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Abstract 
 
Endogenous levels of glucocorticoids rise during pregnancy to warrant development and maturation of the 

fetal organs close to birth. However, during most of the gestation, the fetus is protected from excessive 

biologically active endogenous glucocorticoids by placental and fetal expression of 11β-hydroxysteroid 

dehydrogenase 2 (11-HSD2). Maternal stress, which may overwhelm placental 11-HSD2 activity with high 

glucocorticoid levels, or administration of synthetic glucocorticoids to improve the survival chances of the 

premature newborn, are associated to postnatal increased risk for immune diseases. Fetal exposure to 

excessive glucocorticoids may underlie this altered postnatal immunity. Here, we revise the role that 

placental and fetal 11-HSD2, fetal glucocorticoid exposure and programming of the offspring’s the 

hypothalamic-pituitary-adrenal (HPA) axis play on concerted steps in immune fetal development. We could 

identify gaps in knowledge about glucocorticoid induced programming of immune diseases. Finally, based on 

current evidence about glucocorticoid and HPA axis mediated immune regulation, we hypothesize on 

mechanisms that could drive the enhanced risk for atopies, infections and type I diabetes in offspring that 

were prenatally exposed to glucocorticoids. 

 

Introduction 
 

In mammals, maternal physiological adaptations to pregnancy ensure appropriate fetal growth and 

development [1]. These multisystem adaptations include the modulation of endocrine signals, such as those 

derived from the hypothalamic-pituitary-adrenal (HPA) axis [2]. The gradual increase in maternal release of 

adrenal glucocorticoids during the second half of gestation accelerates as birth approaches[3]. Concurrently, 

the developing embryo is protected from maternal glucocorticoids throughout most of gestation by 

mechanisms that include feto-placental expression of the glucocorticoid-inactivating enzyme 11-

hydroxysteroid dehydrogenase type 2 (11-HSD2). These mechanisms may be inadequate in some 

circumstances, for example when maternal glucocorticoid levels are chronically elevated by stress, or 

evaded by synthetic glucocorticoids. Under these circumstances, exposure of the fetus to inappropriately 

high glucocorticoid levels impairs fetal growth and elicits neuroendocrine changes that persist into 

adulthood (termed “programming”) [4,5]. Given the higher incidence of atopic diseases in individuals who 
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were exposed to maternal stress prenatally and the potent immunomodulatory properties of glucocorticoids, 

concerns have been raised about potential long-lasting effects of excessive prenatal glucocorticoid exposure 

on the developing fetal immune system[6-8]. Here, we (i) review current knowledge of the factors that 

determine fetal glucocorticoid exposure, and (ii) review the evidence relating to mechanisms by which 

excessive prenatal glucocorticoid exposure may affect the immune system.  

Glucocorticoids in pregnancy 
 

Physiology of glucocorticoids during pregnancy 
 

The secretion of glucocorticoids (Box 1) is tightly controlled by the HPA axis. The cyclic activation of the axis 

results in the hypothalamic secretion of corticotrophin releasing hormone (CRH)[2], which stimulates the 

release of adreno-corticotrophin hormone (ACTH) from the pituitary. In turn, ACTH activates the adrenal 

release of glucocorticoids: cortisol in humans and most other animals, corticosterone in rats and mice[3]. 

The activity of the maternal HPA axis changes dramatically in pregnancy and post-partum (reviewed in[9,10]). 

Particularly during the second half of pregnancy, circulating glucocorticoids stimulate placental CRH 

synthesis[11-14]. CRH further stimulates pituitary ACTH release, which results in adrenal glucocorticoid 

production [15] and in a physiological state of “hypercorticolism”, with glucocorticoids rising dramatically 

towards parturition[16,17]. In late pregnancy, the HPA axis also becomes hyporesponsive to stress, probably 

due to a reduced forward drive from hypothalamic CRH and vasopressin, rather than to a change in negative 

feedback regulation[18]. As described below, high maternal glucocorticoids levels likely contribute to fetal 

organ maturation before birth. To some extent, the rise in maternal plasma levels of corticosteroid-binding 

globulin (CBG; Box 1) induced by high estrogen levels in late pregnancy offsets the high maternal 

glucocorticoid levels, by reducing the fraction of free, biologically available glucocorticoids[16]. Despite the 

high maternal glucocorticoid levels in the late human and rodent pregnancies, for most of gestation fetal 

plasma glucocorticoid levels are 5 to 10 times lower than in the mother, though levels rise markedly close to 

parturition to mature fetal organs[19-21]. However, intracellular glucocorticoid action is not solely 

dependent upon circulating glucocorticoid levels, but can be modulated by the activity of the 11-HSD 

enzymes. The type 2 isozyme, 11-HSD2, catalyses the inactivation of cortisol and corticosterone, generating 

intrinsically inert cortisone and 11-dehydrocorticosterone, respectively. In contrast, the type 1 isozyme, 11-

HSD1, catalyses the opposite reaction, regenerating active glucocorticoids. As reviewed below, these 

enzymes play distinct temporal and tissue-specific roles in the feto-placental unit during pregnancy. 

 

Glucocorticoid excess during pregnancy 
 

Endogenous glucocorticoids: Maternal stress 
 

Despite the hypo-responsiveness of the maternal HPA axis to stress in late pregnancy, it is still activated by 

strong or chronic stressors[22,23], including inflammation and infection[24]. Moreover, expression of 

placental 11-HSD2 can be suppressed by stress[25,2] and saturation of maternal CBG may lead to increased 

levels of free glucococorticoids in plasma[26]. All of these potentially lead to excessive fetal glucocorticoid 

exposure[23]. Intrauterine infection and  placental  inflammation  are  associated  with  fetal  glucocorticoid 

excess, as evidenced by a reduction in thymic size, a biological marker of glucocorticoid action, in human 

fetuses exposed to these situations in utero[27,28]. This could be at least partly mediated by maternal 

glucocorticoids, as a consequence of activation of the maternal HPA axis[23]. As well as affecting 
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glucocorticoid levels, the pronounced maternal immune system responses normally elicited by infection and 

inflammation could, of course, directly affect development of the fetal immune system, a large topic, 

beyond the scope of this review. Here, we restrict our discussion to the effects of maternal stress perception 

as a source of excessive fetal glucocorticoid exposure.  

 

Synthetic glucocorticoids 
 
Synthetic glucocorticoids are prescribed during pregnancy for several clinical indications. If the subject of 

treatment is the expectant mother, for instance to treat asthma and autoimmune disease such as systemic 

lupus erythematosus, or to prevent recurrent miscarriage in the first trimester of pregnancy, prednisolone is 

most commonly used, with doses being up to 40mg/day. Prednisolone and its inactive 11-keto metabolite, 

prednisone, are substrates for the 11-HSD enzymes (reviewed in[29,30]). However, high doses of 

prednisolone are likely to overwhelm the capacity of placental 11-HSD2, and reach the fetus. Prednisolone 

administered in the first trimester of pregnancy (weeks 4 to 13) did not have a teratogenic effect, but caused 

a two-fold increase in pre-term birth rate and reduced birthweight in term babies[31].  

 

Probably more relevant to fetal development are glucocorticoids administered to expectant mothers at risk 

of preterm delivery between 24 and 34 weeks of gestation[32], though benefit is seen even up to 36 weeks 

[33], in order to improve neonatal survival if the baby is born preterm. A single course of antenatal 

corticosteroids reduces morbidity due to acute respiratory distress in neonates and does not appear to be 

associated with overt short-term adverse effects on mother or fetus[32]. Importantly, however, a recent trial, 

conducted in low-resource settings, has shown no benefit of antenatal corticosteroid treatment in the 

mortality rates of very small infants, and a significant increase in neonatal mortality of infants born at later 

gestational ages[34]. Moreover, synthetic glucocorticoids suppress maternal and fetal HPA axis activity for at 

least one week after administration[35], and exert long-lasting effects upon the HPA-axis in children [36]. 

Despite the existing guidelines for prenatal steroid administration, more than half of the treated women do 

not deliver within the window of effect of the drug (less than 7 days), and repeated courses of steroids have 

proved detrimental rather than beneficial[37]. Betamethasone and dexamethasone are the steroids of 

choice to reach fetal organs if premature birth is imminent. Both have higher affinities for the glucocorticoid 

receptor (GR) than cortisol and neither is inactivated by 11β-HSD2 [38], a property that allows them to 

bypass feto-placental 11β-HSD2 but also ensures a longer half-life in the maternal circulation. Both bind 

poorly to CBG. Thus, these compounds cross the placenta readily, bypass 11β-HSD2 and are 25-fold more 

potent than endogenous cortisol (reviewed in[39]), causing a sizable peak of supraphysiological 

glucocorticoid bioactivity in the fetus, that only recedes three days after the second injection of 

betamethasone[40].  

 

Dexamethasone (1.5mg/day) is also used in cases of congenital adrenal hyperplasia to prevent 

masculinization of the female fetus. In this case, therapy starts as soon as pregnancy is recognized, and is 

continued until the end. A comprehensive metaanalysis[41] of the few available data (four studies, n=325 

pregnancies) reports a reduction in fetus virilization and no deleterious effects on stillbirths, spontaneous 

abortions or foetal malformations. Inconsistent results were reported on parent-reported behavioural and 

developmental outcomes later in life[41], and no data exist on metabolic, cardiovascular or immunological 

outcomes.  
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Regulation of fetal glucocorticoid exposure: Metabolism of glucocorticoids 

by 11-HSDs during gestation and fetal glucocorticoid production.  
 

Expression of 11-HSD1 and 11-HSD2 in the uterus  
 
Both 11-HSD1 and 2 are expressed in the uterus in the non-pregnant state, though they differ in their 

temporal and spatial distribution[42]. In rodents, 11-HSD1 is expressed in epithelial cells in the uterine wall 

whereas 11-HSD2 is present in the endometrial stroma and in the myometrium[42,43]. Expression of both 

enzymes is dependent upon estrogen[42]. In contrast, in human endometrium, 11-HSD2 is present in the 

glandular epithelium with little expression of 11-HSD1 until menstruation[44]. 11-HSD1 is markedly up-

regulated following decidualisation of human endometrial stromal cells[45], suggesting a possible role in 

embryo implantation. It has been suggested that glucocorticoid inactivation in the uterine wall contributes 

to the maintenance of the fetal allograft[46]. However, mice lacking 11-HSD2 are fertile and have normal 

sized litters[5], so any such role is moot. In pregnant rats, the marked up-regulation of 11-HSD1 in the 

myometrium shortly before parturition is dependent upon the feto-placental unit[47], suggesting a possible 

feed-forward regulation as glucocorticoid levels rise close to birth. However, 11-HSD1-deficient mice do not 

show a marked parturition phenotype, suggesting any effect on parturition is subtle.  

 

11-HSD2 expression in the feto-placental unit 
 
From as early as 5 weeks of human pregnancy, 11-HSD2 is expressed in the syncytiotrophoblast layer of the 

labyrinth zone of the placenta[48]. This syncytiotrophoblasts form the interface between the maternal and 

fetal circulations where nutrients and other substances are exchanged. During a normal pregnancy, 11-

HSD2 inactivates most of the maternal glucocorticoid passing through the placenta to the fetus[49,50]. By 

the end of the first trimester, 11-HSD2 becomes expressed in the cytotrophoblast and extravillous 

trophoblasts[48], potentially impacting placentation. Indeed, placentas of Hsd11b2-/- mice show altered 

structure and function, with reduced placental vascularization and altered nutrient transport[4]. The 

ontogeny of placental 11-HSD2 expression differs between species. In humans, 11-HSD2 expression 

remains high until parturition[51,52], maintained by human chorionic gonadotrophin activation of cAMP 

signaling[53], though 11-HSD2 activity may reduce close to birth[46,54]. Placental 11-HSD2 expression 

declines towards the end of gestation in the rat, and still earlier in the mouse (reviewed in[29]), with 

negligible levels of Hsd11b2 mRNA from E13[55] and enzyme activity markedly decreased by E16[50]. This 

decline in 11-HSD2 activity is likely to be due to[56], and contribute to, the late gestation rise in fetal 

glucocorticoid levels essential for maturation of fetal tissues and organs, which may differ in timing between 

species.  

 

11-HSD2 is also widely expressed in the fetus during early to mid-gestation, where it protects the 

developing tissues from inappropriate glucocorticoid exposure[55,57,58]. This protective role of 11-HSD2 

has been investigated in detail in the brain. Specific deletion of neuronal 11-HSD2, expressed here only in 

very early life, affects offspring behavior once adult[59]. These studies are important as the first to 

demonstrate a protective role for 11-HSD2 specifically in the fetus, distinct from the protective role of 

placental 11-HSD2. In most tissues in the mouse (mineralocorticoid target tissues being the exception), 

11-HSD2 expression decreases markedly in late gestation[55]. The same is likely true in humans[46]. 
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Reductions in placental 11-HSD2 activity associate with reduced birth weight and are found in a variety of 

conditions including intra-uterine growth retardation, maternal asthma, maternal undernutrition (reviewed 

in[29]) and maternal vitamin D deficiency[60]. Glucocorticoids are raised in at least some of these conditions, 

if not all and down-regulate placental 11-HSD2[56], though possibly only in late gestation[61]. The effect of 

exogenous corticosteroids on the regulation of placental 11β-HSD2 is still controversial: dexamethasone 

administered right before delivery increases levels of mRNA encoding 11β-HSD2 in sheep [61] and mice[62], 

while high levels of exogenous cortisol in late pregnancy decrease 11β-HSD2 enzyme activity in sheep [56]. 

 

In vitro, placental 11-HSD2 activity can be down-regulated or inhibited by a variety of factors. As well as 

glucocorticoids, hypoxia, and pro-inflammatory cytokines (IL-1 or TNF) reduce placental 11-HSD2 

expression[48,63-65], potentially offering a unifying glucocorticoid-mediated mechanism for the fetal 

programming effects of these different stressors [50]. Importantly, placental 11-HSD2 activity is reduced in 

human pregnancies complicated by pre-eclampsia[48,66].  Whether this reflects cause or effect is important 

to establish, though it is noteworthy that Hsd11b2-/- mice model aspects of pre-eclampsia, including intra-

uterine growth retardation[5,4,67]  

 

 

11-HSD1 expression in the feto-placental unit 
 
Although mRNA encoding 11-HSD1 is present in the rodent placenta[68], the corresponding activity is 

not[69]. Similarly, 11-HSD1 is little expressed in the fetus during most of gestation[68]. It becomes 

expressed close to birth, notably in the liver and lung[68,70], where it contributes to the maturational 

effects of glucocorticoids that occur just prior to birth[71]. 11-HSD1 is also expressed at term in the chorion 

and the amnion, the fetal membranes that together comprise the amniotic sac[52,46,72]. Glucocorticoids 

induce 11-HSD1 expression in cultured chorionic trophoblasts as well as amnionic fibroblasts[73] 

suggesting a feed forward mechanism to amplify glucocorticoid levels in the fetal membranes and the 

amniotic fluid, as birth approaches[72]. Moreover, whilst the pro-inflammatory cytokines IL-1 or TNF 

alone have only a modest effect on 11-HSD1 expression in human amnion fibroblasts, they potentiate its 

induction by glucocorticoids[74]  

 

The fetal HPA axis 
 
The fetal hypothalamic-pituitary-adrenal (HPA) axis becomes active in mid to late gestation, potentially 

contributing to the increase in fetal plasma glucocorticoid levels close to birth. Glucocorticoid synthesis 

initiates in the fetal adrenal gland around the 28th week of pregnancy in humans, and at embryonic day (E) 

14.5 in mice (reviewed in[21]). In mice, plasma glucocorticoid levels increase rapidly from E15, though in 

humans, levels only increase substantially in the week before birth. Negative feedback regulation of the HPA 

axis is established around E16.5 in mice[75]. The time at which the human HPA axis becomes responsive to 

the normal regulation is unclear. However, evidence suggests that HPA axis suppression occurs with 

intrauterine exposure to synthetic glucocorticoids[35], suggesting negative feedback of the HPA axis 

operates in the human fetus from the time of, or shortly after, initiation of adrenal glucocorticoid synthesis. 

Maternal undernutrition increases HPA axis activation in mice[50], though whether it also causes premature 

initiation of adrenal corticosteroid synthesis is currently unknown. However, this is likely given the ability of 
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the fetal HPA axis to compensate for maternal glucocorticoid deficiency with maternal adrenalectomy[76,50].  

 

Glucocorticoid sensitivity in the placenta and the fetus 
 
The main determinants of glucocorticoid sensitivity are the receptors: the higher affinity type 1 

glucocorticoid receptor (or mineralocorticoid receptor, MR) and the type 2 glucocorticoid receptor (GR). 

Expression of MR is negligible in the rodent placenta[69,55]. However, MR immunoreactivity, as well as 

evidence for the encoding mRNA, has been reported in human placenta [77]. Whether this reflects a true 

species difference requires confirmation. GR, by contrast, is expressed in the labyrinth zone of the placenta, 

and at higher levels in the basal zone, the main site of placental hormone synthesis and varies little through 

gestation[69,43,68].  

 

Within the fetus, MR and GR show negligible expression in the first half of gestation, at least in the 

mouse[55,68,78]. In mice, GR first appears in the fetus around E10, with initial sites of expression being the 

developing heart and the 3rd branchial arch[78], the latter giving rise to the thymus, which strongly expresses 

GR from E12.5[68]. From E12.5, GR expression becomes much more widespread. Thus, it is likely that the 

capability to respond to glucocorticoids via GR precedes, by up to several days depending on the tissue, the 

initiation of adrenal glucocorticoid synthesis at E14.5. MR, by contrast, shows little expression before 

E13.5[55]. There is transient expression of MR in muscle and a few other tissues between E14.5 and E18.5, 

but by E18.5, the distribution of MR expression is similar to the adult pattern. Importantly, however, MR is 

expressed in the developing thymus at E18.5, persisting into neonatal life[55], though expression has gone 

here by adulthood [79]. This suggests a window of susceptibility during which the thymus may be extremely 

sensitive to the effects of glucocorticoid, mediated either via GR[80] or MR. 

 

However, whilst essential, the presence of GR and/or MR by itself is not always sufficient for the response to 

glucocorticoids. For example, levels of GR do not associate with sensitivity to glucocorticoid-induced 

apoptosis in thymocyte populations[81]. Glucocorticoid resistance, despite expression of GR, is a well-known 

phenomenon in chronic disease states such as asthma, as well as in acute lymphoblastic leukemia. In the 

latter, resistance is associated with a Warburg type metabolism[82] and can be overcome by inhibition of 

glycolysis[83]. Acquisition of the ability to respond to glucocorticoids may depend on expression of 

“competence” factors[84], such as transcription factors, which act co-operatively with GR to effect 

glucocorticoid-mediated gene regulation. It is interesting to speculate that these may allow, or be facilitated 

by, a switch in metabolism as a direct or an indirect effect of glucocorticoid action[85]. Thus, many factors 

potentially regulate glucocorticoid sensitivity – acting upstream, downstream or cooperatively with 

GR[86,87,85], though the relevance to developmental actions of glucocorticoids is, as yet, largely unexplored. 

Further, glucocorticoid action in the fetus is likely to prime subsequent responses; the response of the 

tyrosine aminotransferase gene is more rapid following a second exposure to glucocorticoid, than following 

the first. This memory effect is mediated by glucocorticoid-induced gene demethylation at one site, required 

for glucocorticoid-dependent transcription factor recruitment to a second site[88]. We return to this topic of 

glucocorticoid sensitivity in the context of developmental programming, below. 

 

Consequences of fetal exposure to glucocorticoids  
 

Although glucocorticoids are essential for the maturation of fetal tissues and organs prior to birth[19,20], 
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excessive or possibly premature exposure to glucocorticoids during sensitive windows of development 

reduces tissue accretion and body weight, and elicits permanent effects on organs and tissues. These effects, 

which manifest in the offspring once adult, include hypertension, hyperglycemia, altered HPA axis activity 

and anxiety or depressive-like behaviours, increasing the risk of an individual for cardio-metabolic and 

psychiatric disease[89,21]. This phenomenon has been termed developmental “programming”. Maternal 

stress, which may overwhelm placental 11-HSD2 with high maternal glucocorticoid levels, programmes 

adult behavior and HPA axis responses[90-92] and increases allergic airway responses [93]. Early life 

programming of adult disease susceptibility also occurs with maternal under-nutrition and maternal 

infection[94]. Glucocorticoids are central to the programming that occurs with maternal under-nutrition[50], 

though whether they play a central role in programming by maternal infection is currently unknown and 

important to establish. Programming by glucocorticoids and/or stress has been described in humans, non-

human primates, sheep, rats and mice, as well as other animals and has been previously reviewed[89,29,95-

97]. 

 

As mentioned above, placental 11-HSD2 plays an important role in controlling fetal glucocorticoid exposure. 

In humans, mutations in HSD11B2 are associated with reduced birth weight[98]. In mice, maternal stress or 

the absence of 11-HSD2 reduces placental vascularization, causes placental dysfunction and alters nutrient 

transfer to the fetus[99,4,67] causing intrauterine growth restriction. Similarly, chronic glucocorticoid over-

exposure increases vascular resistance in the feto-placental circulation[100]. Together, these data suggest 

that placental dysfunction contributes to the programming effects of glucocorticoids. Recent evidence has 

shown that pravastatin administration, which increases placental vascular endothelial growth factor (VEGF)-

expression, to Hsd11b2-/- mice restores placental vascularization and rescues their IUGR phenotype[67], 

suggesting a possible therapy to overcome at least some of the adverse effects of fetal glucocorticoid excess.  

 

Programming by glucocorticoids depends upon windows of sensitivity -critical periods in the growth, 

development and/or maturation of the particular tissue or organ that is affected. For example, although 

dexamethasone administration in the third week of pregnancy in rats programmes hyperglycemia in adult 

offspring, administration of dexamethasone in the first or second week of pregnancy has no effect on 

glucose or insulin homeostasis[101]. Similarly, the children of women exposed to extreme maternal stress in 

the third trimester of pregnancy have altered basal cortisol levels at 1 year of age, whereas those exposed in 

the first trimester have normal cortisol levels [102].  Glucocorticoid resistance may be widespread in the 

early to mid-gestation fetus, in addition to the protection afforded by fetal expression of 11-HSD2. This 

requires further investigation, for example, to examine whether glucocorticoid resistance arises from the 

hypoxic environment or the dominance of glycolytic metabolism that predominates during early 

development or whether developing tissues need to express “competency factors” to acquire glucocorticoid 

sensitivity.  

 

The developmental windows of sensitivity to glucocorticoid action may differ between tissues. In GR-/- 

fetuses, impaired lung maturation is apparent by E15.5[103], whereas the impairment in heart maturation is 

not apparent until E16.5-E17.5[78]. For other organs that mature later, sensitivity can occur well into the 

neonatal period[104]. Thus, the programming effects of glucocorticoids, stress, poor nutrition or infection 

are not solely restricted to the prenatal period, but also impact during the neonatal period. For example, 

neonatal exposure to low doses of endotoxin programmes hyperactivity of the HPA axis and has long-lasting 

effects on immune regulation, including increased sensitivity of lymphocytes to stress-induced suppression 

of proliferation and protection from adjuvant-induced arthritis[104]. These windows of sensitivity for 
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particular organs are also likely to differ between species. For example, bone marrow hematopoiesis is 

largely established during the second trimester in humans, but only takes place shortly before birth in 

mice[105]. This suggests that the effects of maternal stress or other factors that determine fetal 

glucocorticoid exposure may be highly dependent on the developmental stage of the tissue or organ 

affected.  

 

Glucocorticoid-mediated programming of the hypothalamic-pituitary-adrenal axis 
 

Key to the mechanisms that underpin the long-term effects of maternal stress or glucocorticoid over-

exposure, is likely to be their effects on the fetal and/or neonatal HPA axis, leading to life-long HPA axis 

hyper-responsiveness[89,106,94,97]. In the case of maternal post-traumatic stress disorder, hypo-activity is 

programmed[102], though the mechanism is currently unclear. HPA axis hyperactivity plausibly accounts for 

the associations with metabolic (insulin resistance), cardiovascular (hypertension, increased coronary heart 

disease) and affective disorders (anxiety, depression). Given the potent immuno-modulatory effects of 

glucocorticoids[107,108], permanent changes in HPA axis activity are also likely to underpin at least some 

aspects of glucocorticoid programming of the immune system, though others are direct and mediated by GR 

and/or MR in fetal and/or neonatal immune tissues. In rodent models of stress/glucocorticoid programming, 

the HPA axis hyperactivity is mostly driven by increased hypothalamic expression of CRH and AVP[109] as 

well as altered GR/MR balance in the hippocampus[110]. However, although altered HPA axis responses are 

involved in the exacerbated pro-inflammatory response to LPS programmed by neonatal over-feeding, they 

are not centrally mediated. Instead, the adrenal response to ACTH following LPS challenge does not resolve 

efficiently, prolonging corticosterone release[111].  

 

 

Consequences of fetal glucocorticoid exposure on postnatal immunity 
 

Accumulating evidence from both animal and clinical studies suggests a link between prenatal glucocorticoid 

excess and programming of immune traits in the offspring. Although animal studies have provided valuable 

information on potential mechanisms, the findings are highly heterogeneous, possibly reflecting the 

multiplicity of hypotheses tested, as well as the species, strains and models used, as recently and thoroughly 

reviewed[105]. Here, we focus on clinical studies, which, due to the better defined samples and parameters 

assessed, as well as to the large number of individuals in epidemiological cohorts, provide more clear 

outcomes. Findings from the most outstanding clinical studies since 1980 that have addressed the 

programming of immune traits in postnatal life by maternal stress perception or prenatal steroid treatment 

are summarised in Tables 1 and 2, according to the study design: focused on early postnatal immune 

outcomes (Table 1), or epidemiology (Table 2).  

 

Table 1 provides clues on the short-term effects of glucocorticoid exposure on immunity. With few 

exceptions[112-115], fetal cord blood was employed to measure parameters such as cytokine levels, cell 

counts or leukocyte function, which we classified into innate or adaptive immunity (refer to Table 1 for 

references). Hampered by the considerable heterogeneity in immune parameters between individuals[116], 

differences in the selected readouts and methodologies employed, and the small size of these studies, the 

collective data are conflicting and inconclusive. For example, studies that have measured interleukin (IL)-6 in 

cord blood report decreased [117] or unchanged[118,119] IL-6 levels in response to the same prenatal dose 

of betamethasone. In another study in which second trimester maternal stress perception occurred, IL-6 
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levels increased[120]. The discrepancies between these studies could reflect the fact that cohorts exposed 

to antenatal steroids often include preterm neonates, in whom the immune system is still immature, in 

contrast to prenatally stressed neonates, largely born at term. After prenatal steroid treatment, studies 

broadly agree concerning alterations in cord blood lymphocytes, though differ in the individual cell 

populations affected. Total lymphocyte and CD4+ T cell numbers were decreased in one study[121] whereas 

in another study, T and NK cell numbers were unchanged though T cell proliferation was reduced and NK cell 

activation was increased[119]. Another study, in infants treated with antenatal corticosteroid, reported an 

absence of radiographic thymic shadow 36 h after birth, suggesting a decrease in thymic cellularity, but this 

was not associated with abnormal cell counts in peripheral blood[115]. Decreased neutrophil 

function[122,117] and a bias to immaturity[123] were observed in neonates following antenatal 

corticosteroid treatment, potentially increasing risk of morbidity and mortality from bacterial infection, as 

reported for multiple courses of glucocorticoids[124]. This, plausibly, could be due to HPA axis suppression, 

as a result of the treatment. More consistent outcomes were observed following prenatal stress exposure. 

For example, pro-inflammatory cytokine profiles[125,120], showed increases in IL-8 and IL-4 in cord 

blood[120] or in ex-vivo stimulated cells[125,114], though effects on IFN- were less clear. Higher IgE levels 

have been reported in cord blood of prenatally stressed newborns[126,127]. However the relevance of these 

findings is somewhat questionable, as fetal cord blood IgE is often contaminated with Ig of maternal 

origin[128]. Taken with caution, the collective data suggest that antenatal steroid treatment is detrimental 

for neutrophil function and the T lymphocyte compartment, whereas prenatal stress biases the 

inflammatory cytokine profile at birth towards a Th2 response. This Th2 bias in the cytokine response could 

be long lasting, as it is also observed in adolescents[129] and adult women[130] who experienced prenatal 

stress. Future studies with a greater number of participants as well as a comprehensive characterization of 

immune outcomes at birth or in neonates are needed to provide conclusive information on the short term, 

as well as long term, effects of endogenous or exogenous glucocorticoid exposure.  

 

In contrast, epidemiological studies (table 2) involving large cohorts and clear clinical outcomes have 

provided important insights into the mid and long-term consequences of prenatal endogenous and 

exogenous glucocorticoid exposure. Table 2 summarizes studies involving at least 100 participants, which we 

classified according to the nature of the immune disease and the age at evaluation of the symptoms. From 

23 epidemiological studies, 14 addressed the incidence of atopic diseases, predominantly asthma but also 

atopic dermatitis (refer to Table 2 for references). These studies, which ranged from 279 to 3.2 million 

participants, provide strong evidence that children exposed to prenatal stress are at a higher risk of 

developing atopic disease. Similarly, increased risk for asthma was observed in children prenatally treated 

with synthetic glucocorticoids[131]. Atopies are multifactorial diseases, exhibiting intensified Th2 responses, 

which drive high levels of IgE, and involve innate lymphoid cells, eosinophils and mast cells in particular 

[132,125].  

 

While classic genetic association studies can explain only 1-2% of variation in IgE levels, epigenetic 

associations account for more than 13% of IgE variation [133].  This suggests that environmental signals and 

developmental differentiation programs are influenced by epigenetic mechanisms that regulate sensitivity to 

asthma. The risk for atopy is increased from 1 until 14 years of age (refer to Table 2 for references), whereas 

beyond 14 years, the risk may be attenuated, though only one study addressed this [134]. The age at which 

these immune traits become apparent may be a measure of the endurance of effect of the prenatal insult. 

When the most affected ages are assessed within a cohort, variability suggests effects are most likely to 

manifest in early infancy[134,131] or during adolescence[8]. Similarly, the association of prenatal stress with 
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asthma was stronger either in girls[8] or boys[135] depending on the cohort analysed. These discrepancies 

could be driven by differences in the nature or timing of maternal stress during pregnancy, and highlight the 

requirement to report these and other maternal and offspring (such as gender and age) categories in the 

analysis of cohorts. 

 

Other studies addressed diverse diseases/immune traits that we have classified under the umbrella of “risk 

for infection”. Antenatal steroid treatment is associated with fewer systemic infections[32] in the immediate 

neonatal period. However, when multiple courses of prenatal glucocorticoids were given, the risk for 

perinatal infectious morbidity and neonatal death increased[124]. Further, in low and mid-income countries 

antenatal corticosteroid therapy was associated with greater overall infant mortality and an increase in 

suspected maternal infection [34], suggesting that glucocorticoids could negatively impact neonatal health 

by affecting maternal immunity. Increased antibiotic use[7] and hospitalization because of infectious 

diseases[136,137] in children aged 1 to 14 have been also reported, indicating that both antenatal stress and 

steroid therapy confer a greater susceptibility to infections or a weakened ability to resolve them. This could 

be related to multilevel dysfunction in the innate and adaptive immune responses, which might be primed 

by altered microbiome colonization, as discussed below.      

 

Similarly, an increased risk for autoimmune type 1 diabetes is associated with prenatal exposure to 

stress[138] or glucocorticoid therapy[139] in large cohorts of over 0.5 and 1.5 million participants, 

respectively. To date, no studies have examined associations between prenatal glucocorticoid exposure and 

other autoimmune diseases, which is not surprising given their relatively low frequency (compared to atopy), 

and late age of onset (mostly in adulthood, thus implying many years of follow up study). In addition to 

genetic risk, autoimmunity relies autoreactive T cells escaping negative selection, a process sensitive to 

glucocorticoids[140], and defects in immune regulation. Moreover, since children undergoing prenatal 

glucocorticoid therapy also have a higher risk for type 2 diabetes[139], it is likely that mechanisms that 

determine resistance to insulin or maintenance of beta cells are also affected by glucocorticoid therapy[141]. 

 

Finally, prenatal stress is also associated with an increased risk for any cancer [142], including acute 

lymphoblastic leukemia and Hodgkin’s disease[143]. Interestingly, the authors argue that these 

hematopoietic cancers may have an infectious etiology, being triggered by microbial agents or Epstein-Barr-

Virus[143], suggesting a link between prenatally-programmed susceptibility to infections and cancer.  

 

Thus, prenatal stress or corticosteroid treatment are associated with higher risk of atopy, infection, type I 

diabetes and cancer in later (postnatal) life. Despite the high heterogeneity in the experimental design 

among clinical studies (the prenatal steroid therapy or the proxy used for stress, the time of pregnancy 

evaluated, the postnatal time considered for assessing readouts, and the number and selection of 

participants), the mid/long-term clinical immune outcomes were surprisingly homogeneous. This, despite (at 

least in the case of stress, where the maternal immune and sympathetic nervous system are involved) the 

possibility of a variety of contributing mechanisms. This highlights the importance of glucocorticoids as key 

mediators of stress effects. Remarkably, just one study showed an association between increased evening 

cortisol and pregnancy-specific stress and both measures independently predicted the risk for infant 

illness[7]. The remaining clinical studies reviewed in Tables 1 and 2 did not measure glucocorticoids or failed 

to find their association with maternal stress[114], probably due to difficulties obtaining reliable 

glucocorticoid measures due to differences in time of day or stage of pregnancy. Moreover, as described 

above, maternal stress may decrease 11β-HSD2 expression/activity[25], resulting in fetal glucocorticoid 
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overexposure independently of maternal glucocorticoid changes. To close these gaps in knowledge, 

considerable efforts have been placed in improving experimental design and sample collection, which will 

undoubtedly provide more conclusive results in the near future. It is also possible that at least to an extent, 

the programming effects of glucocorticoids are direct upon the feto-placental unit, rather than secondary to 

effects upon maternal physiology[5,50]. Indeed, as mentioned above, there is a steep gradient between the 

high levels of glucocorticoid in the maternal compartment and low in the fetal. However, current evidence 

indicates significant “synchronization” between maternal and fetal immunity. Examples of this are apparent 

in the numbers of T regulatory[144] or Th2 cells[145]. This synchrony may result from the continuous 

exchange of hormones, immune messengers, antigens, and even cells[146,1], that takes place at the feto-

maternal interface. Clearly, stress-induced changes in transplacental transfer of maternal IgG or other 

passive immunity could also affect offspring immunity. Taken together, programming of immune disease by 

antenatal stress/corticosteroid therapy is likely to involve indirect mechanisms - changes in the mother 

eliciting fetal immune programming-, as well as direct effects on the placenta, fetal HPA axis and fetal 

immune organs. This requires further examination. Moreover, the time windows by which endogenous or 

exogenous glucocorticoids exert their programming effects during pregnancy might differ. Antenatal 

corticosteroid therapy is applied between 24 and 34 weeks of gestation [32] whereas maternal stress could 

take place outside of that window. We here referred to the existence of distinct windows of sensitivity, 

depending on the developmental immune process that takes place at each time and the sensitivity to 

glucocorticoids among tissues and stages of development, given by dynamic changes in the expression of GR, 

11β-HSDs enzymes and competence factor. Whilst the role of exogenous and endogenous insults with 

regards to the windows of sensitivity has been addressed extensively in animal research, to date, most 

clinical studies assessed stress only once in pregnancy without discrimination between timepoints (Tables 1 

and 2). An exception to this are the reports from Cookson et al. and Hartwig et al. that identify a higher risk 

of asthma with stress between 18-32/34 weeks, compared to earlier in gestation[8,6]. Interestingly, this 

later time point partially overlaps the window in which antenatal corticosteroid treatment is administered, 

suggesting that in humans, this could be the greatest window of sensitivity to the programming effects of 

glucocorticoids.  

 

In order to elaborate on potential mechanisms driving the increase in susceptibility to immune diseases 

following excessive prenatal glucocorticoid exposure, in the next section we will review the different stages 

of fetal immune development. While T cell responses are well known to be affected by glucocorticoids, we 

will additionally examine known or potential susceptibility to glucocorticoids by other components of innate 

and adaptive immune system, as they affect the risk for atopies, infections, and autoimmunity.  

 

 

Mechanisms that may underly glucocorticoid induced programming of the 
immune system 
 

Effect of glucocorticoids on the ontogeny of the fetal immune system: Hematopoietic stem 
cells and early hematopoietic niches 
 
Placental blood circulation is established on E9 in mice[147] and from the first trimester in human gestation, 

facilitating the nutrient and gas exchange between the fetal and the maternal systems. Thereafter, greater 

fetal exposure, especially at highly vascularized hematopoietic sites, to factors transferred from maternal 
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blood could be expected[148]. It remains unclear whether glucocorticoids affect the prenatal establishment 

of the definitive hematopoietic stem cell (HSC) pool, which endures through the individual’s life[149]. In the 

present section we review the development of the immune system aiming to pinpoint windows of sensitivity 

to glucocorticoids and possible immune or stromal cell targets. Though scarce, we here focus on evidence 

arising from fetal tissues, as distinct glucocorticoid responses in prenatal and posnatal tissues are possible, 

driven for example, by differential HSC DNA methylation patterns[150] and/or coexpression of transcription 

factors[151,152]. 

 

The fetal hematopoietic system develops in a stepwise manner that involves the formation, proliferation, 

migration and differentiation of HSC (reviewed in[153,154,149]). By E7 in mice and early first trimester in 

humans, hematopoiesis starts from transient precursors in the yolk sac [155]. These develop into 

erythrocytes and the first immune cells. From this hematopoietic wave, only tissue resident macrophages 

will endure until adult life. All other blood components will be gradually replaced by the definitive 

hematopoiesis [156]. Consequently, this early stage of hematopoiesis poses a low vulnerability for any long-

lasting effects of glucocorticoids on the immune system, in agreement with the lack of association between 

stress in the first trimester of gestation and the risk for atopic diseases[6,8].  

 

Definitive HSC are not found in the aorta-gonad-mesonephros region and in the placental labyrinth[157] 

until E10.5-11 in mice[158] and at 4-6 weeks of gestation in humans[159]. From 7 weeks of gestation in 

humans[160] and E12 in mice[158], definitive HSC migrate to the liver. Supported by the niche created by 

the arterial portal vascular tree[161], liver HSCs proliferate rapidly until E16.5 in mice[162], when HSC 

homing to the bone marrow starts. Simultaneously, differentiation of HSCs into myeloid cell lineages 

(erythrocytes, granulocytes, monocytes, megakaryocytes) as well as the development of the first lymphoid 

progenitors and then NK cells and B cells [163,164]. Some liver lymphoid precursors and HSC migrate to 

colonize the thymus and spleen and give rise to differentiated cells from the lymphoid and 

myeloid/erythroid lineages, respectively[165]. Although fetal growth and lung and cardiovascular 

development are rather refractory to glucocorticoids prior to E14.5[103,21,4], evidence concerning the in 

vivo effects of glucocorticoid exposure on fetal stages of hepatic hematopoiesis remains scarce. Early 

hematopoietic steps appear independent of glucocorticoids, as GR-/- fetuses show no distinct alterations in 

hepatic hematopoiesis at least until E14.5, when adrenal steroidogenesis initiates (unpublished 

observations). However, it is possible that GR can be activated by maternally-derived glucocorticoid before 

(or after) that. In mice, hepatic hematopoiesis coincides with a reduction in liver GR expression from E12. GR 

expression then rises significantly again at E18.5 when hematopoiesis has already been established in the 

bone marrow[68]. The decrease in GR expression on E14.5-18.5 together with high placental and hepatic 

11β-HSD2 expression during early to mid gestation are likely to be mechanisms to protect hematopoiesis 

from inappropriate glucocorticoid exposure at might occur in the case of maternal stress or infection. 

However, low GR expression does not prevent dexamethasone (a poor substrate for 11β-HSD2) from 

promoting the differentiation of immature hematopoietic cells (Lin−Sca-1+c-Kit+)[163] and Lin-c-KitLo 

lymphocyte precursors isolated from E15 mouse liver[151] into myeloid cells while at the same time 

disrupting their ability to form B lymphocytes in vitro[151]. Similar results were observed in adult human 

bone marrow[151], suggesting that this is a highly conserved effect of glucocorticoids. Thus, throughout 

fetal development, glucocorticoids may direct otherwise undifferentiated stem cells towards a myeloid cell 

fate over a lymphoid cell fate. In vivo a glucocorticoid-mediated impairment in lymphocyte differentiation 

may alter the B cell compartment in the short-term. This might explain the impaired neonatal humoral 

responses to tetanus [113] and Hepatitis B[114] vaccination in babies that received antenatal corticosteroid. 
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However, antenatal corticosteroid therapy was also associated with increased responses to Haemophilus 

influenzae type b [112], underscoring the need for more investigation on the role of prenatal glucocorticoids 

on humoral immune responses. 

 

The in vivo effects of glucocorticoids on immune cells are highly dependent on the type, dose, timing and 

duration of the treatment[166]. In human fetal (7-12 weeks of gestation) nucleated liver cells, in vitro 

betamethasone stimulation significantly inhibited the hematopoietic colony-forming capacity in a dose 

dependent fashion. This was evidenced by a reduction in the number of burst-forming units-erythroid cells 

(BFU-E) and colony-forming units for granulocytes, erythroid cells, macrophages and megakaryocytes (CFU-

GM and CFU-GEMM)[167]. Together these give rise to the myeloid blood components and/or erythrocytes. 

In contrast, it is well established that modest levels of dexamethasone promote self-renewal of early 

erythroid progenitors (BFU-E) and increase the production of terminally differentiated erythroid cells by fetal 

mouse liver cells in vitro and in vivo[168,169]. This seems relevant for immune function, since increased 

erythropoiesis may occur at the expense of a reduction in leukocyte hematopoiesis, as observed for in vitro 

lymphopoiesis[167]. A further unexplored question is whether glucocorticoid enrichment of BFU-E and the 

consequent increase in BFU-E derived CD71+ colony forming units erythroblast[168] might alter the 

suppressive CD71+ erythroid immune cell compartment. This neonatal cell population plays an important 

regulatory role in early neonatal immunity[170] by protecting the immature newborn against aberrant 

immune cell activation in the intestine upon colonisation with parturition-associated commensal 

microorganisms.  

 

Interestingly, while in human pregnancies the evidence for effects of prenatal stress on the immune system 

remains scarce[8,6], animal models pinpoint hepatic and bone marrow hematopoiesis as key susceptible 

sites, with corresponding developmental windows of sensitivity, for prenatal immune 

programming[171,172,105]. Effects specific to the different sites (or stages) are difficult to dissect, as very 

few studies limited the stress to just one of these stages[93]. Similarly, T cell development in the thymus 

takes place during an overlapping developmental window (see following section), at least in mice. Taken 

together, glucocorticoid over-exposure might simultaneously affect different processes of immune ontogeny. 

 

By E16.5 in mice and 13-14 weeks gestation in humans, bone vascularization and the concurrent transition 

from cartilage to a calcified matrix permit the HSC to migrate into the developing bone marrow 

(BM)[148,160] decreasing their number in the liver[153]. In the BM, the first quiescent adult-like HSC 

develop, probably as a result of their interaction with mesenchyme-derived stromal osteoblasts[148]. BM 

HSCs give rise to multipotent progenitors (MPPs) before differentiating into common myeloid progenitors 

(CMPs) and common lymphoid progenitors (CLPs), which then undergo a series of maturation steps. MMPs 

can replenish virtually all components of the immune system throughout life. Fetal BM HSC homing, self-

renewal and differentiation are highly dependent on the stromal niche[173]. Whilst glucocorticoids seem 

dispensable for fetal bone and cartilage formation[174], evidence suggests that glucocorticoid excess or 

deficiency affects the microstructure and function of the bone marrow. Bone resorption is enhanced in 

infants treated with at least four courses of antenatal steroids[175,176]. In vitro glucocorticoids promote 

proliferation of mouse perinatal osteoblasts [152] and promote maturation of human osteoblasts[166]. 

Importantly, newborn mice with chronically low glucocorticoid levels as a result of the transgenic deletion of 

the corticotropin releasing factor receptor 1 gene, show increased osteoblast-bound CXCL12[152], which 

enhances chemotaxis and quiescence in HSC. They also have more bone marrow and circulating 

hematopoietic stem and progenitor cells[152].  
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Concomitant with the sequential traffic of fetal HSCs through hematopoietic sites, immune cells circulate in 

growing numbers in the secondary lymphoid organs and vasculature[155], where they are susceptible to the 

effects of glucocorticoids. It seems plausible that glucocorticoid-induced programming of the immune 

system would be mediated by effects on HSCs or other persistent progenitors, rather than upon the 

continually replaced, short-lived fully differentiated cell populations. However, a direct glucocorticoid effect 

could explain short-term changes in infant immunity (for example, the increased susceptibility to infections). 

This could, in turn, affect immune responses in later life[143]. For example, methylprednisolone treatment 

of human umbilical cord blood CD34+ hematopoietic cell precursors accelerated NK cell differentiation and 

induced cytolytic activity[177]. It also promoted a switch in myeloid precursors toward immature NK 

cells[177]. Such a switch could explain the enhanced NK activation found in human cord blood cells of 

infants who received antenatal corticosteroid therapy[119]. 

 

Thus, further experimental investigation is required to establish whether and how excessive prenatal 

glucocorticoid exposure impacts upon HSC homing and proliferation and to determine any effects on 

hematopoiesis, with short and long term consequences for postnatal immunity. Key to the mechanisms, we 

hypothesize that long-lasting disease risk is driven by epigenetic mechanisms in HSCs, as outlined below.  

 

Effect of glucocorticoids in T cell differentiation and selection 
 

Shortly before birth, adrenal glucocorticoid production is low and circulating maternal glucocorticoids have 

been blocked by the placental 11β-HSD2 barrier. The thymic epithelium produces its own glucocorticoid to 

support the rapid development of the late gestation thymus[178]. Mouse thymic epithelial cells (mTEC) 

express the enzymatic machinery to convert cholesterol to corticosterone, suggesting that the level of 

glucocorticoids in thymus is enhanced by paracrine delivery. In mice, mTEC production of a glucocorticoid 

intermediate was highest at birth and subsided through adulthood[80,179]. Recently Taves et al. confirmed 

that corticosterone levels in the embryonic and neonatal thymic tissues are elevated above blood levels[180]. 

Production of corticosterone has been observed by thymocytes from older mice[181], and it  was proposed 

to underlie age-related thymic atrophy[178]. Immature thymocytes readily undergo apoptosis induced by 

glucocorticoids[182]. Since removal of glucocorticoids by adrenalectomy causes thymus hyperplasia, it was 

suspected that glucocorticoids play a role in thymocyte death by neglect. However, local production of 

glucocorticoids in the thymus and a normal thymus size in diverse GR-deficient models did not support this 

concept (reviewed in[183]). A recent report suggests that ACTH may act via its receptor, MCR2, to directly 

increase thymocyte numbers, independently of glucocorticoids [184], suggesting that perturbations of the 

HPA axis may regulate thymic homeostasis through ACTH as well as glucocorticoids. Glucocorticoids also 

counteract TCR-derived selection signals in thymocytes. By dampening the effect of TCR signals that would 

otherwise lead to negative selection, glucocorticoid signals allow TCRs with higher affinity for self-MHC to be 

positively selected. Consequently, transgenic mice with reduced GR signalling in immature thymocytes show 

a bias to a less autoreactive T-cell repertoire[185,186]. Enhancement of the T-cell repertoire by endogenous 

glucocorticoids has also been demonstrated by the reduced antigen responsiveness of mice with T cell-

specific disruption of GR signaling[187]. Of note, the first reported “knock out” of GR, that generated a 

truncated GR with residual activity[188,189], previously led to the conclusion that glucocorticoids play no 

role in thymic development[190,191]. However, while the thymocyte number and subset distribution of 

these mice were normal, their T-cell repertoires were not examined[190-192].  
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Elevated levels of glucocorticoid prenatally would be expected to add to the effects of endogenous thymic 

glucocorticoid production and further raise the threshold for negative selection, promoting the development 

of higher affinity and potentially auto-reactive T cells. Indeed, thymocyte apoptosis in the fetal thymus is 

induced by prenatal treatment with betamethasone at doses that mimic therapeutic levels [193]. This results 

in an accelerated refill of the thymic niche with immature precursors that are subject to selection in the 

presence of high glucocorticoid levels. Since 11β-HSD2 is not expressed in the fetal thymus, similar 

mechanisms could apply to excessive glucocorticoid exposure upon prenatal stress. Thus, expansion of a 

cohort of auto-aggressive T cells could underlie the increased incidence of asthma or autoimmune disease 

reported in the offspring of stressed or betamethasone-treated mothers[131,194]. 

 

Mechanistically, the antagonism of TCR and glucocorticoid signaling involves the glucocorticoid-inducible 

leucine zipper (GILZ) protein. Overexpression of GILZ in T-cell hybridomas inhibited TCR-induced 

apoptosis[195], implicating GILZ in glucocorticoid-mediated repression of TCR-induced transcription factors 

such as AP-1 and NF-kB. These factors are themselves direct targets of suppression by the GR, so GILZ may 

serve to amplify the repressive effects of glucocorticoids[196,197]. GILZ has been implicated in 

glucocorticoid effects in other immune cell types, in the dendritic cell-mediated expansion of Tregs[198,199], 

control of B cell survival[200] and endotoxin tolerance of macrophages[201]. Another potential target of 

glucocorticoid signaling during thymocyte selection is Nur77 (Nr4a1), whose transcriptional activity is 

sensitive to glucocorticoids[202] and its expression is upregulated by TCR signalling[203]. Transgenic 

expression of a dominant-negative form of Nur77 resulted in inefficient negative selection of autoreactive 

thymocytes [204]. In addition, thymocyte-specific deletion of all three Nr4a family members blocked 

development of regulatory T cells and caused fatal autoimmune disease similar to that of mice and humans 

lacking the Treg-specific transcription factor Foxp3[205].  

 

The elimination of autoreactive and potentially dangerous T cells before they leave the thymus constitutes 

the basis of central tolerance. While it is readily understandaable how central tolerance of T cells reactive 

against ubiquitous and thymic antigens is achieved, tolerance against tissue specific antigens such as insulin 

or myelin basic protein requires their “ectopic” or “promiscuous” gene expression by mTEC. This ectopic 

expression is dependent on the transcriptions factors such as AIRE[206] and FEZF2[207]. The regulated 

activity of these transcription factors ensures a representation of ‘self proteins’ in the thymic medulla which 

is displayed to maturing thymocytes during negative selection. Interestingly, a putative risk allele for Crohn’s 

disease is associated with the downregulation of AIRE expression mediated by glucocorticoids[208].  mTECs 

are also susceptible to glucocorticoids: Injection of high-dose dexamethasone in adult mice drastically, albeit 

transiently, depleted mTEC [209], which only resolved one week later. It is conceivable that a spike of 

glucocorticoid signaling at a sensitive time for the development of the T cell repertoire may compromise the 

transcription of tissue-restricted antigens in the thymus, thus impairing negative selection and favoring the 

production of autoreactive T cells. 

 

Molecular mechanisms that underpin glucocorticoid programming 
 
The mechanisms that underlie the permanent or programmed effects of glucocorticoids upon developing 

fetal tissues and organs remain unclear. Some aspects of stress/glucocorticoid programming can even be 

transmitted to future generations, without further experimental manipulation[210], raising interesting and 

important questions about the mechanism. A detailed overview of this topic is beyond the scope of this 

review, and so we restrict our discussion chiefly to mechanisms that may apply to immune programming. 
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Epigenetic variation has been suggested as a key mediator of the programming effects of glucocorticoids, 

with methylation of CpG residues in the promoter regions of key genes being implicated in the long-term 

effects of early life stress or glucocorticoid exposure[211,212]. However, no cause and effect relationship 

between methylation and long-term effects on physiology has yet been established [213]. Moreover, the 

relevance of the small differences in CpG methylation observed in most studies, particularly where these lie 

in largely methylation free CpG islands, to the transcriptional regulation of the associated programmed gene 

remains unclear. Clearer is the role of DNA methylation in HSC function and differentiation. 

 

 

Epigenetic mechanisms of fetal programming of immune cells 
 
As methylation can be transmitted from a cell to its progeny, variations in the HSC or HSPC methylation 

patterns, induced for example, by prenatal stress or glucocorticoid exposure, could have long-term effects 

upon the individual’s immunity. Epigenetic mechanisms have been implicated in regulation of fundamental 

stem cell functions, such as self-renewal and multilineage differentiation (reviewed in[214]). Plasticity in 

DNA methylation patterns is related to HSC multipotency, stage of ontogeny and aging[215,150] as well as to 

their degree of differentiation[216,217]. The few differences observed in the overall DNA methylation 

pattern between mouse fetal liver and young postnatal HSCs were suggestive of a developmental restriction 

process. In young HSCs, DNA methylation was gained on regions associated with non-hematopoietic lineages, 

and lost at genomic regions associated with blood cell production[150], seeming to favour an emerging 

transcription profile typical of leukocytes rather than fetal HSCs. De novo DNA methylation is required to 

maintain the self-renewal capacity of HSCs [218], whereas HSC differentiation is associated with changes in 

DNA methylation patterns. In this sense, myeloid lineage commitment involved less global DNA methylation 

than lymphoid commitment[216,217]. Interestingly, the methylation of genes involved in glucocorticoid 

receptor signalling pathways is altered when HSC commit to common myeloid and megakaryocyte-

erythrocyte progenitors[219], providing further clues that glucocorticoid related pathways are involved in 

HSC differentiation. In other tissues, glucocorticoid exposure has been suggested to lead to glucocorticoid 

resistance by inducing methylation of the GR gene promoter and suppressing its expression [220,221].  

However, the relevance of these differences in GR methylation for glucocorticoid sensitivity requires further 

examination. 

 

 

During development, T cell precursors become committed at the same time that alternative lineages are 

excluded. Several recent reports pinpoint dynamic changes in gene expression profiles and epigenetic 

marking over the process of T cell differentiation [222,223]. These demonstrate, for instance, how 

inheritable specification in helper and cytotoxic T cells involves stage-specific DNA methylation and 

demethylation events at the Cd4 locus[224]. Differentiation of Th2 cells is induced by activation of the T cell 

receptor and IL-4 receptors. Th2 phenotype is subsequently maintained by a positive feedback mechanism 

and by repressing histone modifications at Th1 loci[225]. With regard to the effect of stress/glucocorticoids 

on T cell epigenetic programming, a genome wide DNA methylation profile in T cells demonstrated that the 

methylation levels of 2872 CpGs differed significantly in adolescents whose mothers underwent stressful 

events during an ice storm in Canada, compared to controls[226]. Many of these differentially methylated 

CpGs occurred in genes and pathways related to immune function, suggesting that maternal stressors may 

affect postnatal immunity by long lasting and widespread effects on DNA methylation across the entire 

genome of their unborn children. A drawback of this study is that no sample was collected at birth, thus, 
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some of the changes could be related to postnatal stress events. In addition, no cause and effect 

relationships with DNA methylation have been established yet. This will be important to address in the 

future, as the epigenetic changes may occur secondarily to transcriptional programming. 

 

A clear example of prenatal programming of the immune system has been shown upon induction of innate 

immunity in pregnant mice. Injection of TLR agonists during pregnancy increases innate and adaptive 

immune responses in the offspring, and results in earlier onset of clinical symptoms of experimental 

autoimmune encephalitis[227]. Even though the underlying mechanisms were not evaluated, these 

experiments indicate that fetal programming of the immune system persists into adulthood and has 

consequences for health. 

 

Potential mechanisms of glucocorticoid induced postnatal immune disease 
 

The effects of glucocorticoids on the immune system are amazingly broad as a consequence of the variety of 

target cell types, the diversity of pathways affected, the time of action and a seemingly dichotomous effect 

on the immune response: glucocorticoids tend to enhance a ramp up innate response to microbial products 

and damaged tissue, while repressing subsequent adaptive immune responses, to promote the resolution of 

inflammation and restore homeostasis[228,229]. It is not surprising that, when looking at the consequences 

of fetal exposure to glucocorticoids as a result of maternal stress or by pharmacological indication, we find 

apparently discordant effects, namely exacerbated responses in atopy or insufficient immunity to infection.  

 

A converging point of published studies on prenatal stress is an increased risk of developing allergies. Atopy 

is characterized by dominant Th2 responses, with an overproduction of Th2 cytokines such as IL-4 and IL-13, 

and high IgE levels in serum, leading to enhanced mast cell degranulation. Th2 responses have long been 

considered the anti-inflammatory counterpart of Th1 and, by suppressing IL-12 and IFN-γ, glucocorticoids 

shift the Th1/Th2 balance to Th2[230]. This process may be mediated, at least in part, by GILZ[231]. 

Psychological stress enhanced Th2 responses in asthmatic patients, detectable even one year after the 

stressful event[232]. Moreover, production of Th2 cytokines was increased in 13 year old children and adult 

women born from mothers who faced stressful conditions during pregnancy[129,130]. Together, these 

studies indicate programming of enhanced Th2 responses by stress and/or glucocorticoids. Interestingly, 

epigenetic mechanisms had 10-fold greater influence on the levels of serum IgE in asthmatic patients than 

classical inheritance of genetic traits[133], underlining the importance of epigenetic transmission of Th2 

responses. 

 

Importantly, atopic diseases such as asthma may have a multifactorial etiology[233]. In humans, mid to 

severe subtypes of asthma show altered airway remodeling, resembling developmental branching 

morphogenesis of the lung. This results from disease-mediated epithelial metaplasia and damage and 

hypertrophy and hyperplasia of mesenchymal airway smooth muscle[234,235]. Similarly, in mice, conditional 

deletion of GR in lung mesenchyma results in an immature lung phenotype and deletion of GR in lung 

epithelium increases cellularity of epithelial and non-epithelial compartments [236]. Thus, it is tempting to 

hypothesize that precocious or excessive prenatal glucocorticoid exposure promotes structural changes in 

the immature lung which could synergize with glucocorticoid driven immune alterations to enhance the 

vulnerability to airway diseases. 
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In addition to direct effects upon the maturing lung and immune system, programmed HPA hyper-

responsiveness as a result of prenatal stress or exogenous glucocorticoid exposure may play a role in 

hypersensitivity to antigens in atopy[237]. For example, hypothalamic CRH responses, increased upon 

prenatal stress[109], promote mast cell degranulation[238]. Other mechanisms previously reviewed 

elsewhere [239,237], that involve substance P, arginine vasopressin or ACTH, may also contribute to atopy 

by potentiation of systemic immune proinflammatory effects. Of note, while the association between 

prenatal glucocorticoid induced immune and HPA dysfunction has been frequently demonstrated in animal 

studies (as detailed above), direct evidence remains scarce in humans. None of the studies summarized in 

tables 1 and 2 assessed HPA responses in infants. Similarly, as described above, increased prenatal exposure 

to glucocorticoids decreases birth weight and is associated with placental insufficiency. Low birth weight is 

also an important predictor of enhanced risk of developing asthma[240,241] and atopic dermatitis[242]. 

Whether the reductions in birth weight, alterations in lung structure and function and Th2 bias are all 

mechanistically related through excessive prenatal glucocorticoid exposure is an important question for the 

future.   

 

At physiological concentrations, glucocorticoids exert potent immuno-modulatory effects[107]. 

Glucocorticoids alter dendritic cell function, rendering them tolerogenic[198], plausibly mediated by GILZ, 

and they promote LPS tolerance in previously activated macrophages[201]. Thus, programmed postnatal 

HPA axis hyper-responsiveness and concurrent elevated basal cortisol levels could influence immune 

responses in the offspring. Moreover, there is growing evidence that development of the immune system in 

the offspring depends on the intestinal microbiota (reviewed in [243]). In this context, a recent study 

reported that infants of highly stressed mothers with high cortisol concentrations during pregnancy showed 

aberrant colonization with abundant Proteobacterial groups (containing pathogens related to Escherichia, 

Serratia, and Enterobacter), and reduced commensal bacteria, such as Lactobacillus[244]. In addition to the 

reported higher incidence of gastrointestinal symptoms and allergic reactions in these infants, the abnormal 

microbiota could elicit long lasting changes in the composition of the immune system, resulting in, for 

example, an enhanced infection risk. Moreover, prenatal stress exposure as well as antenatal corticosteroid 

treatment or preterm birth can prime the risk for diseases in early postnatal life[7,245]. This, in turn, may 

exert long-lasting effects upon HPA responses[104]. Thus, the independent contributions of prenatal and 

postnatal factors may be difficult to tease apart. 

 

Autoimmune diseases may be affected by prenatal glucocorticoid exposure. Children exposed prenatally to 

stress or corticosteroid therapy are at increased risk of developing type 1 diabetes (Table 2). Type 1 diabetes 

results from the destruction of the beta cells in the pancreatic islets by infiltrating autoreactive 

lymphocytes[246]. Transcripts encoding insulin, the main autoantigen in diabetes, are expressed in the 

thymus, driven by Aire [247]. Thus, a glucocorticoid-induced depletion of mTEC[209], or a direct effect of 

glucocorticoids on the regulation of Aire[208], could impair negative selection of lymphocytes recognizing 

insulin[248]. In addition, as we have mentioned before, by antagonizing TCR signaling, glucocorticoids 

modulate the threshold between positive and negative selection of thymocytes[185,80]. Excessive 

glucocorticoid signaling (due to prenatal corticosteroid treatment or as a result of HPA hyper-

responsiveness) could improve the survival of T cells prone to autoreactivity that otherwise would have been 

eliminated in the thymus. Beyond effects on the immune system, GR signaling determines beta cell 

differentiation during a critical developmental window through the regulation of the pancreatic master 

transcriptional regulator, Pdx-1[141]. A better maintenance of beta cells could slow down development of 

the disease. 
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In summary, mechanisms for glucocorticoid mediated programming of immune diseases may include short 

and long term changes in the immune system that interact with HPA axis hyper-activity and potentially with 

prenatally programmed altered function of the affected organs. Figure 1 depicts a hypothetical scenario, 

where the known or potential interactions between these players are illustrated, as well as their relation to 

postnatal immunity. The complexity of this scenario explains the difficulties of dissecting out the roles and 

understanding the hierarchical action of the individual players. 

 

Final remarks 
 

Epidemiological data unambiguously reveal prenatal life as a relevant period for programming of immune 

diseases. We have restricted this review to intrauterine immune development and the maternal, placental 

and fetal factors that may be modulated by glucocorticoid over-exposure in the settings of prenatal stress or 

synthetic glucocorticoid administration. However, maternal stress effects on offsprings’ immunity exceed 

the pregnancy period, and maternal prenatal stress is associated to postnatal stress/anxiety, which can also 

programme i.e. the risk for asthma[249]. Not to be forgotten is the influence of postnatal care[250] and 

lifestyle of the child, which may exert further effects on the immune system.  

 

Despite all the evidence, very little is known about the mechanisms that lead to immune disorders, and how 

they are programmed during fetal life. Moreover, crucial milestones of fetal immune development are 

achieved comparatively earlier in humans compared to mice and, consequently, the windows of sensitivity 

to glucocorticoids during fetal life are also likely to be different. For these reasons, there is an acute need for 

analysis of large cohorts, in which women are recruited early during pregnancy with follow-up of their 

offspring beyond puberty. In addition to strict documentation of the time window at which stressful events 

or treatment occurred, such studies should include a broad assessment of the child’s immune compartment 

and function at birth and later in life. This strategy should provide the much sought-after biomarkers to 

assess disease risk, and identify targets for mechanistic research in glucocorticoid-mediated programming of 

the immune system.  

 

Given the steady increase in atopy and autoimmune disease over the last few decades[251], investigating 

the windows of sensitivity to maternal stress/antenatal glucocorticoids and the multiplicity of factors 

involved in the programming of the immune system will permit the design of prevention strategies and 

constitute a true investment in our health. 
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Table 1: Changes in the innate and adaptive immune systems observed at birth and in early postnatal life 

  Condition 
Sample 

analyzed 
n Innate immunity 

Adaptive immunity 
References 

Cells Function Ab resp.  

Betamethasone 
(RDS Tx) 

CB 
In vitro 

18 
 Neutr. migration  
 Neutr. chemotaxis    

Fuenfer, 
1987[122] 

Betamethasone 
(RDS Tx) 

CB 84 
 Neutr. counts 
 Immature neutr.     

Barak, 
1992[123] 

Betamethasone 
(RDS Tx) 

CB serum 125 
 IL-6  
 ROS     

Caldas, 
2012[117] 

Betamethasone 
(RDS Tx) 

CB serum 200 
 IL-1β, IL-6, TGF-β 
 IL-10, IL-8, IL-4    

Kumar, 
2011[118] 

Betamethasone 
(RDS Tx) 

CB cells 
In vitro 

51  IL-6  
 T cells 
 NK cells 

 T cell prolif.  
 NK activation  

Kavelaars, 
1999[119] 

Antenatal steroids  
(not specified) 

Cord blood 42 
 

 Lymphoc.  
 CD4+   
 CD25+ 

  
Chabra, 

1998[121] 

Betamethasone 
(RDS Tx) 

CB cells 100 
 

 Lymphoc.   Apoptosis  
 

Agakidis, 
2009[252] 

Dexamethasone 
(RDS Tx) 

Chest X-ray 
at <36h life 

50 
 

No thymic 
shadow   

Michie, 
1998[115] 

Betamethasone 
(RDS Tx) 

Serum after 
vaccination 

54 
   

 Hib  
Tsuda, 

2012[112] 

Betamethasone 
(RDS Tx) 

Serum after 
vaccination 

130 
   

  
Tetanus  

Slack, 
2004[113] 

Maternal anxiety  
(20 &32 WOG) 

CB serum  
Blood at 2m 

120
9   

 T cells 

 IFN- 
 IL-4 

 HBV  
O'Connor, 
2013[114] 

Maternal stress  
(end of pregnancy) 

CB cells 
In vitro 
 

557 
 IL-8,  IFN-  
after TLR stimulation  

 IL-13 after 
mite dust stim. 

 IFN- after 
PHA stim. 

 
Wright, 

2010[125] 

Maternal stress  
(2nd trimester) 

CB serum 43 

 IL-1β, IL-6,  
IL-12, TNF-α 
 IL-8 
 IL-4, IL-5 

   
Andersson, 
2016[120] 

Maternal negative life 
events (29 WOG) 

CB serum 403 
   

 IgE 
Peters, 

2012[126] 

Maternal selfreported 
psychosocial stress 

CB serum 334 
   

 IgE Lin, 2004[127] 

CB: Cord blood; ROS: Reactive oxygen species; n. sp. Not specified which; WOG: weeks of gestation; Neutr.: Neutrophil.;  
PHA: phytohaemagglutinin; IgE, immunoglobulin E; HBV, hepatitis B virus; Hib, Haemophilus influenzae type b; m: months;  
Ab resp., antibody response 
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Table 2: Epidemiological studies showing association between prenatal stress or steroids and immune diseases 

 

Disease Condition Study cohort Association to disease Reference 

Atopy 

Maternal high stress 
N= 1264 

Until 2 yr 
 risk atopic disease Wen, 2011[253] 

Prenatal stress: 

negative life events 

N= 653 

Until 2 yr 

 wheezing in children born to mothers nonsensitized 

(low IgE) 

Mathilda Chiu, 

2012[254] 

Prenatal community 

violence 

N= 708 

Until 2 yr 
 association with wheezing Chiu, 2014[255] 

Prenatal maternal 

distress (a), depression 

and anxiety (b) 

N= 1531 (a) + 

973 (b) 

Until 4yr 

 risk for atopic dermatitis (a,b) 

in prenatal stress + atopic dermatitis: 

 serum IgE levels at 1 year of age 

Chang, 2016[25] 

Prenatal demoralization 

(i.e. psychol. distress) 

N= 279 

Until 5 yr 

 transient and persistent wheeze 

 IgE CB/blood 
Reyes, 2011[256] 

Maternal psychological 

distress (20 WOG) 

N= 4848 

1-6 yrs 

 odds of wheezing in 1-4 yrs 

 asthma and eczema at age 6 years 
Guxens, 2014[257] 

Prenatal (and 

postnatal) stress 

N= 765 

6 yrs 

 asthma in boys prenatally or postnatally stressed 

 asthma in prenatally + postnatally stressed girls  
Lee, 2016[249] 

Maternal psychosocial 

job strain 

N=32.104 

Until 7 yr 

 atopic dermatitis in high strain job;  

 asthma in active jobs  
Larsen, 2014[258] 

Maternal anxiety  (18 

and 32 WOG) 

N= 5810 

Until 71/2 yr 
 likelihood for asthma if high anxiety at WOG 32 Cookson, 2009[6] 

Antenatal steroids 
N=80448 

Until 8 yr 
 risk of asthma between 3-5 years of age (HR: 1.19) Pole , 2010[131] 

Maternal bereavement 
N=3.2 million 

1->9 yrs 
 risk of asthma hospitalization Khashan, 2012[259] 

Maternal bereavement 

N = 426.334 

(1-4 yrs) 

N = 493.813 

(7-12 yrs) 

 risk of asthma at 1–4 yrs in boys exposed  

(2nd trimester maternal bereavement ) 

 risk of asthma attack 7–12 yrs in boys 

Fang, 2011[135] 

Prenatal adverse life 

events 

N= 1587 

Until 14 yr 

 asthma and eczema at age 14 yrs 

 asthma in children aged 7 yrs 
Hartwig, 2014[260] 

Maternal bereavement 
N = 750.058 

Until 15 yrs 

 risk of asthma events in children aged 0-3 years 

 asthma in children aged 4-15 years 
Liu, 2015[134] 

Infection 

Antenatal 

Betamethasone 

N=453 

Infants (days 

after birth 

 Early-onset neonatal sepsis (OR 1.25) 

and  death (OR 1.70), if multiple courses 
Vermillion, 2000[124] 

Antenatal steroids 

N=2994 

Infants 48h 

after birth 

 systemic infections (RR 0.56) Roberts, 2000[32] 

Relationship 

dissatisfaction 

Stressful life events 

(30 WOG) 

N= 58530 

Until 1 yr 
 frequency/variety infectious diseases   Henriksen, 2015[245] 

Maternal anxiety (37 

WOG) 

N= 147 

Until 1 yr 
 infant antibiotic use Beijers, 2010[7] 

Antenatal steroids 
N=102 

10-12 yr old 
 hospital admissions because of infectious diseases 

Smolders-de Haas, 

1990[136] 
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Prenatal stress: 

negative life events 

N= 1.7 million 

Until 14 yr 

71% increased risk of severe infectious disease 

hospitalization. 
Nielsen, 2011[137] 

Type I 

diabetes 

Antenatal steroids 
N=505386 

Until 10 yr 

 risk of type 1 (HR: 1.20)  

 risk of type 2 diabetes (HR: 1.51) 
Greene, 2013[139] 

Maternal bereavement 
N = 1.548.746 

2-27 yrs 
 type-1 diabetes, mainly in girls Virk, 2010[138] 

Cancer 

Maternal bereavement 

(spouse or child) 

N=6143772 

Until 14 yr 

 30% risk of any cancer, especially non-Hodgkin 

disease and hepatic cancer 
Li, 2014[142] 

Maternal bereavement 

(parents) 

N= 39002 vs. 

> 11 million 

(database) 

0-43 yr 

 leukemia, Hodgkin’s disease (lymphoma) 

independent bereavement timing  

 testicular cancer,  in 3rd trimester bereavement 

Bermejo, 2007[143] 

OR: odds ratio; RR: relative risk; HR: hazard ratio; RDS Tx: Respiratory Distress Syndrome Treatment; WOG: weeks of gestation;  
Open cells depict prenatal stress exposure and shadowed cells antenatal steroid treatment. Only studies with more than 100 
participants were included 
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 BOX 1 Steroid hormones play a fundamental role during 
pregnancy. Endogenous glucocorticoids (CORT: cortisol in 
humans, corticosterone in mouse and rats) rise during the 
second half of pregnancy (top left), and might be further 
increased by maternal stress perception. Additionally, 
exogenous synthetic steroids, such as betamethasone or 
dexamethasone (top right) and prednisolone may be 
administrated during gestation to promote fetal lung 
maturation or to treat autoinflammatory diseases of the 
mother. Endogenous and exogenous glucocorticoids exhibit 
differential binding to plasma globulins: endogenous 
glucocorticoids appear mostly bound to corticosteroid 
binding globulin (CBG) and only in a minor fraction bound to 
albumin (Alb) or free, whereas exogenous glucocorticoids 
appear equitably bound to Alb or free. In contrast to 
dexamethasone and betamethasone, endogenous 
glucocorticoids and prednisolone are good substrates for 

inactivation by placental 11-HSD2 enzyme, which limits 
their transplacental passage. As steroid compounds, 
glucocorticoids readily cross the fetal cell membrane to bind 
the intracellular glucocorticoid receptor (GR, light blue). 
Noteworthy, dexamethasone and betamethasone display a 
higher affinity to GR than the other glucocorticoids. In the 
cytoplasm, inactive GR appear associated to a multiplicity of 
chaperon proteins (green triangles), which are released 
upon glucocorticoid binding. Engagement of the receptor 
elicits rapid non-genomic GR and chaperone protein 
signalling and allows GR translocation to the nucleus. GR can 
modulate gene expression by binding as homodimeric 
transcription factors to the palindromic glucocorticoid 
response elements (GRE) in the DNA. Additionally, GR 
monomers or dimers can interact with other transcription 
factors (pink squares) to activate or repress gene expression. 
Altogether, these regulation of gene expression is called 
(trans)activation or (trans)repression (reviewed in[261-263]). 
Whilst most glucocorticoid induced pathways are mediated 

through binding to the widely expressed GR, glucocorticoids can bind even with higher affinity the mineralocorticoid receptor (MR), 
whose distribution is restricted to fewer fetal cell types than GR. Moreover, the effect of glucocorticoids signalling through MR and 
GR is often dampened by the local co-expression (i.e. in the fetal cells) of the glucocorticoid inactivating enzyme 11β-HSD2.   
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Figure 1 

 
 
Figure 1. Hypothetical scenario depicting mechanisms by which excessive fetal glucocorticoid exposure may affect the fetal immune 
ontogeny resulting in altered postnatal immune responses. Excessive fetal glucocorticoid exposure can result from overwhelming 
maternal glucocorticoid levels, antenatal corticosteroid treatment, or from fetal HPA hyperactivity. Glucocorticoids may favour liver 
(murine E12-E16) or bone marrow (E16.5-birth) erythropoiesis and myeloid hematopoiesis, by promoting (orange arrows) 
haematopoietic stem cell (HSC) differentiation to common myeloid progenitors (CMP) in detriment (blue arrows) of common 
lymphoid progenitors (CLP). Moreover, glucocorticoids may directly affect the bone marrow stromal cells, i.e. osteoblast, which 
through the secretion of soluble factors can modulate HSC migration, proliferation and differentiation activities. Altered 
hematopoiesis might be associated to impaired perinatal neutrophil (Neu) function and humoral (B cell derived) responses. In the 
thymus, where endogenous glucocorticoids are also locally produced towards the end of pregnancy, an excess of glucocorticoids 
results in increased apoptosis of immature doble positive (DP) thymocytes and forces an accelerated maturation of doble negative 
(DN) precursors to fill the vacant niche. By antagonizing TCR signalling or by blunting AIRE-mediated autoantigen transcripts, 
glucocorticoids may affect the process of negative selection, allowing the export of autoreactive CD4 and CD8 single positive (SP) T 
cells. In addition, prenatal glucocorticoids program CD4 T helper (Th) cells towards a Th2 profile. Finally, programming of postnatal 
HPA axis hyperactivity, exhibiting increased levels of corticotropin-releasing hormone (CRH) and arginine-vasopressin (AVP), 
potentiate altered innate and adaptive immune responses, i.e. monocyte (Mo), macrophages or/and dendritic cell (DC) tolerance 
towards pathogens or excessive mast cell degranulation, which would in turn contribute to the prenatal programming of immune 

function to enhance the risk for infection, asthma and other immune diseases. 11-HSD2, 11β-hydroxysteroid dehydrogenase 2; ETP, 
Early Thymocyte Precursors; IgE, Immunoglobulin E; mTEC, medullary Thymic Epithelial Cells; Treg, regulatory T cell. 
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We have addressed the comments of reviewer#1 by adding at different points of the manuscript if the 

comment stated or the work reviewed refers to animal or human research. In addition, we have added a 

comment referring to differences in the timing of development of the immune system in mice and 

human, and the consequences on the windows of susceptibility (highlighted). 

 

As suggested by reviewer#2, we have shortened the manuscript by cutting some less relevant 

paragraphs and sentences, which are highlighted in yellow and crossed in the revised version. Among 

other, we have eliminated the section ‘11beta-HSD1 expression in the uterus’ because, even of 

importance, it is more related to embryo implantation,  and not so much to the development of the fetal 

immune system.  In total, we have now 715 words less in the new version.  
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