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Abstract: The processes that drive magma formation beneath the Cascade
arc and other warm-slab subduction zones have been debated because young
oceanic crust is predicted to largely dehydrate beneath the forearc
during subduction. In addition, geochemical variability along strike in
the Cascades has led to contrasting interpretations about the role of
volatiles in magma generation. Here, we focus on the Lassen segment of
the Cascade arc, where previous work has demonstrated across-arc
geochemical variations related to subduction enrichment, and H-isotope
data suggest that H20 in basaltic magmas is derived from the final
breakdown of chlorite in the mantle portion of the slab. We use naturally
glassy, olivine-hosted melt inclusions from the tephra deposits of eight
primitive (MgO > 7 wt%} basaltic cinder cones to quantify the pre-
eruptive volatile contents of mantle-derived melts in this region. The
melt inclusions have B concentrations and isotope ratios that are similar
te mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the
deowngoing plate prior to reaching sub-arc depths and little input of
slab-derived B into the mantle wedge. However, correlations of volatile
and trace element ratios (H20/Ce, Cl/Nb, Sr/Nd) in the melt inclusions
demonstrate that geochemical variability is the result of variable
addition of a hydrous subduction component to the mantle wedge.
Furthermore, correlations between subduction component tracers and
radiogenic isotope ratios show that the subduction component has less
radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be
explained by melting of subducted Gorda MORB beneath the arc. Agreement
between pMELTS melting models and melt inclusion volatile, major, and
trace element data suggests that hydrous slab melt addition to the mantle
wedge can produce the range in primitive compositions erupted in the
Lassen region. Our results provide further evidence that chlorite-derived
fluids from the mantle portion of the slab (~7-9 km below the slab top)
cause flux melting of the subducted oceanic crust, producing hydrous slab
melts that migrate into the overlying mantle, where they react with
peridotite to induce further melting.
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data suggest that H:0 in basaltic magmas is derived from the final breakdown of
chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted
melt inclusions (MI) from the tephra deposits of eight primitive (Mg0 > 7 wt%)
basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-
derived melts in this region. The melt inclusions have B concentrations and isotope
ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive
dehydration of the downgoing plate prior to reaching sub-arc depths and little input
of slab-derived B into the mantle wedge. However, correlations of volatile and trace
element ratios (H20/Ce, C1/Nb, Sr/Nd) in the meit inclusions demonstrate that
geochemical variability is the result of variable addition of a hydrous subduction
component to the mantle wedge. Furthermore, correlations between subduction
component tracers and radiogenic isotope ratios show that the subduction
component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can
be explained by melting of subducted Gorda MORB beneath the arc. Agreement
between pMELTS melting models and melt inclusion volatile, major, and trace
element data suggests that hydrous slab melt addition to the mantle wedge can
produce the range in primitive compositions erupted in the Lassen region. Qur
results provide further evidence that chlorite-derived fluids from the mantle portion
of the slab (~7-9 km below the slab top) cause flux melting of the subducted oceanic
crust, producing hydrous slab melts that migrate into the overlying mantle, where

they react with peridotite to induce further melting.

1. Introduction
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Dehydration of subducted oceanic lithosphere drives arc magmatism at
convergent plate margins. However, the thermal structure of an individual
subduction zone controls the depths at which key dehydration reactions occur
(Schmidt and Poli, 1998; Van Keken et al,, 2011). Thermal structure is commonly
assessed using the thermal parameter (¢), which is a function of downgoing plate
age, dip angle, and convergence rate (e.g. Syracuse et al.,, 2010). Variability in ¢
globally is predicted to cause a wide range of slab surface temperatures beneath
arcs (675-950°C), as estimated from geodynamic models (e.g., Syracuse et al., 2010)
and geochemical tools (e.g., Cooper et al,, 2012). The results suggest a continuum of
subduction zones between ‘cold’ (Tonga, Kamchatka) and ‘warm’ slabs (Cascades,
Mexico). Fluids released from the subducting slab have been shown to become more
solute-rich with increased temperature (Kessel et al,, 2005a; Herman and Spandler,
2006; Cooper et al., 2012; Ruscitto et al,, 2012), and there is geochemical evidence
for melting of the oceanic crust beneath some warm-slab endmembers such Mexico
(Cai et al,, 2014), the Cascades (Walowski et al., 2015), and SW Japan {Kimura et al.,
2014). In addition, there is widespread geochemical evidence for melting of
subducted sediment beneath arcs (e.g,, Plank et al.,, 2005). However, whether the
oceanic crust begins to melt beneath most arcs has been debated, and a consensus is
emerging that the oceanic crust dehydrates and contributes fluids to the mantle
wedge in arcs with cold to intermediate slab temperatures (e.g., van Keken et al,,
2011). To understand slab recycling and magma generation, it is imperative to

differentiate the roles of different components in the subducted oceanic lithosphere
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(altered oceanic crust, sediment, serpentinized peridotite) and determine how these
components are transferred to the overlying mantle wedge (as fluids, melts or a
supercritical phase). The Cascade arc represents a global warm-slab endmember
due to slow, shallow subduction of young oceanic crust (6-10 Ma at the trench;
Wilson et al,, 2002). Geodynamic models (Syracuse et al,, 2010; Wada and Wang,
2009) and geochemical studies (Cooper et al.,, 2012; Ruscitto et al., 2012; Walowski
etal, 2015) agree that slab surface temperatures beneath the arc axis are hotter, on
average, than many other arcs globally. Previous work in the central Oregon
Cascades has suggested that the mantle wedge beneath the arc receives a reduced
flux of volatiles from the downgoing slab (Ruscitto et al,, 2012), and Hz0
concentrations in olivine-hosted melt inclusions (M1) from both the central and
southern Cascades (~3.2 wt%; Ruscitto et al,, 2010, 2011; LeVoyer et al., 2010) fall
slightly below the global average {~3.9 wt%:; Plank et al., 2013). Walowski et al.
(2015) found that hydrogen isotope ratios of primitive magmas from the Lassen
region of the southern Cascades are lighter than those for the Mariana arc. This is
likely the result of waning dehydration of chlorite in the mantle portion of the
downgoing slab (~7-9 km below the slab top) after the crustal portion of the slab
has already dehydrated beneath the forearc. These results also provide evidence
that flux-melting of the oceanic crust occurs when fluids released from the slab
interior interact with oceanic crust that is above its wet solidus temperature (e.g.,
Spandler and Pirard, 2013).

We measured the volatile contents, major element, trace element, and B

isotope compositions of olivine-hosted MI and the radiogenic isotopic compositions
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of bulk tephra from the eruptive centers in the Lassen region studied by Walowski
et al. {2015). We use these data to quantify the chemical contributions from the
subducting oceanic lithosphere and to better understand how subduction of warm
oceanic crust affects the composition of mantle melts and the productivity of
melting in the mantle wedge. We also test the hypothesis of Walowski et al. (2015)
that magma production beneath the southern Cascades involves a multi-stage
process that includes flux melting of the subducted oceanic crust and hydrous slab

melt addition to the overlying mantle wedge.

2. Geologic Setting

The Lassen region is the southern terminus of the active Cascade arc
(Guffanti et al,, 1990). Volcanism is the result of oblique subduction of the Gorda
micro-plate beneath the North American plate (Fig. 1; Wilson, 2002), producing
dominantly calc-alkaline magmas (Clynne and Muffler, 2010). Westward expansion
of the Basin and Range extensional province into the eastern flanks of the Cascade
arc, including the Hat Creek and Lake Almanor Grabens, has produced many normal
faults that provide pathways for mafic magmas to reach the surface (Guffanti et al.,
1990; Clynne and Muffler, 2010). The Quaternary volcanics in the Lassen region sit
above a broad platform of mafic to intermediate volcanoes and volcanic products 2-
4 km thick (Berge and Stauber, 1987}, which is underlain by Sierran and Klamath
metamorphic/plutenic basement rocks (Berge and Stauber, 1987). Surrounding the
Lassen Peak dacitic dome complex (Clynne and Muffler, 2010} is a large volcanic

field containing over 500 cinder cones and small shield volcanoes erupted in the last
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12 Ma (Guffanti et al., 1990). Previous work on the Quaternary mafic volcanoes has
identified a range in compositions from low-K tholeiitic basalts (LKT; also called
high-alumina olivine tholeiites, or HAOT) to calc-alkaline basalt, basaltic andesite,
and andesite (Clynne, 1993; Borg et al., 1997). The most primitive calc-alkaline
volcanic rocks show distinct across-arc geochemical variations that are interpreted
to result from variable enrichment of the sub-arc mantle by a subduction
component (Fig. 1; Borg et al., 1997, 2002). Figure 1 shows variations in both Sr/Nd
and 87Sr/865r with increasing distance from the trench. Because there is no evidence
for plagioclase fractionation in the primitive magmas, these ratios are robust
indicators of subduction enrichment (Borg et al., 1997; see Supplementary
Discussion and Fig. S2 for details). The pattern of variable Sr/Nd in the forearc and
decreasing and consistently low values of Sr/Nd in the back-arc has been
interpreted to indicate the waning addition of a subduction component with
distance from the trench (Borg et al., 1997). The 875r /86Sr ratios display an opposite
pattern and generally increase toward the back-arc, indicating that the subduction
component has a less radiogenic Sr isotope signature than the sub-arc mantle, which
is unusual for arc volcanoes (e.g., Turner and Langmuir, 2015}. Variability in whole-
rock Nb/Zr and mineral cheMItry (olivine and spinel) suggests that the Lassen sub-
arc mantle is heterogeneous before any slab addition (Supplementary Fig. 51;
Clynne, 1993; Borg et al.,, 1997; Walowski et al,, 2015), but there is no systematic
variation of Nb/Zr with distance from the trench. A full summary of geochemical
variations can be found in the Supplementary Materials, and a detailed review is

provided by Borg et al. (2002).
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3. Sample Descriptions and Analytical Methods

Samples were collected from the tephra deposits of Quaternary monogenetic
vents spanning ~80 km from the forearc to the back-arc (Fig. 1}. Vents that erupted
primitive basalt or basaltic andesite (MgO > 7 wt%) identified from bulk rock
analyses (Clynne, 1993; Borg et al,, 1997) were targeted because they are close in
compaosition to primary mantle melts. Coarse ash was collected to minimize the
potential for syn-eruptive diffusive H less (e.g., Lloyd, 2013) or crystallization of
melt inclusions. Loose olivine crystals (250 pm to 1 mm) were hand-picked from
sieved tephra, treated in HBF4 to remove adhering glass, and examined in
immersion oil to locate MI. Olivine crystals hosting fully enclosed, glassy MI were
mounted in acetone-soluble resin on glass slides and prepared as doubly polished
wafers. H20 and CO:z concentrations of the Ml were measured at the University of
Oregon using a Thermo-Nicolet Nexus 670 FTIR spectrometer interfaced with a
Continuum IR microscope. Concentrations were calculated from IR peak
absorbances using the Beer-Lambert law and compositionally appropriate
absorption coefficients (see Johnson et al., 2008). MI and host olivine were analyzed
for major elements (plus S and Cl for inclusions) on the Cameca SX-100 electron
microprobe at the University of Oregon (see Ruscitto et al,, 2010, for details). Ml
were subsequently analyzed for a suite of trace elements on the Photon Machines
Analyte G2 135 nm ArF “fast”Excimer Laser system at Oregon State University,

using 50 um spot size with a 5 Hz pulse rate. Measured trace element concentrations
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were determined by reference to GSE-1G glass as a calibration standard and using
43Ca as an internal standard (see Loewen and Kent, 2012). BHV0-2G, BCR-2G, and
GSD-1G glasses were also analyzed to monitor accuracy and precision, and the
analyzed values were within 10% of accepted values (see Supplementary Table S5).

A subset of the MI that were analyzed for H isotopes and trace elements by
Walowski et al. (2015) were also analyzed for B isotope ratios using the Cameca IMS
1280 at Woeds Hole Oceanographic Institution, with O° primary beam, 30 nA
primary current, 10,000 V secondary voltage, and a 20 pm spot size. More detailed
methods are described in Marschall and Monteleone (2014) and Supplementary
Table S3. Some of the MI were too small to allow a new SIMS spot adjacent to an
existing NanoSIMS spot (20x20 rastered area, ~5 pm deep). In these cases, the SIMS
spot was placed within the pre-existing NanoSIMS spot. Tests comparing
measurements within pre-existing spots to those on a clean surface from a single MI
revealed no systematic differences.

The Sr, Nd, HFf, and Pb isotope ratios of bulk tephra samples were measured
at the Pacific Centre for [sotopic and Geochemical Research at the University of
British Columbia. Pb, Nd, and Hf isotope ratios were measured by MC-ICP-MS (Nu
Instruments Ltd., Nu Plasma Il NP 214), and Sr isotope ratios were measured by
Thermo Finnigan Triton TIMS using procedures described in Weis et al. (2006,
2007). Additional details regarding sample preparation and analytical techniques
are given by Mullen and Weis (2015). Analytical reproducibility and correction
methods for radiogenic isotope data are described in Supplementary Table S2.

Tephra from sample CC was excluded from isotopic analyses because of clear
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evidence for crustal contamination (abundant quartz xenocrysts, partially melted

granitic xenoliths).

4, Results
4.1 MI major and trace element compaositions

The olivine host crystals vary from Foss to Fogo (Supplementary Table 51 and
57). For each cinder cone, 11-17 M| were analyzed. The major element compositions
of the inclusions were corrected for post-entrapment crystallization (PEC) and Fe-
loss using Petrolog 3.1.1.3 (Danyushevsky and Plechov, 2011), using models for
olivine-melt equilibria from Ford et al. (1983) and oxidation state from Borisov and
Shapkin (1990). Concentrations of volatiles and trace elements that are
incompatible in the olivine hosts were corrected using the Petrolog results for the
major elements. [nitial Fe contents were chosen based either on the FeQOT of the bulk
tephra or the highest value of FeOT for Ml from a particular cone. An average oxygen
fugacity of AQFM+1, determined using the partitioning of V between the MI and host
olivine using methods of Mallmann and O’Neill (2009), was used in the Petrolog
calculations. Calculated values of PEC vary from 0 to 14%. Corrected Ml
compositions overlap with the most primitive lavas previously analyzed in the
Lassen region (Fig. 2) and have MgO concentrations of 7.4-9.8 wt% (Supplementary
Table §1). To estimate a primary melt composition for each cone, we added
equilibrium olivine {in 0.1 wt% increments) to the average MI composition from
each cone until the melt composition was in equilibrium with Fogo olivine (Table 1;

Ruscitto et al,, 2010). The calculated primary melt compositions required 1-20%
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olivine addition (Table 1). Although variability in mantle olivine compositions likely
exists beneath the Lassen region {Clynne, 1993; Borg et al., 1997), we assume Foqqg
for simplicity and because there is little evidence for more refractory mantle
compositions, unlike the Mt. Shasta region to the north, where some lavas and
tephra have olivine up to Fog4 (Ruscitto et al,, 2011).

The MI are dominantly medium-K CAB, with some that fall into the low-K
field (Fig. 2a), and compositionally similar to the bulk tephra compositions
(Walowski et al,, 2015; Supplementary Fig. $2). Previous work in the Lassen region
has suggested that LKT and CAB magmas have different source regions (Clynne,
1993; Bacon et al.,, 1997). However, the low-K samples used in this study do not
display the lower LREE/HREE and LILE/HFSE values typical of the endmember LKT
volcanic rocks in this region (Fig. 2; see also Bacon et al,, 1997). All samples used in
this study display trace element patterns similar to the regional CABs (Fig. 2),
suggesting that despite variability in major and trace element compasitions, they

were enriched by a component derived from the downgoing slab.

4.2 Magmatic volatile contents

Dissolved HzO contents of the M|, after correction for PEC and Fe loss, are
0.6-3.5wt%. At individual cinder cones, a range in H20 concentrations is observed
and is likely due to differences in extent of pre-entrapment degassing (e.g., Johnson
etal, 2009) and/or post-entrapment hydrogen loss (Lloyd et al., 2013; Bucholz et al.,
2013). We do not cbserve correlations between relative M1 size and Hz0 contents.

Because these processes decrease H20, the maximum measured H20/K20 ratio for
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each cone was used to estimate the initial Hz0 content (H20max) of the magma
erupted at that cone. In the Lassen region, Hz20max ranges from 1.3-3.4 wt%. The
H20max values were used to estimate the Hz20 concentrations in primary mantle-
derived melts using the olivine addition method described above, yielding values of
1.1-3.4 wt% (Table 1). These values overlap with calculated primary melt H20
concentrations for basaltic and basaltic andesite melts from central Oregon (1.4-3.0
wt%; Ruscitto et al., 2010). In contrast to H20, Cl is not affected by either pre-
entrapment degassing (except at very low pressures) or post-entrapment diffusive
effects. Concentrations of Cl in calculated primary melts range from 100-600 ppm,
except at BRM, where Cl values are as high as 2500 ppm (Supplementary Table $1).
Similar to Hz0, CO; concentrations are variable at individual cones and
reflect a combination of pre-entrapment degassing and post-entrapment loss. We
report the highest PEC-corrected CO; contents from individual cinder cones, and
these range from 599-1493 ppm (Supplementary Table S1; Fogqg corrected primary
melts = 521-1435 ppm; Table 1). It is important to note that these CO; values
underestimate the initial COz concentration of the melt. Most MI analyzed in this
study contain a vapor bubble {(presence /absence of vapor bubble noted in
Supplementary Table S1), and such bubbles typically contain a substantial fraction
(40-90%) of the CO2 that was initially dissolved in the trapped melt (Wallace et al,,
2015; Moore et al,, 2015). As a result, the CO; contents of the M! are underestimates
of the magmatic CO2 content. Sulfur contents of PEC corrected Ml range from 380-
2140 ppm (Supplementary Table 54; Fogo corrected primary melts = 900-1600 ppm;

Table 1). Samples BRVB, BPB, and BBL each have one MI that contains a small (<5
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um sphere) coexisting sulfide phase. Because post-entrapment Fe-loss can cause
sulfide saturation and decreasing sulfur in the residual melt (Danyushevsky et al,,
2002), these few individual Ml may have lost some S after entrapment. However,
there is no evidence to suggest this process had an effect on most MI, such as highly

variable S contents from an individual M1 suite.,

4.3 Isotopic Compositions

The average 611B ratios of Ml from individual cones in the Lassen region
range from -9.9%; to -2.4%o (Fig. 3; Supplementary Table 53). These values overlap
with those measured for bulk rock samples from the southern Washington Cascades
(-9%o to -0.4%o; Leeman et al, 2004) and MI from the Mt. Shasta region (Fig. 3; Rose
etal, 2001; LeVoyer et al., 2010). MI from the Cascades have lower B concentrations
and more negative §11B than those measured in other arcs, such as Kamchatka and
Mariana, where older oceanic crust subducts (Fig. 3; Ishikawa et al., 2001; Ishikawa
and Tera, 1999).

The Sr, Nd, HF, and Pb isctope ratios for bulk tephra samples overlap with

those previously determined for volcanic rocks in the Lassen Region (Fig. 4; Table 2).

5. Discussion
5.1 The source of volatiles in Lassen Region primitive magmas

Boron is a fluid mobile element that is present in higher concentrations in
subducted materials than the mantle, making it an excellent tracer of fluids from

subducting slabs (e.g., Tonarini et al, 2001). In addition, subducted materials such
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as sediment, oceanic crust, and serpentinitized mantle have 811B that is distinct
from the mantle wedge (e.g., Ishikawa and Nakamura, 1993). However, the Lassen
region MI have MORB-like to slightly elevated B isotopic compositions and low B
concentrations, which suggests that the sub-arc mantle receives little B from the
subducting slab (Fig. 3). This is probably the result of extensive dehydration of the
siab before it reaches sub-arc depths (Leeman et al,, 2004; Manea et al,, 2014).
However, gecdynamic modeling and calculated metamorphic phase equilibria
suggest that, unlike B, H20 can be carried to sub-arc depths beneath the Lassen
region by chlorite in the hydrated mantle portion of the slab (van Keken et al,, 2011;
Walowski et al., 2015). Because nearly all B is released from hydrated peridotite
beneath the forearc during antigorite breakdown, chlorite-derived fluids contribute
little B to the subduction component (Spandler et al., 2014). This explains how the
slab beneath the Cascades can release a hydrous component that contains very little
B, such that primitive magmas formed in the wedge have B isotope ratios and
concentrations only slightly elevated compared to MORB.

Despite low B concentrations, H20 and Cl are high compared to MORB, which
requires that these volatiles are retained in the slab to greater depths than B.
Furthermore, strong correlations of H20max/Ce and Cl/Nb with Sr/Nd clearly
demonstrate that volatile and trace element enrichments are coupled and therefore
derived from the same process (Fig. 5). This observation is consistent correlations
globally and at other warm-slab subduction zones (Ruscitto et al, 2012). To quantify
this, we calculated the compositions of partial melts from two mantle endmembers

to which variable amounts of subduction component were added. Figure 5 shows
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good agreement between the model curves and the Ml data, which indicates that
volatile and trace element variability between vents is the result of different
amounts of a subduction component added to a heterogeneous mantle wedge.
However, MI from cone BRM have lower H20/Ce than predicted by the melting
model. This could be caused by variability in the H20 and trace element ratios of the
hydrous subduction component, or it could be that Ml from this cone were strongly
affected by pre-entrapment degassing or post-entrapment H loss. CI/Nb provides a
more robust indication of initial valatile concentration because Cl is not affected by
diffusive loss and only degasses at very low pressure. Good agreement between data
and melting models for CI/Nb vs. Sr/Nd provides support for the interpretation that
initial H20 concentrations are related to the amount of a subduction component
added to the mantle wedge beneath the arc and that the slab component has ratios
of H20 and C! to LILE that are not highly variable (Fig. 5b, ¢}. This suggests that BRM,
the sample with the highest Sr/Nd and therefore largest amount of a subduction
component, has very low H20/Ce as a result of extensive degassing or post-
entrapment diffusive loss.

Volatile and trace element ratios for the central Oregon Cascades can also be
explained using the calculated melting curves, but require a more enriched mantle
source than Lassen magmas (Fig. 5a; Ruscitto et al., 2010). Interestingly, M1 with the
highest values of Sr/Nd in both the Lassen region (BRM) and the Mt. Shasta region
do not have the highest values of H20/Ce, but they do have the highest Ci/Nb and
also have Cl concentrations significantly higher than other cones throughout the

Cascades (Ruscitto et al., 2012). As suggested above, these magmas likely
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experienced extensive degassing of H:20 in the crust before MI entrapment
(evidenced by very low CO2z in many MI), and/or were affected by post-entrapment
H loss. However, if the BRM and Shasta magmas had pre-degassing compositions
that fit the model curves in Figure 5a, they would have had initial H20
concentrations as high as 8-10 wt% H:0, in agreement with experimental phase
equilibria (Krawczynski et al,, 2012). The Blance Fracture zone, which separates the
Juan de Fuca and Gorda plates, may provide a pathway for deep serpentinization of
the upper mantle in the downgoing slab offshore of the Cascades, and has been
proposed as a source for the volatile-rich component beneath Mt. Shasta (Grove et
al,, 2002; Manea et al., 2014). However, plate reconstructions suggest the Blanco
Fracture zone is not old enough to project beneath the arc (Wilson, 2002), and thus,
the causes of geochemical differences between the Mt. Shasta and Lassen regions

(Fig. 5) remain enigmatic.

5.2 The Lassen sub-arc mantle

Previous workers using trace elements and radiogenic isotopes in the Lassen
region found negative correlations between LILE/LREE ratios and 875r/86Sr. This
requires that the modern subduction component is less radiogenic than the sub-arc
mantle and that the latter has anomalously high Pb and Sr isotope ratios {(Borg et al.,
1997, 2002; Fig. 4). This observation by Borg et al. (1997) led to the conclusion that
the sub-arc mantle had been previously enriched by a sediment component, but
they suggested the enrichment must have occurred during an earlier, possibly

Mesozoic, subduction event because the Pb isotope ratios of young Pacific sediments
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were too low to explain the values. Subsequent research on sediments from the
Cascadia Basin (Fig. 4a; Carpentier et al,, 2014; Mullen and Weis, 2015) has shown
that the sediments have radiogenic Pb isotopic ratios. Addition of such a bulk
sediment to depleted MORB mantle (DMM) could explain the anomalously
radiogenic Pb and Sr isotepe ratios and trace element enrichments inferred for the
Lassen sub-arc mantle (Fig. 4a). However, it does not resolve the questions of when
or how the bulk sediment component was added, nor does it solve the puzzle
evident in Figs. 1c, d, and 4a that modern subduction seems to involve addition of a
less radiogenic slab component to an already isotopically enriched mantle wedge.
Addition of bulk sediment rather than sediment melt could be explained by mélange
diapirs that rise from the top of the subducted plate (e.g, Behn et al,, 2011; Gerya et
al., 2003). Interestingly, the enriched mantle signature is restricted to the
southernmost Cascades, and may best be explained by either the addition of bulk
sediment to the mantle wedge during the accretionary events which produced the
Klamath Mountains terranes from 130-260 Ma (Irwin and Wooden, 1999) or during
subduction related to Sierra Nevada magmatism. Although the cause of the mantle
enrichment in the Lassen (and Shasta) region is unclear, the data suggests that this
component is distinct from the medern subduction component (Fig. 4). Therefore, in
subsequent models and interpretations, we consider the enriched mantle as a single
component and focus on the modern, volatile-rich and unradiogenic subduction

component that is evident in the Lassen-region mafic magmas.

5.3 Evidence for slab melting
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In the North Cascades, basaltic magma compositions can be explained by
three component mixing between DMM, sediment melts, and oceanic crust melts
(Fig. 4a; Mullen and Weis, 2015). However, the low Sr/Nd magmas in the Lassen
region cannot be explained by mixing of the same components, and the strong
negative correlation of the Lassen data (Fig. 4a) suggests the magmas are dominated
by two components - enriched sub-arc mantle and subducted MORB crust - with a
lesser role for sediment melt (Fig. 4b). These observations suggest that low-Sr/Nd
magmas in the Lassen region reflect their derivation from a sub-arc mantle with an
isotopically-enriched character, as explained in the previous section. New
radiogenic isotope data from this study overlap with previously published data (Fig.
4). Because elevated H20/Ce, ClI/Nb, and Sr/Nd ratios are related to subduction
component addition, our data confirm that the subduction component has a MORB-
like isotopic composition, with less radiogenic Sr and Pb than the Lassen sub-arc
mantle. In its isotopic characteristics, the subduction component is similar to
offshore Gorda Ridge MORB (Davis et al.,, 2008).

Melting of subducted MORB crust was discounted by Borg et al. (1997)
because melting of dry eclogitized oceanic lithosphere requires higher temperatures
than expected for the slab top at sub-arc depths. Grove et al. (2002) discounted slab
melting beneath Shasta, where similar isotopic relationships are observed (Fig. 4),
because models of hydrous peridotite melting could reproduce the observed major
element compositions of primitive volcanic rocks in that region. Recent work by
Walowski et al. (2015) interpreted the light D/H values of MI from the Lassen region

as resulting from final dehydration of chlorite in the hydrated upper mantle portion
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of the downgoing slab. This provides a mechanism to deliver H20 to the basaltic slab
top and drive wet slab melting beneath the arc, as proposed by Till et al. (2013),
Kimura et al. (2014), and Spandler and Pirard (2014).

To test this hypothesis, we calculated mixing and partial melting models
involving sub-arc mantle and a partial melt of Gorda MORB (Fig 4b, c). Because
temperatures of the plate top are at or above the wet MORB and wet sediment solidi
(Schmidt and Poli, 1998; Herman and Spandler, 2006), we assume the subduction
components are partial melts rather than aqueous fluids (Cooper et al,, 2012;
Ruscitto et al,, 2012; Kimura et al.,, 2014; Walowski et al,, 2015). Our use of
unaltered Gorda MORB as the dominant slab component requires that the most
altered part of the slab (which contain seawater-derived Sr) loses much of its Sr
during dehydration beneath the forearc during transition to eclogite (Walowski et
al, 2015). Because Sr/Nd is an indicator of subduction enrichment, primitive basalts
with the lowest Sr/Nd values should be most representative of the Lassen sub-arc
mantle. These samples exhibit a small range of Sr, Nd, and Pb isotope ratios which is
probably indicative of mantle heterogeneity beneath the arc (Borg et al., 1997;
2002). We thus use a range in sub-arc mantle compositions (Fig. 4; 875r/865r =
0.7039 - 0.7043 and 208Pb/204Pb = 38.512 - 38.782). Figure 4b and c show curves
that represent melts of sub-arc mantle after addition of variable amounts of Gorda
MORB melt, the results of which suggest 1-10 wt% addition of the slab melt.

Our proposed mechanism for slab melting relies on breakdown of chlorite in
the lithospheric mantle of the downgeing plate. However, in the model shown in

Figure 4b and c, the chemical composition of this chlerite-derived fluid component
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has been neglected. Fluids from the breakdown of chlorite at sub-arc depths have
some distinct trace element characteristics (e.g., elevated LREE/HREE) but, overall,
are sclute poor (Spandler et al,, 2014). As a result, chlorite-derived fluids will have
little effect on the trace element composition of the magmas formed by flux melting
of the upper oceanic crust. We therefore conclude that fluids derived from chlorite
breakdown in the hydrated mantle portion of the slab dominantly contribute Hz0 to

the system but do not impart a distinctive trace element signature.

5.4 The role of sediment melts and crustal assimilation

Although the model results in Figures 4b and 4c can explain a majority of the
compositions, some values of Sr and Pb isotopes are above the mode! predictions.
There are three possible explanations for these small offsets: 1) contributions from
zones of altered MORB in the downgoing plate that partially retained their altered
isotopic signature after complete dehydration, 2) involvement of small proportions
of a sediment melt component (Borg et al., 1997; 2002), and/or 3) contamination by
crustal material. To further distinguish sediment and slab melt contributions, we
use Th/La as a discriminant because of the high Th concentrations in sediments
relative to MORB and sub-arc mantle (Fig. 4d; Plank et al., 2005). The mixing model
in Figure 4d shows that Th/La variations in primitive Lassen magmas can result
from addition of <10% of a subductien component made up of variable proportions
of sediment and MORB melts. At all but two cinder cones, Ml trace element
compositions suggest that the slab component is dominated by melts of basaltic

oceanic crust and contains <30% sediment melt. Two cinder cones (BPB and CC)
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have larger apparent contributions from sediment melts. Cinder Cone, in particular,
contains the highest Th/La values from our dataset. However, the bulk lava and
tephra at this cone contain abundant quartz xenocrysts and variably melted granitic
xenoliths, which are clear indications of crustal contamination. This sample was
therefore excluded from radiogenic isotope analyses. We also note that MI from the
Lassen region samples have lower Th/La values on average than many of the
published bulk rock analyses from this area (Fig. 4d; Borg et al., 1997, 2002). This
could be because MI are trapped at depth, before even minor crustal contamination
occurs. Previous workers in the Lassen region interpreted unradiogenic Os isotopic
compositions in the most primitive basalts and basaltic andesites as evidence for
minimal contamination by continental crust (Borg et al., 1997, 2000). However, very
high Th concentrations in the granitic basement rocks (Cecil et al., 2012) make it
possible for small amounts of contamination to increase Th/La ratios to make it

difficult to differentiate between sediment melt and contamination.

5.5 Modeling slab melt addition and the Sr/Y adakite signature

The studied Lassen magmas have basaltic major element compositions and
are not high-Mg andesites as might be expected for magmas derived by slab melting
(Kelemen et al,, 2003). To test whether the major and trace element compositions of
these magmas can be reproduced by slab melt addition to the mantle wedge, we
used pMELTS (Ghiorso et al,, 2002) to compare the effects of fluid vs. hydrous melt
addition (Eiler et al., 2000) to the wedge at temperatures and pressures expected

for the Lassen sub-arc mantle. We created the starting bulk compositions by adding
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various amounts of either a dacitic slab melt (Klimm et al., 2008) or pure Hz0 to a
primitive mantle composition (MM3; Baker and Stolper, 1994). The pMELTS
program was used to determine the phase equilibria of the bulk mixture from 900-
1400°C at a pressure of 1.5 GPa. These values are based on temperatures from
geodynamic model results for the Lassen region (Walowski et al., 2015), beginning
at the slab-wedge interface to ~100°C hotter than peak temperatures expected in
the wedge. See Supplementary Discussion $3 for further details.

Melt fractions for both the hydrous-melt-fluxed and fluid-fluxed peridotite
cases are nearly indistinguishable (Supplementary Fig. 53). This suggests that for a
given mantle composition, the amount of Hz0 supplied to the mantle controls the
degree of melting irrespective of whether the Hz0 is added as melt or fluid,
consistent with experiments of Mallik et al. (2015). Figure 6 shows the major
element compositions of partial melts resulting from various amounts of slab melt
and aqueous fluid addition to the mantle wedge. For small amounts of slab melt
addition (1-3 wt%), the major element compositions of resulting basaltic melts are
similar to those of the aqueous fluid addition case. This indicates that equilibrium
between partial melt and residual mantle largely controls the major element
composition of the final melt. Primary magma compositions calculated from the M!
data overlap with the pMELTS model results (Fig. 6), demonstrating that hydrous-
melt-fluxed melting of the mantle wedge is a viable explanation for the production
of these magmas.

One hallmark of slab melt is high Sr/Y caused by the presence of garnet,

which makes up a large proportion of eclogitized MORB in the subducted plate
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(Defant and Drummond, 1990). Most Lassen magmas, however, do not have high
Sr/Y values compared with the global array of adakites (Fig 7). Using the mixed
mantle compositions and melt fractions from the pMELTS models, melting curves in
Figure 8b show that for small amounts of slab melt addition (1-10%), the Sr/Y ratio
is dampened due to addition of Y from the spinel peridotite mantle component. This
yields values that overlap with values measured in MI from all but one sample
(BRM) from the Lassen region {Fig. 8b). The results are consistent with calculations
by Kelemen (1993) showing that peridatite-melt reaction produces melts with
lower LREE/HREE than the initial slab melts. Our model results suggest that high
Sr/Y adakitic signatures are only retained in arc magmas if slab melt addition is >10
wt%. Larger proportions of slab melt addition are thus required to explain the high
Sr/Y value of sample BRM, consistent with estimates of ~10% slab melt addition
inferred from radiogenic isotopes (Fig. 4). The high-Mg andesites from the Lassen
(M. Clynne, unpub. data) and Shasta regions that have higher values of Sr/Y (~150;
Ruscitto et al,, 2011) could therefore be produced by larger amounts of hydrous slab
melt addition to the mantle wedge.

Although most primitive Cascade arc magmas do not have particularly high
Sr/Y compared to adakites, they do have other characteristics that indicate melting
in the presence of garnet when compared to the global array of basaltic arc magmas.
For example, primitive magmas from warm-slab subduction zones (Cascades,
Mexico) display elevated LREE/HREE and MREE/HREE (e.g. La/Yb and Dy/Yb;
Walowski et al,, 2015 and Turner et al,, 2015, respectively) and coupled high

176Hf/177Hf and 1#3Nd /144Nd with lower values of Lu/Hf (Cai et al., 2014) when
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compared to arcs associated with older oceanic crust. These relationships
demonstrate that partial meits of subducted oceanic crust play an increasingly
important rele in the formation of magmas in arcs associated with young oceanic

crust.

6. Model for magma generation beneath the southern Cascade arc

Our results suggest that southern Cascade magmas are produced by a multi-
stage process involving fluid-flux melting of the basaltic slab top (tlesser sediment)
and ascent of this hydrous melt into the mantle wedge. Figure 8 shows a schematic
interpretation of this process based on the thermo-petrologic model results of
Walowski et al. (2015}, the shear wave velocity model from Liu et al. (2012), and the
magnetotelluric data from Wannamaker et al. (2014). In our model, Hz0 is retained
in the hydrated upper mantle portion of the downgoing slab to greater depths than
those at which H:0 is lost from the slab top (Fig. 9). Final chlorite breakdown occurs
in the slab interior when the slab top reaches ~75-80 km. At this depth, the upper
portions of the slab are above the MORB+H20 solidus, and thus should melt when
fluxed by rising chlorite-derived fluids (e.g., Spandler and Pirard, 2013). The
resulting hydrous dacitic melts (Klimm et al., 2008) then rise into the overlying
mantle wedge and react with the surrounding mantle to produce hydrous, calc-
alkaline, basaltic to basaltic andesite melts (Fig. 7).

As a further test of this model, we determined whether breakdown of
chlorite can supply enough H20 to balance the flux of Hz0 from Cascade arc

magmatism. Previous work in Nicaragua {(Ranero et al., 2003) and other arcs has
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provided evidence for hydration of the deep slab and the importance of fluids
released from the deep slab in the production of arc magmas (e.g., Spandler and
Pirard, 2013). For the Juan de Fuca plate, higher temperatures at Mohoe depths
caused by the younger slab age may limit the extent of serpentinization (Nedimovic
et al, 2009), but no data are available for the Gorda plate to assess upper mantle
hydration. Due to this uncertainty, Walowski et al. (2015) conservatively assumed 2
km of hydration below the Moho of the downgoing plate and a bulk Hz20
concentration of 2 wt% for the hydrated peridotite. Using these model parameters,
the Hz0 flux contributed by chlorite breakdown in the slab interior is estimated to
be ~1-2 x 106 kg/km arc length/yr. For the magmatic flux of H20 from the Cascades,
we use the estimate from Ruscitto et al. (2012). This method, which includes
extrusive and intrusive magma fluxes and utilizes volatile contents from the central
Oregon Cascades (which overlap with those from the Lassen region), yields a
maximum Hz0 flux of 1.93 x 106 kg/km/yr. This estimate agrees very well with the
flux from the thermo-petrologic model, demonstrating that fluids derived from the
breakdown of chlorite in the hydrated upper mantle portion of the slab may be
sufficient to produce observed volatile fluxes in the Cascade arc.

The thermo-petrologic model results of Walowski et al. (2015) predict two
main pulses of fluid from the downgoing slab associated with 1) the final
breakdown of hydrous phases during eclogitization of the oceanic crust, and 2) the
final breakdown of chlorite in the hydrated mantle portion of the slab (Fig. 9). The
first, more shallow pulse of fluid release correlates well with the location of a low-

resistivity anomaly beneath the forearc (Wannamaker et al., 2014), and likely
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reflects a region of serpentinization of the cold nose of the mantle wedge. The
second, which causes flux melting of the slab top, agrees well with regions of low
shear wave velocity beneath the Lassen region (Liu et al,, 2012). The shape of the
low shear wave velocity region is consistent with models of fluid migration into the
mantle wedge that suggest that for most values of wedge permeability, slab dip, and
convergence velocity there is a net migration of fluids and melts away from the
trench {Cagnioncle et al., 2007). This implies that arc magmas will inherit a slab
signature from a region of the slab that is slightly up-dip of the region that lies
directly beneath the arc. Therefore, patterns of decreasing amounts of a subduction
component towards the rear-arc, as observed in the geochemical data (Clynne,

1993; Borg et al,, 1997; 2002), are consistent with the model in Figure 9,

7. Conclusions

The process of melt generation in warm-slab suduction zenes, such as
Cascadia, has been debated due to the high slab surface temperatures and extensive
slab dehydration predicted by geodynamic and geochemical models. Our results
provide strong evidence that magma production in the southern Cascade arc is
driven by hydrous slab melt addition to the mantle wedge. Low B concentrations
and MORB-like B isotope ratios indicate that extensive dehydration of the plate
occurs before it reaches sub-arc depths. However, volatile concentrations and
correlations of volatile and trace element ratios (H20/Ce, Cl/Nb, Sr/Nd) show that
Lassen magmas have been enriched by variable amounts of addition of a hydrous

subduction component. Correlation of fluid mobile trace elements and radiogenic
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isotopes demonstrates that the modern subduction component in the southern
Cascades is less radiogenic than the sub-arc mantle wedge and must be dominantly
derived from a partial melt of subducting Gorda MORB, with a minor contribution
from subducted sediment melts. The pMELTS model results show that hydrous
melt-fluxed melting of the mantle wedge can produce basaltic magmas with similar
major element compositions to those measured in Lassen MI. Our results provide
further evidence that chlorite-derived fluids from the deep slab interior can flux-
melt the oceanic crust, producing hydrous slab melts that migrate into the overlying
mantle, where they react with peridotite to induce further melting. The combined
observations provide new insight on element recycling at subduction zones and
demonstrate that partial melts of subducted oceanic crust play an important role in

arcs associated with the subduction of young oceanic crust.
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Figure Captions

Figure 1: a) Regional map of the Northwestern United States showing major tectonic
boundaries. The Cascade volcanic arc is defined by the major peaks (black triangles).
Lassen Peak is highlighted with a red triangle. Black arrows show convergence
direction and are labeled with the convergence rate relative to North America. b)
Larger scale map of the Lassen region with locations of vents sampled in this study
{BRVB: Basalt of Round Valley Butte; BPB: Basalt of Poison Butte; BRM: Basalt of
Red Mountain; BBL: Basalt of Big Lake; BAS-44: Basalt of Hwy 44; BPPC: Basalt of
Paine Parasitic Cone; BORG: Basalt of Old Railrcad Grade; CC: Cinder Cone; see Table
1 for details) and previously sampled by Clynne (1993) and Borg (1995; gray
diamonds). Lassen Peak (large white triangle), outcropping basement rocks (shaded
pink areas), major highways (thin black lines), and large lakes (shaded blue regions),
are also highlighted. Distance from the trench vs. ¢} Sr/Nd and d) 7Sr/26Sr for
samples in this study (colored symbols) and Borg et al. {1997; gray diamonds).
Symbols and colors for individual cinder cones are consistent throughout the

manuscript.

Figure 2: a) Average MI trace element composition for each cone normalized to
normal-MORB (N-MORB; Sun and McDonough, 1989). Shown for comparison are
endmember compositions (CAB, Borg et al,, 1997; HAOT, Bacon et al. 1997). b) K20

and Si0Oz contents of individual MI (corrected to equilibrium with host olivine and,
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normalized on a volatile-free basis) compared with bulk rock analyses from Clynne

(1993; gray diamonds).

Figure 3: Boron isotope compositions of Lassen MI, Each data point (symbols as in
Fig. 1} represents an average of 4-8 individual MI from a given cone. Symbol size
represents 21 SE (Table 2). Shown for comparison are data from the southern
Washington Cascades (Leeman et al., 2004; filled squares, whole-rock analyses) Mt.
Shasta (Rose et al., 2001, open circles; individual MI; LeVoyer et al., 2010, filled
circles, MI), the Marianas (Ishikawa, 2001), and Kamchatka (Ishikawa and Tera,
1999). Dashed black curve represents basaltic magmas formed by flux melting of

depleted MORB mantle by hydrous slab fluid (Marschall, 2007).

Figure 4: Bulk tephra isotopic compositions and average trace element compositions
from MI (Table 2; filled symbols as in Figure 3;) and bulk tephra {open symbols;
Walowski et al., 2015; no bulk tephra data available for BRM [purple]). a) 87Sr/865r
vs. Sr/Nd; the North Cascades (pink shaded region in panel a; Mullen and Weis,
2015), and Mt. Adams (red shaded region in panel a; Jicha et al,, 2009) are shown for
comparison. Dashed lines connect the three components most likely to contribute to
magma formation, as described in previous work (Mullen and Weis, 2015), but are
not mixing models. Compositional similarity of bulk tephra and M| is described in
Supplementary Discussion 52 and Fig. 52, which provides support for plotting MI
compositions with bulk tephra radiogenic isotopes. Isotopic composition of BRM is

from Borg et al. (1997), not this study. CC was omitted due to evidence for crustal
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contamination (see text). Bulk lava analyses from the Lassen and Shasta regions
(Borg et al, 1997; Grove et al,, 2002, respectively). b) Again, 87Sr/86Sr vs. Sr/Nd;
symbols as in a), now with North Cascade sediment (yellow shaded region;
Carpentier et al,, 2013, 2014) and northern Sierran granites (gray shaded region;
Cecil et al,, 2012) highlighted to show components that may contribute to trace
element and radiogenic isotope variability of samples. Melting models (dashed
lines) calculated using the batch melting equation for a range in mantle sources
(calculated for the Lassen sub-arc mantle; see Discussion section 5.2 for details)
mixed with 2, 5, and 10 wt.% (labeled on modeled curves) of a slab melt derived by
5% partial melting of Gorda MORB (Davis et al,, 2008; partition coefficients [4 GPa,
1000°C] from Kessel et al,, 2005a; Supplementary Table S6). Bulk partition
coefficients for mantle melting were calculated for a spinel peridotite assemblage
53/30/12/5-01/0px/Cpx/Sp (Ruscitto et al,, 2010) using partition coefficients of
Eiler et al. (2005) for Sr and Nd (Supplementary Table S6}. Melt fractions were
derived from pMELTS model results (for a given temperature and amount of slab
melt addition; Fig. 6). c) 208Pb/204P}h vs, Sr/Nd; symbols and shaded regions as in
a,b), and mixing/melting model as in b). d) MI data only (from this study), and
Lassen bulk lava compositions from Borg et al. (1997). Curves represent partial
melting models for the Lassen sub-arc mantle (composition inferred from bulk rock
samples with smallest amount of apparent subduction component; see Discussion
section 5.2) mixed with either sediment partial melts (upper curves) or partial melts
from the basaltic slab (lower curves). The sediment partial melts were assumed to

be generated by either 5% partial melting (large filled gray diamond) or 20% partial
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melting (small filled gray diamond) of N. Cascade sediment (partition coefficients
from Kessel et al, 2005a; Supplementary Table S6). The basaltic slab partial melts
likewise were assumed to be generated by either 5% partial melting (large filled
black diamond) or 20% partial melting (small filled black diamond) of Gorda MORB
(partition coefficients from Kessel et al., 2005a; Supplementary Table $6). The gray
shaded regions show the range of melt compositions created in the mantle by
addition of <10 wt% total of these subduction components (made with various
proportions of MORB vs. sediment melts) te the mantle wedge. The lines with tick
marks (in 10% increments) connecting the mixing curves are labeled with the
proportion of the subduction component derived from sediment partial melt, with

the remainder of the subduction component derived from the slab melt.

Figure 5: a) H20/Ce vs. Sr/Nd in ML Data points are shown for M1 that contain H20
concentrations within 0.5 wt% of the H2Omax value for each cone, as these values
represent the least degassed compositions. b) CI/Nb vs. Sr/Nd (all MI; corrected)
and c) C1/Nb vs. Sr/Nd (average Ml values for each cone; y-axis is extended to higher
values than in panel b). In a and ¢, data from central Oregon (Ruscitto et al,, 2010;
solid blue circles enclosed in light blue shaded field] and Mt. Shasta (Ruscitto et al.,
2008; primitive basaltic andesite (PBA): solid gray triangles enclosed in gray shaded
field; high-Mg andesites (HMA): open gray triangles enclosed in a gray shaded field)
are shown for comparison. Black lines represent 10% partial melts of two
endmember mantle compositions (DMM; Workman and Hart, 2005; and average

central Oregon mantle; Ruscitto et al., 2010) mixed with variable amounts of a
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hydrous subduction component (gray diamond in a; calculated using methods of
Portnyagin et al., 2007, based on primary magma composition of sample BORG;
Table 1). The gray bar represents the range in sub-arc mantle compositions
determined by Walowski et al. (2015). MI that experienced degassing before
entrapment or post-entrapment H loss will deviate from the melting curves as

indicated by the black arrow in panel a.

Figure 6: pMELTS model results compared with calculated primary magma
compositions from each cone (Table 1). a) Hz20, b) K20 + Naz0, c¢) Ca0 and d}) Al203
wi% vs. Si0z (all major elements are normalized volatile free). Phase equilibria were
calculated using pMELTS with a starting bulk composition of a mantle source (MM3;
Baker and Stolper, 1994) mixed with 1, 2, 5, or 10% of either pure Hz20 (dashed
curves) or a hydrous dacite melt (solid curves; dacite melt from Klimm et al,, 2008)
at 1.5 GPa. Each curve represents melting model results from 900-1400°C, with
major element compositions normalized volatile free. See Supplementary
Discussion S3 and Supplementary Table S6 for model parameters and further

details,

Figure 7: Average values of Sr/Y and Y for each cone {Table 2) compared to global
range of adakite compositions {(GEOROC database) and experimental partial melts of
eclogite (Klimm et al., 2008). Solid and dashed curves represent modeled mantle
melt compositions for various amounts of slab melt addition from 900-1350°C at 1.5

GPa. Modeled Sr and Y were calculated using the batch melting equation for a
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mantle source (calculated for the Lassen sub-arc mantle) mixed with 2, 5, and 10%
(labeled on model curves) of a partial melt of Gorda MORB (as in Fig. 4d;
Supplementary Table $6). Bulk partition coefficients were calculated for a spinel
peridotite assemblage 35/30/12/5-01/0px/Cpx/Sp using mineral partition
coefficients of Eiler et al. (2005) for Sr and Eiler et al. (2001) for Y (Supplementary
Table $6). Melt fractions were derived from pMELTS model results (for a given

temperature and amount of slab melt addition; Fig. §3).

Figure 8: Schematic diagram depicting the petrogenesis of Lassen region magmas.
Chlorite-derived fluids from the deep slab interior beneath the forearc vents (small
blue arrows) drive flux-melting of the oceanic crust (red colored area), producing
hydrous slab melts that migrate into the overlying mantle (red arrows), where they
react with peridotite to induce further melting. The location of hydrous phase
stability in the downgoing slab (dark blue shaded region) and main pulses of fluid
release from the slab (small light blue arrows) are based on the thermo-petrologic
model results of Walowski et al. (2015). Area of low-velocity (dark and light orange
shaded regions for latitudes 41° and 40.6° of the 2D models, respectively) based on
shear wave velocity model of Lui et al. (2012). Green shaded region shows the

location of low resistivity from Wannamaker et al. (2014).
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