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ABSTRACT 
 

Long wavelength acoustic phonons are normally weakly coupled to other vibrational 
modes in a crystalline system.  This is particularly problematic in molecular dynamics 
calculations where vibrations at the system-size scale are typically excited at initiation.  The 
equilibration time for these vibrations depends on the strength of coupling to other modes, so is 
typically very long.  A very simple deterministic method is presented which removes this 
problem.   Examples of equilibration in lithium and a martensitic phase transition in sodium are 
used to demonstrate the method. 

 
 
INTRODUCTION 
 

Molecular dynamics is a very powerful method for simulating the behaviour of a many-
atom system.  It is particularly useful and flexible when used for studying phase transitions, since 
it makes no assumption about the preferred crystal structure.  However if the system is not 
initiated in an equilibrium structure, it may take some time to equilibrate.  There is no good 
theory that enables one to say how long the equilibration will take.   

 
Indeed, within statistical mechanics, it is difficult to define what a non-equilibrium state 

even means. Provided the molecular dynamics is based on some underlying Lagrangian, any 
simulation will be initiated in a valid microstate of the appropriate ensemble.  The reason why 
this microstate is ``non-equilibrium'' lies outside the realm of statistical mechanics. 
 
Probably the only sensible way to address this is via the equipartition theorem, which holds that 
each degree of freedom has, on average, an equal amount of energy.  One might then argue that 
if a single degree of freedom in a microstate has a macroscopic amount of energy - i.e. a finite 
fraction of the total energy – then the microstate is atypical and ``non-equilibrium''.  One can 
think here of non-equilibrium situations in the Cartesian coordinate system ri, e.g. a radiation 
damage simulation where the primary knock-on atom has keV of energy, or of non-equilibrium 
in the normal modes ui, a simulation in which one phonon mode is massively excited. 
 
Unfortunately, even this definition fails in general because of the nonunique definition of degrees 
of freedom.  One can always recast the degrees of freedom in any linear combination - including 
a linear combination qi, chosen such that all the kinetic energy is in one degree of freedom qi. It 
is likely that such a perverse choice would have entangled degrees of freedom very far from the 
normal modes, which describe a typical near-harmonic crystal system.  As such, the energy in qi, 
would disperse quickly into the other  qj modes. 
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In this paper, we adopt the following definition of a ``non-equilibrium microstate'':  a microstate 
in which one degree of freedom has a macroscopic energy, and retains that macroscopic energy 
for many iterations of the system dynamics. 
 
In this definition, the degree of freedom with macroscopic energy can be regarded as a 
thermodynamic variable.  Since we are interested in constant pressure molecular dynamics, the 
specific degree of freedom considered here will be the size of the MD supercell. 
 

THEORY  

         The most common method for implementing constant pressure molecular dynamics is the 
Parrinello Rahman barostat [1].  

The Parrinello-Rahman method (PR) can be used in molecular dynamics to describe the NPE or 
NPT ensemble when applied with a thermostat such as Nose [2].  PR has a number of well-
known anomalies [3-5], including lack of rotational invariance and missing cross terms in the 
derivatives, however in the current work we consider the original method, which is widely used 
in molecular dynamics packages.  In this, nine fictitious degrees of freedom are introduced 
corresponding to the components of the vectors defining the supercell a, b, c.  Each degree of 
freedom then has its own equation of motion, derived from the Lagrangian 

 

in which x are the fractional coordinates within the supercell and the 3x3 ``boxmatrix'' h=[a,b,c] 
define the simulation volume. The scalar W is the equivalent of a mass associated with the box 
degrees of freedom.  P is the external hydrostatic pressure, S is the external stress (assumed 
hydrostatic in the original work).  A constant term ΩTr(S-P) is ignored. 

The atomic positions rj are written as a product of fractional coordinates  

  

from which a strain matrix with respect to a reference structure h0 is defined by 

 
where prime denotes the transpose. 
 
The boxmatrix introduces nine additional degrees of freedom, three stretches, three shears and 
three rotations.  Equations of motion for these degrees of freedom come from the stresses on the 
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supercell and an equivalent kinetic energy term from their time derivatives and the fictitious 
mass. 
 
The scalar W is the equivalent of a mass associated with the box degrees of freedom. It 
determines how rapidly the box changes shape in response to stress and can be related loosely to 
elastic constants. Typically it takes a value of similar order of magnitude to the sum of the 
atomic masses. From all this analysis, the equation of motion for the boxmatrix degrees of 
freedom is 

 
where π is the internal stress tensor from the kinetic energy and virial and σ is defined by: 

 
The practical difficulty with this, and other barostats, is that the box degrees of freedom are 
typically coupled only weakly to the atomic degrees of freedom.  Thus if equipartition of energy 
between box and atoms is not established at the start of the simulation, then equilibration times 
become very long. This is particularly annoying because one is not generally interested in the 
box degrees of freedom. They are simply used to enable the cell to adjust its shape, to ensure that 
the simulation is properly hydrostatic, or to facilitate phase transitions.  It is easy to start the box 
degrees of freedom with an equipartitioned kinetic energy, however the potential energy stored 
in the strain field is macroscopic, and not generally known – and sometimes this is what one is 
trying to find.  Furthermore, the Parrinello-Rahman method was designed to facilitate phase 
transitions, but when a phase transition occurs in an MD simulation it is associated with a 
macroscopic release of strain energy - all of which goes initially into the boxmatrix degrees of 
freedom. 
 
The excess energy in the box degrees of freedom manifests itself in nearly harmonic oscillations 
of the entire system: these are long wavelength phonons.  Because they correspond to the 
acoustic degrees of freedom, they are referred to as ringing modes.  The important insight here is 
that NPT simulations are out of equilibrium in this well-defined way. 
 
Now that the problem is well defined, we can seek a bespoke solution to stop the ringing mode.  
Critical damping would be ideal, but that would require a priori knowledge of the ringing 
frequencies in order to determine the damping coefficient.  An alternative is to use an 
algorithmic rather than Lagrangian formulation.  We are trying to remove both potential and 
kinetic energy from one mode. Removing kinetic energy is easy, one simply sets ḣ to zero. 
However, if this is done on each step, the cell shape cannot change, which defeats the purpose of 
the PR method.  The most efficient strategy is to remove the kinetic energy at the point where the 
potential energy is minimised.  This can be done for each component of h independently with a 
single IF statement: 

 
In most practical cases, this is extremely effective, however there are two problems.   
Applying the algorithm to a single off-diagonal component is equivalent to applying a torque to 
the system, which is undesirable. This traces back to the fact that Parrinello-Rahman introduces 
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nine fictitious variables, but three of these are rotations that should not affect the energy.  In most 
practical MD codes, net rotation of the cell can occur due to rounding errors in the stress tensor, 
and are eliminated automatically.  An alternative is to transform h and its derivatives into 
volume expansion, five shears and three rotations, apply the algorithm only to the first six. 
 
A second problem is that the algorithmic removal of energy does not correspond to any 
Hamiltonian, and therefore does not obey time-reversibility and conservation of the Hamiltonian 
energy.  The resolution to this depends on what the simulation is meant to be doing.  Energy 
conservation can be restored by rescaling the velocities of all the individual atoms in the system, 
so as to to compensate for the lost energy.  This is effectively introducing a strong, fictitious, 
anisotropic coupling between box and atom degrees of freedom to resolve the weak-coupling 
problem.  An alternative is to observe that the ringing mode comes from assuming that the 
acoustic mode is localized in a region the size of the supercell, as a consequence of the periodic 
boundary condition approximation.  If one relaxes the approximation and assumes that sound 
wave can travel away from the explicitly modelled region, then the loss of energy from the 
boxmatrix modes makes perfect physical sense. 
 
The algorithmic quench was implemented in NPTp ensemble calculations in the open source 
molecular dynamics code MOLDY [6]. 
 
To demonstrate its efficacy two examples are considered.  In both cases we use a many-body 
empirical potential [7], first in simple equilibration of a large system of 16000 lithium atoms, and 
second for a small system of 2000 sodium atoms undergoing a martensitic phase transition. 
 
Three quantities are monitored to detect three distinct forms of equilibration: 
 
1/ Equilibration with respect to external work, the system volume,  
 
2/ Equilibration with respect to the First Law, energy. 
 
3/ Equilibration with respect to the Second Law, entropy. 
 
The first two are the standard measures of equilibration, but thermodynamic equilibrium is 
defined by point at which the system no longer generates entropy.  The entropy is calculated by 
integrating the Central equation of thermodynamics: 

 
where the integral is converted to a time integral using the chain rule: 

 
with the changes in U,V calculated numerically over a 0.1ps window. 
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Figure 1  Volume, energy and entropy changes with time, the red (grey), strongly oscillating 
curves use are the standard Parrinello Rahman method, black curves add algorithmic quench 
 
NPE Crystal Equilibration 
  
We consider first the case of equilibration of lithium [7] with a Finnis-Sinclair style potential [8] 
at 280K, where the bcc structure is expected to be stable. The structure is set up with atoms on 
the perfect lattice structure, with the lattice parameter determined from static relaxation.  
Temperature is initialized at 280K by setting initial particle velocities, and maintained through 
use of a Nose thermostat.   
 
Due to neglect of thermal expansion, the initial volume is too small.  This triggers the ringing, 
and Figure 1(a) shows that without quenching there is almost no sign of attenuation of the 
ringing mode.  By contrast, the algorithmic quench kills the ringing within 5ps at the equilibrium 
value, and subsequent oscillations are too small to discern. 
 
The energy of the non-fictitious modes fluctuates at double the frequency of the volume, and the 
alternating peak heights in the unquenched case shows that the effect of ringing on the other 
modes is intrinsically anharmonic, despite which the removal of energy from the mode is very 
slow.  Again, the algorithmic quench stabilizes the energy in the system from its first application.  
Although the quench continues to remove energy from the fictitious modes of the system, such 
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that the Hamiltonian energy reduces, the effect on the atomic modes is negligible and cannot 
even be discerned in the figure. 
 
The entropy of the quenched system increases in the equilibration period and is then stable.  In 
the unquenched case, the system entropy increases in expansion phases, and reduces in 
contraction.  The overall downward slope indicates that the ringing is creating entropy in the 
surroundings, and again there is no sign of this abating. 
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Figure 2 Volume and enthalpy changes with time, in a simulation cooling sodium from bcc to 
fcc simulations start at 500K and cool at 1.5ps/K, so that the transition after 500ps occurs at 
about 150K. Curves with high frequency oscillation  are the standard Parrinello Rahman method, 
black curves the same simulation adding algorithmic quench 
 
Martensitic transition 
 
In the second case, we consider the phase transition on cooling in sodium [7].  The system is 
initiated in the ground state fcc structure at 10K.  It is then heated by incrementing the thermostat 
target temperature at the rate of 1.5ps/K.  The potential describes two transformations, fcc-bcc 
and melting.  At this heating rate, typical of MD simulation, the figure shows that with standard 
NPT ensemble the ringing mode is barely suppressed and, moreover, at the phase transition it is 
enhanced.  With the algorithmic quench, equilibration is reached quickly. 
 
One expects some hysteresis in a martensitic transition [9], and it is notable here that the ringing 
simulation transforms first, at a lower temperature.  The ringing presumably helps to overcome 
the kinetic barrier to transformation. 
 
DISCUSSION  
 
The ``ringing'' mode is the slowest-equilibrating mode in NPE molecular dynamics calculations. 
It is a dirty secret of molecular dynamics, seldom shown in published work, sometimes not even 
calculated and even present as pressure oscillations in NVT simulations. The ringing mode is 
excited whenever the initial configuration is not at equilibrium, and again at any stage in the 
simulation where a phase transformation occurs.  In practical applications, it is therefore 
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unavoidable. Using a simple algorithm to remove energy from the mode, we show that 
equilibration can be achieved many orders of magnitude faster than with standard Parrinello 
Rahman Lagrangian.  Although the algorithm does not correspond to a Lagrangian, and lacks 
strict time-reversibility, we show that the equilibrated systems have the same energy and volume 
properties as the Parrinello-Rahman simulations do on average. 
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