [5, 10, 11]. These dif-
ferences could potentially arise due to biases in familial es-
timates due to shared environmental variance, differences
in phenotype definition between different studies, or sim-
ply lack of power. To understand the nature of such dis-
crepancies, it is important that estimations of sex genetic
heterogeneity from related and unrelated individuals are
made using large numbers of individuals of the same
population and a uniform definition of phenotype.
To assess the extent of gene-by-sex (GxS) interactions

in a human population, we tested for differences in gen-
etic effects between men and women across 19 high-
level complex traits. Specifically, we demonstrate the
presence of GxS interactions by estimating both sex-spe-
cific heritabilities and genetic correlations between sexes
using individual-level SNP data from ~114,000 unrelated
and ~19,000 related individuals genotyped for up
to 525,242 SNPs. Finally, we provide further evidence
that supports the hypothesis that sex-determined genetic
heterogeneity is present in high-level phenotypes by
demonstrating that the observed GxS interactions can
be utilised in practice to improve prediction of pheno-
types based on genotypic information.

Results and discussion
Overview
To provide a broad overview of sex-specific genetic archi-
tecture in a human population we examined the presence
of GxS interactions and sex-specific heritabilities across a
broad spectrum of quantitative traits in ~114,000 unre-
lated white British participants in the UK Biobank [12]
(Additional file 1: Table S1) who had been genotyped for
319,038 common autosomal SNPs (minor allele frequency
(MAF) >5 %; see “Methods”). The 19 phenotypes consid-
ered were height, BMI, waist circumference (WC), hip cir-
cumference (HC), waist to hip ratio (WHR), body fat
percentage (BF%), basal metabolic rate (BMR), age at
completion of full time education for individuals without
university education (education age), fluid intelligence
score (FI score), a cognitive function score (CF score), life-
time reproductive success (LRS), diastolic and systolic
blood pressure (BPdia and BPsys), peak expiratory flow
(PEF), forced expiratory volume in 1 s (FEV1), forced vital
capacity (FVC), ratio of FEV1 over FVC (FEV1/FVC), self-
assessed overall health (overall health) and extent of
cigarette smoking as measured in pack years (Pack years).
Education age in the UK Biobank has only been re-
corded for individuals without university education and
care has to be taken in the interpretation of results for

this phenotype and comparisons with other studies which
use duration of education as a measure for educational
attainment. Twelve of these phenotypes showed pro-
nounced differences in distribution between the sexes
(Additional file 1: Table S2 and Figure S1).
We evaluated the sex-specific genetic architecture of

these traits by modelling male and female observations
as occurrences of a phenotype in two different environ-
mental contexts. The model used includes a genetic
correlation between the two instances of the phenotype
which may differ from one, thus providing evidence for
a non-proportional change in the genetic effects between
the two [13]. At the same time we allow for differences in
heritability between the two sexes, which, on the other
hand, can provide evidence for proportional changes in
genetic effects or differences in environmental influences.
Specifically, we fitted a bivariate linear mixed model
(LMM) using the DISSECT software [14] (see “Methods”).
The model included independent genetic and residual
variances for male and female phenotypes and a genetic
correlation. We tested whether genetic correlations were
significantly different from one or whether heritabilities
differed between men and women separately using likeli-
hood ratio tests.

Sex-specific heritability
Seven traits showed significant differences (P < 0.05) in
heritability (Table 1). In addition, the blood pressure
traits (BPdia and BPsys) showed more pronounced
differences in heritability when individuals with hyper-
tension or taking blood pressure medication were in-
cluded in the analysis, whilst adjusting for these
factors (Additional file 1: Table S3). These differences
may arise as a consequence of different environmental
contexts, different amounts of genetic variation, or
both. However, for five of the seven phenotypes for
which we detected a significant difference in heritabil-
ity, these differences could be explained by larger dif-
ferences in genetic, rather than residual, variance
between the two sexes (Fig. 1). Moreover, in general,
larger genetic variances in one sex were observed to-
gether with larger residual variance components in the
same sex. The exceptions were education age, FI score,
LRS, overall health, and BPdia, for which the relation-
ship between the sexes with regard to the size of gen-
etic and residual variance was reversed; that is, we
find, for example, that the genetic variance for LRS is
larger in women while the residual variance for this
trait is larger in men. With the exception of HC, all
traits which show significant differences in heritability
(BMR, WHR, education age, CF score, LRS, and FEV1/
FVC) were found to have larger differences between
the sexes for genetic rather than residual variances. Hence,
overall the results support the view that differences in
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heritability are a consequence of a difference in genetic
architecture or gene–environment interactions associated
with sex rather than arising purely due to a significant dif-
ference in environmental variance.

Genetic correlations between sexes
For 13 out of the 19 traits studied we found evidence of
GxS interactions because the genetic correlation (rg)
between the traits measured in men and women was
significantly different from one. Estimates of rg for these
phenotypes ranged from 0.96 for height to 0.56 for LRS,
with six of the phenotypes having an estimated rg below
0.9. Importantly GxS interactions were found across all
categories of phenotypes, including anthropometric, cog-
nitive, pulmonary, and cardiovascular. Familial studies
[9] have reported evidence supporting GxS interactions
across a range of anthropometric phenotypes. However,
whilst genome-wide association studies have identified
SNP-by-sex interactions for some anthropometric traits
like WHR [5, 8], identifying these has proven to be ex-
tremely challenging, raising the question of whether the
expected interactions exist. Similarly to familial studies,
we find evidence of GxS interactions in all the anthropo-
metric traits studied using unrelated samples of the
population, albeit our estimates of rg are generally higher
than those reported in twin studies [4]. Previous ana-
lyses on unrelated individuals for either height or BMI
[5, 6, 8] did not find significant differences in genetic
effects, suggesting these studies lacked power due to
smaller samples sizes or the methodology used. In par-
ticular, our results are consistent with the standard errors
of Yang et al. [6], who, using a sample size of individual-
level data less than half of that used here, did not obtain

Table 1 Estimates of sex-specific heritabilities and genetic corre-
lations in unrelated white British individuals

hm
2 hf

2 rg P value

Est. S.E. Est. S.E. Est. S.E. rg ≠ 1 hm
2 ≠ hf

2

Height 0.53 0.007 0.54 0.007 0.96 0.01 3 × 10-5 0.3

BMI 0.27 0.008 0.26 0.007 0.95 0.02 0.008 0.1

BF% 0.27 0.008 0.26 0.008 0.94 0.02 0.009 0.6

BMR 0.36 0.008 0.30 0.008 0.92 0.02 3 × 10-5 3 × 10-8

WC 0.24 0.008 0.23 0.008 0.90 0.03 0.0003 0.5

HC 0.27 0.008 0.24 0.008 0.88 0.02 2 × 10-6 0.01

WHR 0.19 0.008 0.25 0.008 0.76 0.03 9 × 10-14 1 × 10-7

Education age 0.08 0.011 0.13 0.010 0.92 0.09 0.2 0.004

FI score 0.28 0.022 0.27 0.020 0.93 0.06 0.1 0.8

CF score 0.12 0.008 0.09 0.007 0.81 0.06 0.0008 0.02

LRS 0.04 0.014 0.08 0.009 0.56 0.17 0.03 0.03

Overall health 0.12 0.008 0.12 0.007 0.97 0.05 0.3 0.6

BPdia 0.18 0.011 0.20 0.009 0.87 0.04 0.001 0.3

BPsys 0.17 0.011 0.20 0.009 0.88 0.05 0.009 0.1

FEV1 0.28 0.010 0.27 0.010 0.92 0.03 0.004 0.5

FVC 0.26 0.010 0.26 0.009 0.95 0.03 0.06 0.8

PEF 0.23 0.010 0.23 0.009 0.93 0.03 0.02 0.9

FEV1/FVC 0.29 0.010 0.25 0.009 0.97 0.03 0.1 0.01

Pack years 0.17 0.012 0.19 0.012 0.90 0.06 0.05 0.5

hm
2 , hf

2 are proportions of phenotypic variance explained by common
autosomal SNPs for males and females, respectively. P value indicates p values
from likelihood ratio test against constrained models with
rg = 1 and hm

2 = hf
2, respectively

Est. estimate, S.E. standard error

Fig. 1 Differences in variance components between the sexes. The fold difference between male and female genetic and residual variance components
as estimated using common SNPs in unrelated white British individuals. Values larger than one indicate a larger variance in males, values smaller than
one a larger variance in females
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significant results for either height or BMI using the same
methodology.
Beyond anthropometric traits, the low genetic correl-

ation for LRS among sexes is of particular interest due
to its implications in, for instance, maintaining genetic
variation in the population. A GxS interaction for LRS
suggests that the genetic determinants that contribute to
the reproductive fitness of men and women may be differ-
ent or may have different effects, which could play an
important role in maintaining genetic variation in the
population [15]. In addition, the differences in heritabil-
ities between men and women, which are a consequence
of women having twice as much genetic variation for this
trait as men, suggest that genetics plays a larger role in the
reproductive fitness of women than men.

Effects of study population
To confirm the robustness of our results we performed
several additional analyses. First, we re-estimated variance
components for the same set of unrelated individuals in-
cluding rare variants (MAF 0.37–5 %) together with com-
mon variants, that is, all available SNPs that passed our
quality control (Additional file 1: Figure S2). Second, we
performed the analyses, using common variants, on a set
of ~19,000 related white British participants which par-
tially overlaps (10,112 individuals) with the unrelated co-
hort. The results of these analyses do not represent an
independent replication but a way of assessing the effect
of the changed tagging structure due to long-range linkage
disequilibrium and shared environment in these related
individuals. In line with expectations [16, 17] the estimates
of heritability increased significantly in both alternative
analyses (Fig. 2a), whilst estimates of rg remained largely
unaffected (Fig. 2b; Additional file 1: Table S4). The

correlation between rgestimates based on common vari-
ants and combined common and rare variants in unre-
lated individuals was 0.98, whilst between related and
unrelated individuals was 0.79 (Fig. 2c).
As four of the phenotypes we considered (education

age, FI score, LRS, and overall health) were categorical
in nature, we investigated to what extent our results,
based on estimates obtained on the observed scale, could
be affected by differences in phenotypic distribution be-
tween the sexes. To this end we repeated the analysis
using common variants on a random subset of the unre-
lated white British cohort, sampled so as to ensure that
phenotypic distributions for both sexes are equal (see
“Methods”). The results of this analysis are consistent
with those obtained on the whole cohort (Additional file
1: Table S5), suggesting that the observed differences in
heritability on the observed scale are not likely to be
driven by differences in phenotype distribution in the
two sexes. Similarly, to confirm that differences in
phenotypic distributions of the considered quantitative
traits did not lead to spurious genetic correlations below
one, we performed an additional analysis on rank normal-
ized phenotypes (Additional file 1: Additional methods
and results). The results were highly consistent with
those reported here for untransformed phenotypes
(Additional file 1: Figure S3 and Tables S6 and S7).
Additionally we performed a simulation study (Additional
file 1: Additional methods and results) of traits with differ-
ing phenotypic distributions and heritabilities but genetic
correlations of one, which further supports our view that
these factors do not lead to spurious results (Additional
file 1: Table S8 and Figure S4).
Finally, we investigated three other potential sources of

bias: the presence of spouses in the UK Biobank cohort

a b c

Fig. 2 Effect of relatedness and SNP density on estimates of heritability and genetic correlations. Estimates of male and female heritability obtained
using common variants in unrelated individuals against those obtained using a related individuals and common variants or b including common and
rare variants for unrelated individuals. c Comparison of estimates of genetic correlations between these two alternative analyses with the estimates
obtained on the main set of unrelated individuals with common variants
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[18], differences in socio-economic status among the sam-
pled male and female population, and sex differences in
overall health status. In particular, the latter could po-
tentially bias our results due to the possibility of differ-
ences in the enrolment of the male and female
components of the study population [19]. To investi-
gate the effect of couples, we excluded one individual
at random from each genotyped spouse pair and re-
peated all the main analyses. Despite the reduction in
sample size, the results of these analyses were very
similar to the main results (Additional file 1: Figure S5,
Tables S6 and S9). Likewise, we repeated all the main
analyses adjusting for additional factors related to so-
cioeconomic status and health (that is, self-reported
overall health status, Townsend Deprivation Index and
educational attainment). These results were also highly
consistent with the results of the main analysis (Add-
itional file 1: Figure S6, Tables S6 and S10), suggesting
that our results are not substantially influenced by
these socio-economic and health status factors.

Sex-specific genomic prediction
An alternative way of testing whether the genetic
architecture of the two sexes is different or whether
there are GxS interactions is to perform genomic pre-
dictions under a model that accounts for these interac-
tions (that is, a sex-specific model) and another that
does not (that is, a sex-agnostic model). To this end,
we estimated separate male and female common SNP
effects in the sex-specific bivariate model as well as in
the sex-agnostic univariate model [20] (see “Methods”).
We used our ~114,000 unrelated white British individ-
uals as the training population and predicted additive
genetic values for a separate cohort of ~12,000 genotyped
UK Biobank individuals who self-reported as white British
but had failed to be confirmed as such by the principal
components analysis (PCA; see “Methods”). Prediction ac-
curacy was measured as the correlation between predicted
additive genetic value and observed phenotypes adjusted
for fixed effects. The sex-specific model outperformed the
sex-agnostic model for a majority of phenotypes, i.e., 14
out of 19 (Additional file 1: Table S11). In particular, con-
sidering only the ten phenotypes with evidence of genetic
heterogeneity between sexes (P > 0.05 for rg ≠ 1 or hm

2 ≠
hf
2) and substantial heritability (hm

2 > 0.2 and hf
2 > 0.2), all

but one (WC) showed an improvement in prediction ac-
curacy, with BMR showing the largest improvement
(>4 %) and with the mean improvement across these traits
being 1.4 %. These results add further evidence to the
presence of sex-specific genetic effects and, since sex
could be considered as a surrogate measure of different
environmental factors, provide evidence that the utilisa-
tion of gene–environment interactions can improve the
accuracy of genomic profiling.

Conclusions
Our analyses of a large cohort using individual-level
genotype data provide a broad assessment of differences
in genetic architecture between sexes and shows that
contributions of sex-specific genetic effects, although of
modest magnitude, may be found across a broad
spectrum of traits. While significance does not imply that
these effects are large, we are able to reproduce our re-
sults, whilst simultaneously quantifying the impact of
these effects, using genomic predictions in an independent
cohort. Taking WHR as an example, 291 associations are
reported in the GWAS Catalog [21], which may be taken
as a lower bound of the total number of associated vari-
ants. We may then observe that, based on the assumption
that these contribute equally to prediction accuracy in the
univariate model, differences in genetic architecture be-
tween the sexes are equivalent to a lower bound of about
seven additional associated variants.
The general lack of significant SNP-by-sex interactions

in genome-wide association studies suggests that these
effects may be a consequence of the accumulated effect of
many interactions of small effect, identification of which
may require even larger sample sizes than used here. Fur-
ther research to identify the causes that determine sex
genetic heterogeneity will need to disentangle whether sex
genetic heterogeneity may arise as a consequence of inter-
actions with genetic loci located on the sex chromosomes,
differences in gene control due to differences in the sex-
specific cellular environment, or more general differences
in environmental exposures between the sexes. Further-
more, we demonstrate, using sex as a surrogate measure
of environmental exposure, how to incorporate gene-by-
environment interactions into genomic prediction models.

Methods
Genotype quality control
For our analysis, we used the data for the individuals ge-
notyped in phase 1 of the UK Biobank genotyping pro-
gram; 49,979 individuals were genotyped using the
Affymetrix UK BiLEVE Axiom array and 102,750 individ-
uals using the Affymetrix UK Biobank Axiom array. De-
tails regarding genotyping procedure and genotype calling
protocols are provided elsewhere (http://biobank.ctsu.ox.
ac.uk/crystal/refer.cgi?id=155580). We performed quality
control using the entire set of genotyped individuals be-
fore extracting the white British cohort used in our
analysis. From the overlapping markers, we excluded
those which are multi-allelic and those whose overall
missingness rate exceeded 2 % or which exhibited a
strong platform specific missingness bias (Fisher’s exact
test, P < 10-100). We also excluded individuals if they ex-
hibited excess heterozygosity, as identified by UK Biobank
internal quality control procedures (http://biobank.ctsu.ox.
ac.uk/crystal/refer.cgi?id=155580), if their missingness rate
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exceeded 5 %, or if their self-reported sex did not
match genetic sex estimated from X chromosome in-
breeding coefficients. These criteria resulted in a re-
duced dataset of 151,532 individuals. Finally, we only
kept variants that did not exhibit departure from Hardy–
Weinberg equilibrium (P < 10-50) in the unrelated (subset
of individuals with a relatedness below 0.0625) white
British subset of the cohort. To define the white British
cohort, we performed a PCA of all individuals passing
genotypic quality control using a linkage disequilib-
rium pruned set of 99,101 autosomal markers (http://
biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149744) that
passed our SNP quality control protocol. The white
British individuals were defined as those for whom the
projections onto the leading 20 genomic principal compo-
nents fell within three standard deviations of the mean
and who self-reported their ethnicity as white British.
Those individuals who self-reported as white British but
who were excluded based on the PCA analysis formed the
test white British sample used in prediction. We further-
more pruned the set of white British individuals, removing
one individual from pairs with relatedness above 0.0625
(corresponding to second degree cousins) to obtain a
datasets of unrelated confirmed white British individuals.

Phenotype quality control
We obtained measures for waist circumference (UKBID
48), hip circumference (UKBID 49), standing height
(UKBID 50), BMI (UKBID 21001), body fat percentage
(UKBID 23099), basal metabolic rate (UKBID 23105), self-
reported age of completion of full-time education for indi-
viduals without university education (UKBID 845), number
of offspring (UKBID 2405 and 2734), fluid intelligence
score (UKBID 20016), diastolic blood pressure (UKBID
4079), systolic blood pressure (UKBID 4080), forced
volume vital capacity (UKBID 3062), forced expiratory
volume in 1 s (UKBID 3063), peak expiratory flow
(UKBID 3064), and self-reported overall health (UKBID
2178). Further information about these, including de-
tails of measurement protocols, can be accessed through
the UK Biobank resource (http://biobank.ctsu.ox.ac.uk/
crystal/index.cgi) using the provided UKBID. We add-
itionally computed several derived phenotypes based on
information contained in the UK Biobank. Specifically, we
computed WHR and FEV1/FVC as ratios of WC, HC,
FEV1 and FVC, respectively, and furthermore rescaled
BMR to have a standard deviation of 1 in the population
due to numerical problems in model fitting on the meas-
urement scale. LRS was calculated as the self-reported
number of offspring for individuals who have completed
their reproductive life. These were defined as men aged
over 60 years and women who reported either having had
their menopause or undergone a hysterectomy or who
were aged over 60 years. We furthermore excluded

individuals who reported having had in excess of 15 off-
spring. We constructed a cognitive function score (CF
score) as the first principal component of several cognitive
measures, specifically the results of a reaction time test
(UKBID 20023), time to complete, and number of incor-
rect guesses during completion of a pairs matching test
(UKBID 400 and 399). Prior to PCA we excluded individ-
uals who were more than 5 standard deviations from the
population for any of these measures. The number of pack
years of smoking was calculated based on smoking history
information as described elsewhere (http://biobank.ct-
su.ox.ac.uk/crystal/field.cgi?id=20161). Self-reported over-
all health status was measured as the answer to the
question “In general how would you rate your overall
health?” excluding “Do not know”/“Prefer not to answer”
we coded the possible four answers as numerical values 1
(“Excellent”) to 4 (“Poor”) and fitted all models on this ob-
served scale. For the cardiovascular phenotypes (BPdia and
BPsys) we excluded all individuals who reported taking
blood pressure medication (UKBID 6153 and 6177). We
removed outliers from WC, HC, height, BMI, BF%, BMR,
WHR, education age, BPdia, BPsys, FVC, FEV1, PEF, and
FEV1/FVC, defining outliers as males and females who
were outside ±3 standard deviations from their gender
mean of all the individuals in the white British cohort.

Estimation of heritability and genetic correlations
We used a linear mixed model approach [22] to estimate
sex-specific variance components and genetic correlations
between the sexes. Specifically, we computed restricted
maximum likelihood (REML) fits for the bivariate model:

y¼ ym
yf

� �
¼ xm 0

0 xf

� �
βm
βf

� �
þ Gm 0

0 Gf

� �
am
af

� �
þ em

ef

� �
;

where for sex x, Xx is the incidence matrix for fixed ef-
fects βx, including a constant column modeling the
mean, Gx is the matrix of standardized genotypes, ax is
the vector of SNP effects, and ex is the vector of resid-
uals. Priors were placed on the SNP effects and
residuals:

am
af

� �
∼N

0
0

� �
;

σ2gm ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
gm
σ2
gf

q
ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
gm
σ2
gf

q
σ2gf

0
@

1
A⊗I

0
@

1
A

and
em
ef

� �
∼N

0
0

� �
;

σ2
em 0
0 σ2

ef

 !
⊗I

 !

where N(μ,Σ) is the multivariate normal distribution
with mean μ and covariance Σ, I is the identity matrix,
and⊗ is the Kronecker product between matrices. Using
the estimates of the model parameters, heritabilities for

each sex were computed as h2x ¼
σ2gx

σ2gxþσ2ex
, with the re-

ported confidence intervals calculated based on standard
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errors of the model parameters. We additionally obtained
REML fits of the above model under the constraints ρ = 1

and
σ2gm

σ2gmþσ2emð Þ ¼
σ2gf

σ2gf þσ2ef

� � , respectively. For the latter we

reparametrized the model in terms of parameters σm
2 , σf

2

and λ, setting σ2gm ¼ σ2m; σ
2
gf
¼ σ2f ; σ

2
em ¼ λσ2

m and σ2ef
¼ λσ2

f and optimized the REML. Using these restricted

models, we tested for genetic correlations between the
sexes different from unity and unequal heritabilities for
the two sexes using likelihood ratio tests using 1 degree
of freedom. All analyses included the leading 20 gen-
omic principal components as fixed effects in order to
adjust for population structure. Furthermore, age was
included in all analyses as a fixed effect, with the excep-
tion of LRS, where we included year of birth, which
better captures cohort effects. Finally, analyses of pul-
monary phenotypes included further fixed effects; spe-
cifically, both height and pack years were included for
PEF and FEV1 and only pack years was included for
FEV1/FVC. All models were fitted using the DISSECT
software (http://www.dissect.ed.ac.uk) [14] on the UK
National Supercomputer (ARCHER).

Alternative analyses
Analyses performed to investigate robustness of the results
utilized the following datasets. From the dataset of all indi-
viduals who were identified as white British, we extracted
the set of individuals who had at least one other white
British individual with a relatedness, as estimated based
on common SNPs, above 0.0625. This cohort of 19,695 re-
lated white British individuals partially overlapped (i.e.,
10,112 individuals overlapped) with the unrelated white
British cohort used in the main analysis as, for the latter,
only one of each pair of related individuals was excluded.
For the additional analysis of categorical phenotypes, we

subsampled the set of unrelated white British individuals
for each phenotype to maximize the total sample size
whilst ensuring that the phenotypic distribution in the
sexes was equal. To this end we stratified the individuals
within each sex by the phenotype value and for each strata
included all individuals of the sex with fewer samples and
randomly sampled an equal number of individuals for the
other sex.

Genomic prediction
Predictions ŷi for a phenotype of individual i were com-
puted as:

ŷi ¼
XM
j¼1

sij−μj
σ j

aj;

where sij is the number of copies of the reference allele
at SNP j for individual i, M is the total number of SNPs

used for prediction, i.e., in our case the number of com-
mon SNPs, and aj is the estimated SNP effect of SNP j,
while μj and σj are the mean and standard deviation of
the reference allele in the training population, i.e., the
genotypically white British individuals. We estimated ef-
fects of all SNPs following either a standard univariate
approach [20], i.e., fitting a LMM treating male and fe-
male phenotypes as one phenotype, or by estimating
sex-specific SNP effects based on the bivariate model
discussed previously. Specifically, SNP effects were esti-
mated by their posterior mean with variance parameters
and fixed effect parameters fixed to their REML esti-
mates. The same fixed effect structure was used in both
models, i.e., we included sex interactions in the fixed ef-
fects of the univariate model. Prediction accuracies were
computed as the correlation between predicted pheno-
types and observed phenotypes adjusted for fixed effects
using estimated fixed effect coefficients.
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