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Transceiver Design in Full-Duplex MIMO Cognitive
Radios under Channel Uncertainties

Ali Cagatay Cirik, Member, IEEE, Miltiades C. Filippou, Member, IEEE, and Tharmalingam Ratnarajah, Senior
Member, IEEE

Abstract—In this work, the operation of a full-duplex (FD)
multiple-input multiple-output (MIMO) underlay cognitive radio
(CR) network is studied. Each pair of secondary users (SUs)
operates in FD mode and each SU communicates with its peer,
within the coverage area of multiple primary users (PUs). Each
SU suffers from self-interference, along with interference created
by all other SUs and, in its turn, generates interference towards
the PU. We assume that the channel-state-information (CSI) of
the interference links between the SUs and the PU is imperfectly
known and the channel estimation errors are norm bounded.
Under such channel uncertainties, we address the problem of
robust minimization of the aggregate mean-squared-error (MSE)
of all estimated symbols, subject to a set of transmit power
constraints, as well as interference constraints, with the aim
of protecting PU communication. It is shown that the problem
can be cast as a semidefinite programming (SDP) problem and
the optimal precoding matrices can be obtained via an iterative
algorithm. By means of simulation, the proposed FD precoding
scheme is shown to outperform the standard half-duplex (HD)
scheme.

Keywords—Cognitive radio, full-duplex, imperfect CSI, MIMO,
transceiver design.

I. INTRODUCTION

COGNITIVE radio (CR) is a promising technology to
enhance the spectrum efficiency utilization by allowing

unlicensed secondary-users (SUs) operate within the service
range of licensed primary-users (PUs), while causing tolerable
interference to the PUs. Traditionally, the secondary net-
work is deployed as half-duplex (HD), in which transmission
and reception are orthogonal in time or frequency [1]-[14].
Among the emerging technologies for next-generation wireless
networks, full-duplex (FD) communication is envisioned as
a way of potentially doubling the throughput of wireless
communication systems, since it enables available spectral
resources to be fully utilized both in time and frequency [15],
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[16]. However, most related work has dealt with modeling
and cancellation of the high-power self-interference signal
which is the leakage of transmit signal to the collocated
receiver, and is the fundamental challenge in implementing
a FD radio. Fortunately, many feasible solutions including
antenna, analog and digital cancellation methods have been
demonstrated experimentally to mitigate the overwhelming
self-interference [17]-[19], and have made FD communication
more practical in recent years. However, various practical
implementation issues, such as protocol and resource allocation
algorithm design, need to be reinvestigated in the context of FD
communications. Particularly, the deployment of FD systems
in a network setting needs to be addressed through power and
interference management policies.

Transceiver designs for the sum-rate maximization problem
in FD multiple-input multiple-output (MIMO) non-cognitive-
radio systems have been investigated in [20]-[27], but the au-
thors in [20]-[25] have not considered the fundamental impedi-
ment of FD radios, i.e., the limited dynamic-range (DR) caused
by non-ideal amplifiers, oscillators, analog-to-digital convert-
ers (ADCs), digital-to-analog converters (DACs), etc [28] in
their derivations. Although FD communication has drawn
significant research interest, research on FD CR systems is
still in its infancy, and has not been thoroughly studied in the
literature so far. Research problems related to interweave FD
CR systems have been investigated in [29]-[31]. In particular,
the authors have explored FD techniques at the SUs to achieve
simultaneous spectrum sensing and data transmission to sig-
nificantly improve sensing performance while increasing data
transmission efficiency. Another emerging research trend con-
cerns underlay cooperative relaying systems [32]-[34] where
FD cognitive radios are employed. A sum mean-squared-error
(MSE) minimization problem for a FD MIMO cellular and ad-
hoc underlay CR system has been studied in [35], in which the
optimization problem has been cast as a second-order-cone-
program (SOCP). The authors assume that perfect channel-
state-information (CSI) is available at the transmitters, which is
practically impossible due to the inaccurate channel estimation
and the lack of full SU-PU cooperation. Therefore, robust
transceiver designs that take into account imperfect channel
knowledge are of interest, which have not been reported (to
the best of our knowledge) so far for FD underlay CR systems.
Note that the SOCP-based algorithm proposed in [35] for
the FD CR system cannot be applied under CSI with norm-
bounded uncertainties.

Motivated by the above, in this paper we propose an iterative
transceiver design scheme for a MIMO FD system, by focusing
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on an underlay (spectrum sharing) CR interference channel
(i.e., an ad-hoc FD CR network). In such system scenarios,
the SUs have to use their resources (i.e., power, antennas), in
a way that the received interference power by the PU is below
a predefined Quality-of-Service (QoS) threshold. We take into
account the limited-DR of the transmitters and receivers caused
by the FD operation. Since the availability of perfect CSI,
regarding the interference links between the SUs and the PUs is
deemed highly unrealistic, we also consider a norm-bounded-
error model, i.e., the instantaneous channel lies in a known set
of possible values, which represents the amount of uncertainty
on the channel [1]-[3].

According to the investigated system model, we consider
K pairs of FD SUs which exchange information, while, at the
same time, protect primary communication. Each SU suffers
not only from self-interference due to its operation in the
FD mode, but also from co-channel-interference (CCI) due to
concurrent transmissions from all SUs. The channels between
SUs are assumed to be perfectly known, however, the channels
between SUs and PUs are subject to estimation errors. More
particularly, our contributions are as follows:
• Prior work on FD systems assumes that perfect CSI is

available at the transmitters, which is practically impos-
sible due to the inaccurate channel estimation. There-
fore, robust transceiver designs that take into account
imperfect channel knowledge are of interest, which have
not been reported (to the best of our knowledge) so far
for full-duplex cellular systems or interference channels.
This work tries to fill this gap and reveals useful insights
into FD CR systems via MSE-based optimization under
imperfect CSI, and aims at showing the importance of
accurate channel estimation, and how critical it is for
successful deployment of FD systems.

• We consider the sum-MSE of the estimated symbols
as the objective function to be minimized, subject to
a set of transmit power constraints at the SUs and
interference power constraints at the PU from each
SU. Given that the problem is semi-infinite and non-
convex, an iterative scheme is proposed, with the aim of
jointly designing the transceiver (beamforming) matrices
at the transmitter/receiver of each SU. First, the semi-
infinite constraints are transformed into tractable forms,
and then, a local convex approximation technique is
adopted. The resulting problem can be solved via an
iterative semidefinite programming (SDP) algorithm, the
convergence of which is guaranteed to a stationary
point. Due to the transmit and receive distortion at
the FD nodes, i.e., RF hardware impairments, which
are the major impediment to FD systems, MSE is a
complicated function, which makes the transformation
of the non-convex optimization problem into an SDP
problem complicated.

• Instead of considering individual interference power
constraints at the PU from each SU, inspired from [3],
we extend the proposed algorithm to an aggregate inter-
ference power constraint induced by all SUs to the PU,
and apply a primal decomposition technique to allocate
the total interference among SUs dynamically.

• Moreover, we show that the proposed CR underlay algo-
rithm is not only applicable to FD MIMO interference
channels, but also to FD cellular systems, in which a
base station (BS) operating in FD mode simultaneously
serves multiple HD uplink (UL) and downlink (DL)
users. In this setup, in addition to self-interference
channel at the BS, the difficulty of the design problem
is increased further by the CCI caused by the users in
the UL channel to those in the DL channel.

• Our joint transceiver design scheme is numerically
evaluated and it is shown that significant throughput
improvement is achieved over the corresponding HD
MIMO CR system. Moreover, the importance of channel
estimation in FD systems is shown.

A. Rationale for MSE-Based Optimizations
MSE-based transceiver designs have been considered ex-

tensively due to the decent performance and the significantly
reduced complexity of this metric. It has been shown in [36]
that minimum mean-squared-error (MMSE) estimation plays
an important role in approaching the information-theoretic
limits of Gaussian channels. When MMSE receiver is used,
MSE-based optimization problems are equivalent to signal-to-
interference-plus-noise ratio (SINR)-based optimization prob-
lems, since they are related as [37],

MSE =
1

1 + SINR
. (1)

Therefore, rate-based optimization using log2(1 + SINR) can
be conveniently transformed into MSE-based optimization,
− log2(MSE). And as mentioned in [38], the user-wise MSE
can be used to approximate the achievable rate of the users
when they jointly decode their streams. With (1), instead of
considering each design criterion such as the MSE and the
maximal mutual information in a separate way, a unifying
framework can be developed. The link between most practical
objective functions and the main diagonal elements of the
MSE matrix has been established in [37] for point-to-point
multicarrier MIMO communications, and this work has been
extended to multicarrier MIMO relay communications in [39].
Our literature survey reveals that MSE-based optimization
problems have been considered for many communication sys-
tems but not for robust FD CR systems. This work tries to fill
this gap and reveals useful insights into FD CR systems via
MSE-based optimization under imperfect CSI.

Notation: The following notations are used in this paper.
Matrices and vectors are denoted as bold capital and lowercase
letters, respectively. (·)H is the conjugate transpose operator.
E {·} stands for the statistical expectation of a random variable;
IN is the N by N identity matrix; 0N×M is the N by M
zero matrix; tr{·} is the trace; diag (A) is the diagonal matrix
with the same diagonal elements as A. CN

(
µ, σ2

)
denotes a

complex Gaussian distribution with mean µ and variance σ2.
vec(·) stacks the elements of a matrix to one long column
vector. The operator ⊗ denotes Kronecker product and ⊥
denotes the statistical independence. ‖X‖F and ‖x‖2 denote
the Frobenius norm of a matrix X and the Euclidean norm of
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a vector x, respectively. Finally, <{X} denotes the real part
of X. A � 0 indicates that A is a positive semidenite matrix.

II. SYSTEM MODEL

In this section, we describe the system model of a FD
MIMO CR system, in which K pairs of FD SUs communicate
simultaneously within the service range of L PUs as seen
in Fig. 1. Let us denote the set of SU pairs and PUs with
K , {1, . . . ,K} and L , {1, . . . , L}, respectively. We assume
that each SU node that belongs to the ith pair, is equipped with
Ni and Mi transmit and receive antennas, respectively.

A. Signal and channel model
In what follows, i(a) denotes SU a ∈ {1, 2} belonging

to pair i ∈ K. The SU i(a), i ∈ K, a ∈ {1, 2} receives
signals from all the SU transmitters in the system via MIMO
channels. H

(ab)
ii ∈ CMi×Ni is the desired channel between

the transmitter of node b, where b ∈ {1, 2}, b 6= a and the
receiver of node a, when both nodes (SUs) belong to the i-th
pair. H

(aa)
ii ∈ CMi×Ni , a ∈ {1, 2} denotes the self-interference

channel of the SU i(a). Also, H
(ac)
ij ∈ CMi×Nj , (a, c) ∈ {1, 2}

denotes the CCI channel from the transmit antennas of the
SU c in the jth SU pair to the receive antennas of SU a in
the ith pair, (i, j) ∈ K and j 6= i. All the channel matrices
are assumed to be mutually independent, and the entries
of each matrix are independent and identically distributed
(i.i.d.) circular complex Gaussian variables with zero mean,
independent real and imaginary parts, each with variance 1/2.

The transmitted data streams of size di at the SU i(a) are
denoted as d

(a)
i ∈ Cdi , i ∈ K, a ∈ {1, 2}, and are assumed

to be complex, zero mean, i.i.d. with unit variance. The Ni×1
signal vector transmitted by the SU i(a) is given by

x
(a)
i = V

(a)
i d

(a)
i , i ∈ K, a ∈ {1, 2}, (2)

where V
(a)
i ∈ CNi×di represents the transmit beamforming

matrix applied at the node i(a).
According to the investigated system model, we consider a

FD MIMO interference channel between SUs that suffers from
self-interference and CCI from other pairs. Thus, the SU i(a)

receives a combination of the signals transmitted by all the
transmitters along with additive noise. The Mi × 1 received
signal at the SU i(a) is written as

y
(a)
i =

√
ρiH

(ab)
ii

(
x
(b)
i + c

(b)
i

)
+
√
ηiiH

(aa)
ii

(
x
(a)
i + c

(a)
i

)
︸ ︷︷ ︸

Self−Interference

+

K∑
j 6=i

2∑
c=1

√
η
(ac)
ij H

(ac)
ij

(
x
(c)
j + c

(c)
j

)
︸ ︷︷ ︸

CCI

+e
(a)
i

+ n
(a)
i , i ∈ K, (a, b) ∈ {1, 2} and a 6= b. (3)

Here, n
(a)
i ∈ CMi is the additive white gaussian noise

(AWGN) vector at SU i(a) with zero mean and covariance
matrix IMi , and it is uncorrelated to all the transmitted

signals1. In (3), ρi denotes the average power gain of the ith SU
transmitter-receiver pair, ηii denotes the average power gain
of the self-interference channel at the ith SU pair, and η

(ac)
ij

denotes the average power gain of the CCI channel between
the nodes at the i(a)th and j(c)th SU pair. 2

Furthermore, in (3), c
(a)
i ∈ CNi , i ∈ K, a ∈ {1, 2} is the

noise at the transmit antennas of SU i(a), which models the
effect of limited transmitter DR, and closely approximates the
effects of additive power-amplifier noise, non-linearities in the
DAC and phase noise. The covariance matrix of c

(a)
i is given

by κ times the energy of the intended signal at each transmit
antenna [28]. In particular c

(a)
i can be modeled as

c
(a)
i ∼ CN

(
0Ni , κ diag

(
V

(a)
i

(
V

(a)
i

)H))
, c

(a)
i ⊥ x

(a)
i .(4)

Finally, in (3), e
(a)
i ∈ CMi , i ∈ K, a ∈ {1, 2} is the

additive receiver distortion at the receive antennas of the SU
i(a), which models the effect of limited receiver DR, and
closely approximates the combined effects of additive gain-
control noise, non-linearities in the ADC and phase noise. The
covariance matrix of e

(a)
i is given by β times the energy of

the undistorted received signal at each receive antenna [28]. In
particular, e

(a)
i can be modeled as

e
(a)
i ∼ CN

(
0Mi

, βdiag
(
Φ

(a)
i

))
, e

(a)
i ⊥ u

(a)
i , (5)

where Φ
(a)
i = Cov{u(a)

i } and u
(a)
i is the undistorted received

signal vector at SU i(a), i.e., u
(a)
i = y

(a)
i − e

(a)
i .

This transmitter/receiver distortion model is valid, since it
was shown by hardware measurements in [40] and [41] that
the non-ideality of the transmitter and receiver chain can
be approximated by an independent Gaussian noise model,
respectively. Note that this model has also been commonly
used in [26]-[27], [35], [42]-[44].

B. Self-interference cancellation
We assume that SU i(a) knows the self-interfering code-

words x
(a)
i , and its self-interference channel H

(aa)
ii , so the

self-interference term
√
η
ii
H

(aa)
ii x

(a)
i is known, and thus can

1Since the SU receiver cannot distinguish the interference generated by
the PUs from the background thermal noise, the noise vector n

(a)
i in (3)

captures the background thermal noise as well as the interference generated
by the PUs, possibly after prewhitening. In particular, we assume that the
PUs’ sum-interference is estimated and measured at the receiving node of
SUs [8]. To do so, the SUs need to be “cognitive users” which are aware of
the environment [9]. To achieve that, the protocol for SUs can be designed as
follows: every frame contains sensing sub-frame and data transmission sub-
frame. During the sensing sub-frame, all SU transmitters remain silent, and
thus the SU receivers can measure the effect from the PUs and background
noise [1], [9]. This assumption that noise term includes both thermal noise
and PU sum-interference is also adopted in [1]-[4].

2Note that in (3), the power gains ρ and η correspond to the large-scale
fading factors, which are distance-based, therefore they are assumed to be
constant from time-slot to time-slot, since mobility is not taken into account
in the studied scenario. On the contrary, channels H are considered to model
the fast fading phenomena. Also note that the variance of the noise does not
influence the algorithms discussed later.
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(21)
i iiρ H

(12)
i iiρ H

(22)
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(11)
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ix
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(11)
ij ijη HM M

M

M

Secondary Users

Primary Users

PU l

M
(1)
liG

(1)
1lG

(1)
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Fig. 1. Full-duplex MIMO cognitive radio system.

be canceled [28]. The received signal after self-interference
cancelation can then be written as

ỹ
(a)
i = y

(a)
i −

√
ηiiH

(aa)
ii x

(a)
i

=
√
ρiH

(ab)
ii x

(b)
i + ñ

(a)
i , (6)

where ñ
(a)
i ∈ CMi×1 is the residual interference components

of (6) after self-interference cancellation and is given by

ñ
(a)
i =

√
ρiH

(ab)
ii c

(b)
i +

√
ηiiH

(aa)
ii c

(a)
i + e

(a)
i + n

(a)
i

+

K∑
j 6=i

2∑
c=1

√
η
(ac)
ij H

(ac)
ij

(
x
(c)
j + c

(c)
j

)
. (7)

Using (4)-(5), similar to [28], Σ
(a)
i , the covariance matrix of

ñ
(a)
i , can be approximated under κ � 1 and β � 1, i.e., by

ignoring the terms including the multiplication κβ, as in (8)
shown at the bottom of the following page.

We assume that the SU i(a) applies the linear receiver
R

(a)
i ∈ Cdi×Mi to estimate the signal transmitted from SU

i(b), i.e., d
(b)
i . That is

d̂
(b)
i = R

(a)
i ỹ

(a)
i

=
√
ρiR

(a)
i H

(ab)
ii V

(b)
i d

(b)
i + R

(a)
i ñ

(a)
i . (9)

C. Deriving the MSE of the received data stream
We can now formulate the MSE of the SU i(a). Using (9),

the MSE matrix of the SU i(a) can be written as

MSE
(a)
i

= E
{(

d̂
(b)
i − d

(b)
i

)(
d̂
(b)
i − d

(b)
i

)H}
=
(√

ρiR
(a)
i H

(ab)
ii V

(b)
i − Idi

)(√
ρiR

(a)
i H

(ab)
ii V

(b)
i − Idi

)H
+ R

(a)
i Σ

(a)
i

(
R

(a)
i

)H
. (10)

As mentioned before, the SUs are located within the service
range of L PUs, for which the SUs should provide protection
according to a QoS-based criterion. We assume that the PUs
are equipped with N receive antennas. The received interfer-
ence signal at the lth PU from SU i(b) is expressed as

z
(b)
i,l =

√
µ
(b)
i,l G

(b)
i,l

(
x
(b)
i + c

(b)
i

)
, i ∈ K, b = 1, 2, l ∈ L, (11)

where G
(b)
i,l ∈ CN×Ni is the channel between the lth PU

and i(b)th SU, which is modeled similar to H
(ab)
ij discussed

in Section II-A, and µ
(b)
i,l is the average power gain of G

(b)
i,l .

Using (11), the power of the interference resulting from the
i(b)th SU at the lth PU can be written as

I
(b)
i,l

(
V

(b)
i

)
= µ

(b)
i,l tr

{
G

(b)
i,l

(
V

(b)
i

(
V

(b)
i

)H
+ κdiag

(
V

(b)
i

(
V

(b)
i

)H))(
G

(b)
i,l

)H}
.(12)



5

III. SUM-MSE MINIMIZATION

We take sum-MSE as the performance measure to design
the transceivers under a transmit power constraint imposed to
the SUs and an interference power constraint at the lth PU,
which can be formulated as follows

min
V,R

K∑
i=1

2∑
a=1

tr
{

MSE
(a)
i

}
(13a)

s.t. tr
{

V
(b)
i

(
V

(b)
i

)H}
≤ P (b)

i , i ∈ K, b = 1, 2,(13b)

I
(b)
i,l

(
V

(b)
i

)
≤ λ(b)i,l , i ∈ K, b = 1, 2, l ∈ L, (13c)

where P (b)
i is the power constraint at the i(b)th SU transmitter

and λ
(b)
i,l is the maximum average interference power that

can be generated by SU i(b) and is received by the lth PU
receiver [2], [3], [4], and V (R) =

{
V

(b)
i

(
R

(b)
i

)
: ∀ (i, b)

}
is the set of all transmitting (receiving) beamforming matrices.

Fixing the transmit beamforming matrix, the optimal receive
beamforming matrices at the SU i(a) is the MMSE receive
filter which can be expressed as

R
(a)∗
i = arg min

R
(a)
i

tr
{

MSE
(a)
i

}
(14)

=
√
ρi

(
V

(b)
i

)H (
H

(ab)
ii

)H
×
(
ρiH

(ab)
ii V

(b)
i

(
V

(b)
i

)H (
H

(ab)
ii

)H
+ Σ

(a)
i

)−1
.

Substituting (14) to the objective function MSE
(a)
i in (13a)

gives us C
(a)
i (V), so-called error matrix for the node i(a)

given that the MMSE receive filter is applied, and it can be
written as

C
(a)
i (V) = Idi − ρi

(
V

(b)
i

)H (
H

(ab)
ii

)H
(15)

×
(
ρiH

(ab)
ii V

(b)
i

(
V

(b)
i

)H(
H

(ab)
ii

)H
+ Σ

(a)
i

)−1
×H

(ab)
ii V

(b)
i .

Substituting C
(a)
i (V) into the objective function (13a), and

writing Q
(b)
i = V

(b)
i

(
V

(b)
i

)H
, the problem of determining the

optimum transmit beamforming matrices under fixed receiver
matrices can be rewritten as3

max
Q

K∑
i=1

2∑
a=1

tr
{

A
(a)
i (Q)

}
(16a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , i ∈ K, b = 1, 2, (16b)

I
(b)
i,l

(
Q

(b)
i

)
≤ λ(b)i,l , i ∈ K, b = 1, 2, l ∈ L,(16c)

Q
(b)
i � 0, i ∈ K, b = 1, 2, (16d)

where Q =
{

Q
(b)
i : ∀ (i, b)

}
, and the matrix A

(a)
i (Q) is

defined as

A
(a)
i (Q) = ρiH

(ab)
ii Q

(b)
i

(
H

(ab)
ii

)H
×
(
ρiH

(ab)
ii Q

(b)
i

(
H

(ab)
ii

)H
+ Σ̃

(a)

i

)−1
. (17)

Here, Σ̃
(a)

i in (17) and I(b)i,l
(
Q

(b)
i

)
in (16c) are obtained by re-

placing V
(b)
i

(
V

(b)
i

)H
in (8) and (12) with Q

(b)
i , respectively.

A. Imperfect CSI Model

According to the system model, the channels between the
secondary transmitters and the primary receivers are assumed
to be imperfectly known at the secondary side. The imperfect
CSI is modeled using the deterministic norm-bounded error
model [1]-[3], which is expressed as

G
(b)
i,l ∈ G

(b)
i,l =

{
G̃

(b)
i,l + Λ

(b)
i,l : ‖Λ(b)

i,l ‖F ≤ θ
(b)
i,l

}
, ∀ (i, b, l) .

In the above equation, G̃
(b)
i,l , Λ

(b)
i,l and θ(b)i,l denote the nominal

value of the CSI, the error matrix, and the uncertainty bounds,
respectively.

3Since the first term, i.e., the identity matrix in (15) has no effect in the
optimization problem, we only consider the second term in (15), and the
negative sign in front of the second term in (15) changes the minimization
problem (13) to a maximization problem (16).

Σ
(a)
i ≈ ρiκH

(ab)
ii diag

(
V

(b)
i

(
V

(b)
i

)H)(
H

(ab)
ii

)H
+ ηiiκH

(aa)
ii diag

(
V

(a)
i

(
V

(a)
i

)H)(
H

(aa)
ii

)H
+ βρidiag

(
H

(ab)
ii V

(b)
i

(
V

(b)
i

)H (
H

(ab)
ii

)H)
+ βηiidiag

(
H

(aa)
ii V

(a)
i

(
V

(a)
i

)H (
H

(aa)
ii

)H)
+

K∑
j 6=i

2∑
c=1

η
(ac)
ij

[
H

(ac)
ij

(
V

(c)
j

(
V

(c)
j

)H
+ κdiag

(
V

(c)
j

(
V

(c)
j

)H))(
H

(ac)
ij

)H]

+

K∑
j 6=i

2∑
c=1

βη
(ac)
ij diag

(
H

(ac)
ij V

(c)
j

(
V

(c)
j

)H (
H

(ac)
ij

)H)
+ IMi . (8)
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With the imperfect CSI, the optimization problem in (16)
can be rewritten as

max
Q

K∑
i=1

2∑
a=1

tr
{

A
(a)
i (Q)

}
(18a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , i ∈ K, b = 1, 2, (18b)

I
(b)
i,l

(
Q

(b)
i

)
≤ λ(b)i,l , ∀G

(b)
i,l ∈G

(b)
i,l , ∀(i, b, l), (18c)

Q
(b)
i � 0, i ∈ K, b = 1, 2. (18d)

IV. ROBUST TRANSCEIVER DESIGN

Solving the optimization problem (18) is difficult, since the
objective function is non-convex. In order to solve it, we first
linearize the objective function in (18a) and then employ a
block-coordinate ascent solver. This can be accomplished as
follows: for fixed matrices Q̂

(b)
i =

{
Q

(c)
j : ∀ (j, c) 6= (i, b)

}
,

we linearize the convex function f (a)i (·) in (19) around a fea-
sible point Q̃

(b)
i , and thus (locally) approximate the objective

function (18a) as detailed below:

K∑
i=1

2∑
a=1

tr
{

A
(a)
i (Q)

}
= tr

{
A

(a)
i (Q)

}
+

∑
(j,c)6=(i,a)

tr
{

A
(c)
j (Q)

}
︸ ︷︷ ︸

f
(a)
i

(
Q

(b)
i ,Q̂

(b)
i

)
≈ tr

{
A

(a)
i (Q)

}
+ f

(a)
i

(
Q̃

(b)
i , Q̂

(b)
i

)
+ tr

{(
D

(b)
i

)H (
Q

(b)
i − Q̃

(b)
i

)}
.(19)

Here D
(b)
i =

∂f
(a)
i

(
Q

(b)
i ,Q̂

(b)
i

)
∂Q

(b)
i

∣∣∣∣
Q

(b)
i =Q̃

(b)
i

. One can derive the

latter expression as follows:

D
(b)
i

= −ηii
[
κdiag

((
H

(bb)
ii

)H (
Y

(b)
i

)−1
X

(b)
i

(
Y

(b)
i

)−1
H

(bb)
ii

)
+ β

(
H

(bb)
ii

)H
diag

((
Y

(b)
i

)−1
X

(b)
i

(
Y

(b)
i

)−1)
H

(bb)
ii

]
+

K∑
j 6=i

2∑
c=1

−η(cb)ji

[(
H

(cb)
ji

)H (
Y

(c)
j

)−1
X

(c)
j

(
Y

(c)
j

)−1
H

(cb)
ji

+ κdiag
((

H
(cb)
ji

)H (
Y

(c)
j

)−1
X

(c)
j

(
Y

(c)
j

)−1
H

(cb)
ji

)
+ β

(
H

(cb)
ji

)H
diag

((
Y

(c)
j

)−1
X

(c)
j

(
Y

(c)
j

)−1)
H

(cb)
ji

]
, (20)

where X
(b)
i = ρiH

(ba)
ii Q

(a)
i

(
H

(ba)
ii

)H
, and Y

(a)
i = X

(a)
i +

Σ̃
(a)

i . Using the approximation in (19), the problem of com-

puting Q
(b)
i under fixed Q̂

(b)
i is expressed as

max
Q

(b)
i

tr
{

A
(a)
i (Q)

}
+ tr

{(
D

(b)
i

)H
Q

(b)
i

}
(21a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , (21b)

I
(b)
i,l

(
Q

(b)
i

)
≤ λ(b)i,l , ∀G

(b)
i,l ∈ G

(b)
i,l , (21c)

Q
(b)
i � 0. (21d)

Since f (a)i (·) is a convex function of Q
(b)
i , the local linear

approximation using Taylor expansion is a lower bound which
is tight at the current point Q̃

(b)
i . This approximation enables

the optimization problem to be solved efficiently through a
numerical iterative algorithm. In fact, the idea of iteratively
optimizing lower bounds of a non-convex function has been
used in the literature for different contexts [14], [45]-[48].
The main idea is that the linearizing point in each iteration is
selected such that the iterative algorithm gets closer to optimal
point in every iteration. Roughly speaking, the main idea of
this iterative method is similar to the gradient based methods.
In the first iteration, we start with an arbitrary point and
continue at every iteration by replacing the original objective
function by its approximation obtained at the previous iteration
until the utility improvement is less than a given tolerance.

In what follows next, similar to [3] we focus on the
constraint (21c), in an attempt to transform the problem (21)
into an equivalent problem that is easier to solve.

A. Reformulating the interference constraint
With the aim of further simplifying the problem (21), the

following proposition will be proven helpful in order to relax
the semi-infiniteness of interference constraint (21c).

Proposition 1: There exists ε(b)i ≥ 0, so that the interference
constraint in (21c) can be written in linear-matrix-inequality
form as  B

(b),[1]
i B

(b),[2]
i(

B
(b),[2]
i

)H
B

(b),[3]
i

 � 0, (22)

where

B
(b),[1]
i,l = ε

(b)
i,l INiN −

[
IN ⊗

(
Q

(b)
i + κdiag

(
Q

(b)
i

))]
, (23)

B
(b),[2]
i,l = −

[
vec
(

Q
(b)
i

(
G̃

(b)
i,l

)H)
+ κvec

(
diag

(
Q

(b)
i

)(
G̃

(b)
i,l

)H)]
, (24)

B
(b),[3]
i,l =

λ
(b)
i,l

µ
(b)
i,l

− ε(b)i,l
(
θ
(b)
i,l

)2
− tr

{
G̃

(b)
i,l

(
Q

(b)
i + κdiag

(
Q

(b)
i

))(
G̃

(b)
i,l

)H}
.(25)

Proof: Applying the properties tr
{
ZHAZ

}
= vec (Z)

H

(I⊗A) vec (Z), tr
{
BHZ

}
= vec (B)

H vec (Z) from [49] on
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the interference constraint (21c), we obtain the inequality given
in (26) at the bottom of the page. We further use the lemma
given below from [50] to relax the semi-infiniteness of the
constraint (26).

Lemma 1: Given N × N Hermitian matrices D, A; N ×
1 vector b, and the scalars c, e, there exists an x̄ satisfying
x̄HDx̄ < e. Then the inequality

xHAx + 2<
{
bHx

}
+ c ≥ 0, ∀xHDx ≤ e

holds if and only if ∃ε ≥ 0 such that[
εD + A b

bH c− eε

]
� 0.

By mapping D, A, b, c and e in Lemma 1 with the
ones given in (26), the interference constraint (21c) can be
equivalently reformulated as in Proposition 1.

B. Resulting optimization problem and algorithm

Using the matrix inversion lemma on A
(a)
i in (17), and

substituting it to the objective function (21a), the resulting
optimization problem of computing Q

(b)
i under fixed Q̂

(b)
i can

be expressed as

min
Q

(b)
i ,ε

(b)
i

tr
{(

Σ̃
(a)

i

)1/2 (
Y

(a)
i

)−1 (
Σ̃

(a)

i

)1/2}
− tr

{(
D

(b)
i

)H
Q

(b)
i

}
(27a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , (27b) B
(b),[1]
i,l B

(b),[2]
i,l(

B
(b),[2]
i,l

)H
B

(b),[3]
i,l

 � 0, (27c)

Q
(b)
i � 0, ε

(b)
i,l ≥ 0, (27d)

where Y
(a)
i is defined in (20).

We now introduce an auxiliary variable Y such that Y �(
Σ̃

(a)

i

)1/2 (
Y

(a)
i

)−1 (
Σ̃

(a)

i

)1/2
, and use Schur complement.

The resulting problem is expressed as

min
Q

(b)
i ,ε

(b)
i ,Y

tr {Y} − tr
{(

D
(b)
i

)H
Q

(b)
i

}
(28a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , (28b) B
(b),[1]
i,l B

(b),[2]
i,l(

B
(b),[2]
i,l

)H
B

(b),[3]
i,l

 � 0, (28c)

Q
(b)
i � 0, ε

(b)
i,l ≥ 0, (28d) Y

(a)
i

(
Σ̃

(a)

i

)1/2
(
Σ̃

(a)

i

)1/2
Y

 � 0. (28e)

The problem (28) is a SDP, which can be efficiently solved
in polynomial time by standard interior point methods. The
proposed robust algorithm for the sum-MSE optimization
problem (28) that uses the SDP method is given in Algorithm
1.

Algorithm 1 Robust Sum-MSE minimization.

1: Initialize Q
(b)
i = 0, i = 1, . . . ,K, b = 1, 2.

2: repeat
3: for i = 1 : K do
4: for b = 1 : 2 do
5: Compute D

(b)
i from (20).

6: Update Q
(b)
i by solving (28).

7: end for
8: end for
9: until convergence of the objective function (16a) or maximum

number of iterations is reached.
10: Compute the receive filter R

(a)
i , ∀ (i, a) from (14).

C. Discussion

1) Convergence: Since (18a) is bounded from above, by
employing the monotone convergence theorem we can con-
clude that the proposed algorithm converges, and as shown in
Appendix, it converges to a stationary point.

−vec
((

Λ
(b)
i,l

)H)H [
IN ⊗

(
Q

(b)
i + κdiag

(
Q

(b)
i

))]
︸ ︷︷ ︸

−A

vec
((

Λ
(b)
i,l

)H)
︸ ︷︷ ︸

x

− 2<


[

vec
(

Q
(b)
i

(
G̃

(b)
i,l

)H)H
+ κvec

(
diag

(
Q

(b)
i

)(
G̃

(b)
i,l

)H)H]
︸ ︷︷ ︸

−bH

vec
((

Λ
(b)
i,l

)H)


+
λ
(b)
i,l

µ
(b)
i,l

− tr
{

G̃
(b)
i,l

(
Q

(b)
i + κdiag

(
Q

(b)
i

))(
G̃

(b)
i,l

)H}
︸ ︷︷ ︸

c

≥ 0, vec
(
Λ

(b)
i,l

)H
INNi︸ ︷︷ ︸

D

vec
(
Λ

(b)
i,l

)
≤
(
θ
(b)
i,l

)2
︸ ︷︷ ︸

e

. (26)
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2) Channel Acquisition: Channel estimation between SUs
can be accomplished using standard signal processing tech-
niques via training through pilots and feedback [5], and can
be assumed as perfect, which has been widely used in the CR
literature. Channel estimation between SUs and PUs is more
challenging, because PUs are unlikely to cooperate with SUs.
If the primary system adopts the TDD scheme, by exploiting
channel reciprocity, the channels between SUs and PUs can
be acquired at the SUs by overhearing the transmissions
between PU transmitter and receiver pair [5]-[10]. If applying
a TDD scheme is not feasible, blind beamforming techniques
can be employed [5]. Other methods to acquire the CSI
knowledge between PUs and SUs is 1) through environmental
learning [11], [12], 2) by exchange of CSI between the PUs
and SUs through a band manager, which mediates between
the two parties [6], [7], [13], and 3) the primary system can
cooperate with the secondary system to exchange the channel
estimates [5]. Of course, since the primary and secondary
systems are not fully coordinated, the quality of these channel
estimates will be degraded. Hence, we choose to model these
imperfections by considering norm-bounded estimation errors
for the links between the secondary transmitters and primary
receivers. Note that after SUs obtain the CSIs of the channels,
they report them to the central scheduler to perform resource
allocation/transceiver design in each time slot [8].

3) Implementation: The proposed algorithm requires the
existence of a central scheduler at the secondary system, which
collects all channel matrices, and then computes and distributes
the beamforming matrices of all SUs. In particular, the central
scheduler collects all the SUs channels H

(ab)
ij , all the estimated

SU-PU channels G̃
(b)
i and all the confidence intervals θ(b)i . In

an interference channel (or an ad-hoc network), the scheduler
can reside at any node in the network. In a dynamic envi-
ronment, the scheduler can be adaptively elected among the
eligible nodes in the network [52]-[53]. The election can be
done based on the capacity of a node, the status of a node, or
its location.

It should be noted that the proposed algorithm can also be
implemented in a distributed fashion, i.e., at the nth iteration,
each SU node i(b) can update its Q

(b),[n]
i locally through

the problem (28) provided that the received interference-plus-
noise covariance matrix Σ̃

(a),[n]

i is locally estimated through
measurements [54]-[55], and the matrices Y

(c),[n]
j and X

(c),[n]
j

are obtained from the neighboring SUs via local message
passing. Note that the matrices Y

(c),[n]
j , X

(c),[n]
j and Q

(b),[n−1]
i

obtained from the previous iteration are used to compute the
gradient in (20). The overall distributed scheme is described in
Algorithm 2. Note that the distributed scheme requires each SU
to collect only local channel information, and thus improves
the scalability.

Algorithm 2 Distributed Robust Sum-MSE minimization.

1: Initialize Q
(b)
i = 0, i = 1, . . . ,K, b = 1, 2.

2: repeat (n = 1, 2, . . .)
3: for i = 1 : K do
4: for b = 1 : 2 do
5: Node i(b) acquires the channels H

(cb)
ji , ∀ (j, c) 6=

(i, b) from its neighbors.
6: Transmit Y

(a),[n]
i and X

(a),[n]
i to neighboring nodes.

7: Receive Y
(c),[n]
j and X

(c),[n]
j , (j, c) 6= (i, a) from

neighboring nodes.
8: Compute D

(b),[n]
i from (20).

9: Measure Σ̃
(a),[n]
i .

10: Update Q
(b),[n]
i by solving (28).

11: Compute the receive filter R
(a)
i from (14).

12: end for
13: end for
14: until convergence of the objective function (21a) or maximum

number of iterations is reached.

V. EXTENSIONS

A. Total-Interference Constraint

When the individual interference power constraints λ(b)i,l are
not available, it is practical to consider the total-interference
power constraint that reflects the aggregate interference re-
ceived by each PU, due to secondary transmissions [14]. The
choice of this upper bound (or threshold) is a complex and
open regulatory issue, which can be the result of a negotiation
or opportunistic-based procedure between PUs (or regulatory
agencies) and SUs [4]. In this paper, we will consider de-
terministic interference constraints as assumed in [3], [14].
Particularly, we assume that the PU imposing the interference
constraint, has already computed its maximum tolerable in-
terference threshold. The problem (16) is modified under the
total-interference power constraint as follows

max
Q

K∑
i=1

2∑
a=1

tr
{

A
(a)
i (Q)

}
(29a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , i ∈ K, b = 1, 2, (29b)
K∑
i=1

2∑
b=1

I
(b)
i,l

(
Q

(b)
i

)
≤ λl, l ∈ L, (29c)

Q
(b)
i � 0, i ∈ K, b = 1, 2, (29d)

where λl is the maximum total interference power constraint
at the lth PU.

Unlike an off-line algorithm, in an on-line algorithm, the
intermediate results must be also feasible. Dual decomposition
method [56] used for the coupled constraints is not suitable
for our purpose, because the problem (29) is non-convex and
non-separable, and thus the duality gap is generally non-zero.
This results in unfeasible intermediate results while running
the on-line algorithm, which can violate the interference con-
straint (29c). We will apply the primal decomposition tech-
nique [14] to tackle the coupled interference constraint (29c).
Similar to [3], by introducing two sets of auxiliary variables,
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ψ
(b)
i and ξ

(b)
i , the problem (29) can be equivalently re-

formulated as

max
Q,ψ,ξ

K∑
i=1

2∑
a=1

tr
{

A
(a)
i (Q)

}
(30a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , i ∈ K, b = 1, 2, (30b)

I
(b)
i,l

(
Q

(b)
i

)
≤ ξ(b)i,l , i ∈ K, b = 1, 2, l ∈ L, (30c)

0 ≤ ξ(b)i,l ≤ ψ
(b)
i,l , i ∈ K, b = 1, 2, l ∈ L, (30d)

K∑
i=1

2∑
b=1

ψ
(b)
i,l ≤ λl, l = 1, . . . , L, (30e)

Q
(b)
i � 0, i ∈ K, b = 1, 2, (30f)

where ψ (ξ) =
{
ψ
(b)
i,l

(
ξ
(b)
i,l

)
: ∀ (i, b, l)

}
.

For fixed ψ(b)
i,l , the inner maximization subproblem is written

as

P (ψ) := max
Q,ξ

K∑
i=1

2∑
a=1

tr
{

A
(a)
i (Q)

}
(31a)

s.t. tr
{

Q
(b)
i

}
≤ P (b)

i , i ∈ K, b = 1, 2, (31b)

I
(b)
i,l

(
Q

(b)
i

)
≤ ξ(b)i,l , ∀(i, b, l), (31c)

0 ≤ ξ(b)i,l ≤ ψ
(b)
i,l , ∀(i, b, l), (31d)

Q
(b)
i � 0, i ∈ K, b = 1, 2, (31e)

which is similar to the problem in (18), and can be solved
similarly using the local linearization method discussed in
Section IV. After solving the problem (31) under fixed ψ,
the per-SU transmitter interference constraint ψ(b)

i,l is updated
by solving the following master problem, which allocates the
total interference constraint λ among SUs:

max
ψ

P (ψ) (32a)

s.t.
K∑
i=1

2∑
b=1

ψ
(b)
i,l ≤ λl, l ∈ L, (32b)

ψ
(b)
i,l ≥ 0, i ∈ K, b = 1, 2. (32c)

Since the local linearization of the problem (31) is convex,
the master problem can be solved by applying the subgradient
projection method. The subgradient of P (ψ) with respect to
ψ
(b)
i,l is the optimal Lagrange multiplier τ (b)i,l corresponding to

the constraint (31d) [56, Chap. 5]. At the nth iteration, the
subgradient projection updating the interference constraints is
expressed as

ψ[n+ 1] = Proj [ψ[n] + s[n]τ [n]] , (33)

where τ =
{
τ
(b)
i,l : ∀ (i, b, l)

}
, s is a positive step size, and

Proj [·] denotes projection onto the convex feasible set defined
by (32b)-(32c).

After the maximization problem (31) is solved, each SU
transmits the local scalar Lagrange multiplier τ

(b)
i,l [n] to a

central SU node for the update of ψ[n+1] using (33) and then
the central node will distribute these interference constraints
back to the SUs.

B. Full-Duplex Cognitive Cellular Systems
In this subsection, we show that the algorithm proposed for

the MIMO FD CR system also holds for FD cognitive cellular
systems, in which a FD BS communicates with K UL and J
DL HD mode users, simultaneously as seen in Fig. 2. The BS
is equipped with M0 and N0 transmit and receive antennas,
respectively. The number of antennas of the k-th UL user and
the j-th DL user are denoted by Mk and Nj , respectively. The
number of data streams transmitted from the k-th UL user (to
the j-th DL user) is denoted by dULk (dDLj ).

HUL
k ∈ CN0×Mk and HDL

j ∈ CNj×M0 represent the
k-th UL channel and the j-th DL channel, respectively.
H0 ∈ CN0×M0 is the self-interference channel from the
transmit antennas of the BS to the receive antennas of the
BS. HDU

jk ∈ CNj×Mk denotes the CCI channel from the k-th
UL user to the j-th DL user.

The vector of source symbols transmitted by the k-th UL
user is denoted as sULk . It is assumed that the symbols are i.i.d.
with unit power, i.e., E

[
sULk

(
sULk

)H]
= IdUL

k
. Similarly, the

transmit symbol vector for the j-th DL user is denoted by
sDLj , with E

[
sDLj

(
sDLj

)H]
= IdDL

j
. Denoting the precoders

for the data streams of the k-th UL and j-th DL user as
VUL
k ∈ CMk×dUL

k , and VDL
j ∈ CM0×dDL

j , respectively, the
transmitted signal of the k-th UL user and that of the BS can
be written, respectively, as

xULk = VUL
k sULk , x0 =

J∑
j=1

VDL
j sDLj . (34)

The described multi-user MIMO system suffers from self-
interference and CCI. The signal received by the BS and the
one received by the j-th DL user can be written, respectively,
as

y0 =
K∑
k=1

HUL
k

(
xULk + cULk

)
+ H0 (x0 + c0)

+ e0 + n0, (35)

yDLj = HDL
j (x0 + c0) +

K∑
k=1

HDU
jk

(
xULk + cULk

)
+ eDLj + nDLj , (36)

where n0 ∈ CN0 and nDLj ∈ CNj denote the AWGN vector
with zero mean and identity covariance matrix at the the BS
and the j-th DL user, respectively. In (35)-(36), cULk (c0) is
the transmitter distortion at the k-th UL user (BS), which is
modeled as in (4), and eDLj (e0) is the receiver distortion at
the j-th DL user (BS), which is modeled as in (5).

The received signals are processed by linear decoders,
denoted as UUL

k ∈ CN0×dUL
k , and UDL

j ∈ CNj×dDL
j by the
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Fig. 2. Multi-user MIMO system with a full-duplex-capable BS.

BS receiver and the j-th DL user, respectively. As a result, the
estimated data streams of the k-th UL user at the BS and j-th
DL user are expressed as

ŝULk =
(
UUL
k

)H
y0, ŝDLj =

(
UDL
j

)H
yDLj . (37)

Using these estimates, the MSE of the kth UL and jth DL
user can be written as in (38) and (39), respectively, shown
at the bottom of the following page. Here, in (38),ΣUL

k is
the covariance matrix of the aggregate interference-plus-noise
terms at the k-th UL, and can be approximated, under β � 1
and κ � 1, as in (40) at the bottom of the following page.
The covariance matrix of the aggregate interference-plus-noise
terms at the j-th DL user, ΣDL

j in (39) can be defined similarly,
by replacing HUL

m , VUL
m , and H0 in (40) with HDL

j , VDL
m ,

and HDU
jm , respectively.

The power of the interference resulting from the kth UL user
and the BS transmitter at the lth PU can be written, respectively
as

IULk,l = tr
{

Glk

(
VUL
k

(
VUL
k

)H
+ κdiag

(
VUL
k

(
VUL
k

)H))
GH
lk

}
, (41)

IDLl =

J∑
j=1

tr
{

Gl

(
VDL
j

(
VDL
j

)H
+ κdiag

(
VDL
j

(
VDL
j

)H))
GH
l

}
, (42)

where Glk ∈ CN×Mk
(
Gl ∈ CN×M0

)
is the channel between

the lth PU and kth UL user (lth PU and the BS).

C. Joint Beamforming Design

The optimization problem can be formulated as:

min
VUL

k ,UUL
k

VDL
j ,UDL

j

K∑
k=1

tr
{

MSEUL
k

}
+

J∑
j=1

tr
{

MSEDL
j

}
(43a)

s.t. tr
{

VUL
k

(
VUL
k

)H} ≤ Pk, k ∈ SUL, (43b)
J∑
j=1

tr
{

VDL
j

(
VDL
j

)H} ≤ P0, (43c)

IULk,l ≤ λULk,l , k ∈ SUL, l ∈ L, (43d)

IDLl ≤ λDLl , l ∈ L, (43e)

where Pk in (43b) is the transmit power constraint at the
k-th UL user, and P0 in (43c) is the total power constraint
at the BS transmitter side. Moreover, λULk,l and λDLl are the
maximum average interference power that can be generated
by kth UL user and BS, respectively and is received by the
lth PU receiver. We use SUL and SDL to represent the set of
K UL and J DL channels, respectively.

1) Simplification of Notations: To simplify the notations, we
will combine UL and DL channels, similar to [21]. Denoting
Hij and ni as

Hij =


HUL
j , i ∈ SUL, j ∈ SUL,

H0, i ∈ SUL, j ∈ SDL,
HDU
ij , i ∈ SDL, j ∈ SUL,

HDL
i , i ∈ SDL, j ∈ SDL,

ni =

{
n0, i ∈ SUL,
nDLi , i ∈ SDL,

Glj =

{
Glj , j ∈ SUL,
Gl, j ∈ SDL,

and referring to VX
i , UX

i , ΣX
i , X ∈ {UL,DL} as Vi, Ui,

Σi, respectively, the MSE of i-th link, i ∈ S , SUL
⋃
SDL
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can be written as

MSEi =
(
UH
i HiiVi − I

) (
UH
i HiiVi − I

)H
+ UH

i ΣiUi, (44)

where

Σi =
∑

j∈S,j 6=i

HijVjV
H
j HH

ij + κ
∑
j∈S

Hijdiag
(
VjV

H
j

)
HH
ij

+ β
∑
j∈S

diag
(
HijVjV

H
j HH

ij

)
+ I, (45)

and the interference power generated by the jth UL and BS
at the l-th PU in (41)-(42) can be rewritten as

Ij,l = tr
{
Glj

(
VjV

H
j + κdiag

(
VjV

H
j

))
GH
lj

}
, (46)

Il =
∑

j∈SDL

tr
{
Glj

(
VjV

H
j + κdiag

(
VjV

H
j

))
GH
lj

}
. (47)

2) Transceiver Design: Using the simplified notations, the
optimization problem (43) can be rewritten as

min
Vi,Ui

∑
i∈S

tr {MSEi} (48a)

s.t. tr
{
ViV

H
i

}
≤ Pi, i ∈ SUL, (48b)∑

i∈SDL

tr
{
ViV

H
i

}
≤ P0, (48c)

Ij,l ≤ λULj,l , j ∈ SUL, l ∈ L, (48d)

Il ≤ λDLl , l ∈ L. (48e)

The optimization problem (48) has the same formulation as
the optimization problem in (13), which focuses on the CR
MIMO interference channels, and thus under the fixed receive
beamforming matrices, we can apply the transceiver design
algorithm proposed in Section IV, accordingly.

Fig. 3. Simulation Setup. The PU receiver (blue star) is located at the origin,
the SU pairs (red connected stars) are located between 70−100m away from
the PU receiver.

VI. SIMULATION RESULTS

In this section, we numerically investigate the proposed
robust sum-MSE minimization algorithm using the general
purpose convex optimization program CVX package designed
for Matlab [57]. The tolerance (the difference between MSE
of two iterations) of the proposed iterative algorithm is set to
10−4, the maximum number of iterations is set to 100, and the
results are averaged over 800 independent channel realizations.

The distance between the desired links is set to di = 30m.
The PU receiver is located at a distance from the SUs that
is uniformly distributed over 70 − 100m. Fig. 3 illustrates
the examined system scenario, where a PU receiver is lo-
cated at the origin, and the K pairs of SUs are located
between 70 − 100m away from it. For brevity, we assume
that the maximum transmit-power for all SUs is the same,

MSEUL
k =

((
UUL
k

)H
HUL
k VUL

k − IdUL
k

)((
UUL
k

)H
HUL
k VUL

k − IdUL
k

)H
+
(
UUL
k

)H
ΣUL
k UUL

k , (38)

MSEDL
j =

((
UDL
j

)H
HDL
j VDL

j − IdDL
j

)((
UDL
j

)H
HDL
j VDL

j − IdDL
j

)H
+
(
UDL
j

)H
ΣDL
j UDL

j . (39)

ΣUL
k =

K∑
m 6=k

HUL
m VUL

m

(
VUL
m

)H (
HUL
m

)H
+ κ

K∑
m=1

HUL
m diag

(
VUL
m

(
VUL
m

)H) (
HUL
m

)H
+

J∑
m=1

H0

(
VDL
m

(
VDL
m

)H
+ κdiag

(
VDL
m

(
VDL
m

)H))
HH

0 + β

K∑
m=1

diag
(
HUL
m VUL

m

(
VUL
m

)H (
HUL
m

)H)
+ β

J∑
m=1

diag
(
H0V

DL
m

(
VDL
m

)H
HH

0

)
+ IN0

. (40)
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Fig. 4. Convergence of the objective function in (16a) . Here, K = 4, s =
0.2, N = 2.

i.e., P = P
(b)
i , ∀ (i, b). The path loss obeys the model d−ς ,

where d is the distance between nodes, and ς = 3.5 is the
path-loss exponent. The maximum transmit-powers are set so
that the (maximum) signal-to-noise ratio (SNR) is defined as
SNR = Pd−ςi = 15dB. The total interference threshold is set
to 4× 10−7W, and for simplicity, it is equally split among the
SUs. The channel uncertainty is set to θ(b)i = s‖G̃(b)

i ‖F , with
s ∈ (0, 1] [2]. The transmitter/receiver distortion parameters
are chosen as κ = β = −60dB. For brevity, we set the same
number of transmit and receive antennas at each node, i.e.,
Mi = Ni = N, i = 1, . . . ,K.4

Fig. 4 visualizes the evolution of Algorithm 1, i.e., the
convergence of the objective function in (16a) under different
distortion levels. The monotonic increase of the objective
function (16a) can be verified, and is seen to converge in less
than 10 iterations.

In our second example, we will compare our robust FD
precoding scheme with the robust HD one for different values
of the channel estimation errors, i.e., s parameter mentioned
above. The performance is going to be measured by means
of the average sum rate of the secondary system. Note that
for a HD system, transmission is carried out in two time-slots,
i.e., in the first time slot, all the SUs on the left hand side
in Fig. 1 transmit to their peers on the right, whereas in the
second time-slot, these roles are reversed. As a result, although
self-interference does not exist, CCI is present and the sum-
rate should be divided by 2 because of the two time-slots
transmission. It can be seen from Fig. 5 that as the size of
the uncertainty region increases, the performance of the FD
system degrades more, and the performance gap between the
considered FD and HD systems decreases. This degradation
in performance of the FD system is explained as follows.
Since there are more interference channels (self-interference
and CCI) in FD systems, as the uncertainty level of the
channels increases, the system performance of the FD system
can become seriously degraded. This indicates that the channel

4Note that although the nodes in ith link have Ni +Mi antennas in total,
similar to [28], [43], we assume that only Ni (Mi) antennas can be used for
transmission (reception) in HD mode. The reason is that in practical systems
RF front-ends are scarce resources, since they are much more expensive than
antennas. Therefore we assume that each node in the ith link only has Ni

transmission front-ends and Mi receiving front-ends, and does not carry out
antenna partitioning.
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Fig. 5. Sum-Rate comparison of FD and HD systems with respect to channel
uncertainty factor s. Here, K = 2, N = 2.
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transmitter/receiver distortion κ, β. Here, K = 4, s = 0.2, N = 2.

estimation is a critical factor for successful deployment of FD
systems.

In our next example, we will compare the optimized FD
system along with the optimized corresponding baseline sys-
tems, i.e., HD, HD-TDMA, and FD-TDMA systems in terms
of sum-rate performance for different κ = β values. In FD-
TDMA, in the first time slot, only the first pair transmits and
receives in FD mode. In the second time slot, only the second
pair transmits and receives in FD mode, and in the Kth time
slot, only the Kth pair transmits and receives in FD mode.
In this case, the sum-rate should be divided by the number
of time slots (or pairs), in our case K. In HD-TDMA, all
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Fig. 7. Sum-Rate comparison of individual and total power constrained
problems. Here, K = 4, s = 0.2, κ = β = −60dB, N = 2.

the nodes transmit sequentially, so we need 2K time slots.
Therefore, we have neither self-interference nor CCI. As seen
in Fig. 6, the performance of the HD and HD-TDMA systems
are not affected by κ and β values, and at high self-interference
cancellation levels, the FD systems achieves around 1.6 times
more sum-rate than that of the corresponding HD system. It
is also worth mentioning that the performance of FD system
drops below that of HD scheme around κ = β = −55dB, and
below that of HD-TDMA scheme around κ = β = −45dB.

This result is not in line with the ones obtained in [58]-[60].
In [58], [59], the authors tackle sum-power minimization and
sum-rate maximization problems in FD MIMO interference
channels, respectively, and it is concluded in [59] that HD
mode surprisingly outperforms the FD mode in terms of
achieved throughput. The difference between the results in [59]
and our paper can be explained as below:
• Unlike [59], in our paper, we assume that an (imperfect)

analog domain interference-cancellation or passive sup-
pression has been implemented in the FD radios, and the
main strong self-interference is canceled (please see (6)).
However, due to the transmit and receive distortions,
the residual self-interference still exists in the baseband
characterized by κ and β, respectively. As seen in Fig. 6,
depending on the distortion level, FD gain over HD
systems is positive or negative.

• Moreover, unlike [59], where an antenna-conserved sce-
nario is considered, in our paper we consider an RF-
chain conserved scenario [60]. As shown in [60], a FD
radio performance is inferior to that of an HD MIMO
radio in the antenna conserved scenario; however, the
spectral efficiency can be potentially doubled when the
RF-chain conserved scenario is considered.

To compare the performances of the proposed individual
and total power constrained algorithms discussed in Section IV
and V-A, respectively, in Fig. 7, Fig. 7 depicts the achieved
sum-rate in 50 different experiments. Since both algorithms
converge to locally optimal solutions, there is no guarantee
that one will always outperform the other. However, it is seen
that the total-power constrained algorithm usually performs
better than the individual power one because the total-power
constraint is less conservative.

In Fig. 8, we compare the user-MSEs achieved by the
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Fig. 8. MSE comparison of individual and total power constrained problems
with respect to interference constraint. Here, K = 4, s = 0.2, N = 2, κ =
β = −60dB.

TABLE I. AVERAGE RATE GAIN OF FD SYSTEM OVER HD SYSTEM

K 2 4 6 8 10
FD-HD

HD 29.86% 21.78% 15.38% 6.74% 0.45%

individual power and total-power constrained problems with
respect to interference constraint. It is seen that as the in-
terference constraint increases, the gap between two curves
decreases. The reason is that when the interference constraint
is small, the SUs transmit with low transmit-powers in order
not to violate the PU interference constraint. On the other
hand, when the interference constraint is high, the effect
of interference constraint on the performance of the system
diminishes, and thus two systems achieve the same MSE.

Finally, the gains achieved by the FD system over HD
system is depicted in Table I. Here, s = 0.2, κ = β = −60dB,
N = 2. It is seen that as the number of pairs increases the FD
gain decreases, since the number of CCI terms introduced with
the FD mode increases, and the performance of the FD system
deteriorates.

VII. CONCLUSION

In this work, we have studied the robust MSE-based
transceiver design problem for a FD cognitive MIMO interfer-
ence channel that suffers from self-interference and CCI under
the limited DR at the transmitters and receivers, as well as
from norm-bounded channel uncertainties. Since the globally
optimal solution is difficult to obtain due to the non-convex
nature of the problem, a SDP-based cyclic block coordinate
ascent algorithm shown to converge to a stationary point is
proposed. Simulation results have confirmed that the sum-
rate achieved by the FD system is higher than that of HD
system under reasonable self-interference cancellation levels.
Moreover, the importance of accurate channel estimation for
FD systems is emphasized via numerical results.

APPENDIX

The proof is based on the convergence of the block coordi-
nate descent method in [3], [51], which shows that every limit
point of the algorithm satisfies the first-order optimality condi-
tions over the Cartesian product of the closed convex sets. Let
Q̄ =

(
Q̄

(1)
1 , Q̄

(2)
1 , . . . , Q̄

(1)
K , Q̄

(2)
K

)
be a limit point of the se-

quence Q[n] which represents the set of all transmit-covariance
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matrices at iteration n. Moreover, let
{
Q[nj ] | j = 1, 2, . . .

}
be a subsequence that converges to Q̄. As proved in [51],
limj→∞Q

(b),[nj+1]
i = Q̄

(b)
i , ∀ (i, b).

Let us denote U (·) and U (b)
i (·) as the objective functions

in (18a) and (21a), respectively. Since Q
(b),[nj+1]
i is the local

(and also global) maximum of U (b)
i

(
Q

(b),[nj+1]
i , Q̂

(b),[nj ]
i

)
,

we have

<
{

tr
{
5biU

(b)
i

(
Q

(b),[nj+1]
i , Q̂

(b),[nj ]
i

)H
×
(
Q

(b)
i −Q

(b),[nj+1]
i

)}}
≤ 0, ∀Q(b)

i ∈ C
(b)
i , (49)

where 5biU
(b)
i (·) denotes the gradient of U (b)

i (·) with respect
to Q

(b)
i , and C(b)i is the feasible set for the problem (21),

i.e., C(b)i =
{

Q
(b)
i : Q

(b)
i ∈ (21b)− (21d)

}
. Taking the limit

as j → ∞, and using the fact that 5biU
(b)
i

(
Q̄
)

= 5biU
(
Q̄
)
,

it is easy to show that

<
{

tr
{
5biU

(
Q̄
)H

×
(
Q

(b)
i − Q̄

(b)
i

)}}
≤ 0, ∀Q(b)

i ∈ C
(b)
i , (50)

which establishes the stationarity of Q̄ and completes the
proof.
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