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Key points 

• Chemokine ligands CXCL1-4, 6, 10, 11 & 13 are up-regulated in human quiescent 

HSC with CXCR2 & CXCL4 regulating their survival 

• Genetic ablation of Cxcr2 or Cxcl4 in murine models induces initial expansion but 

eventual exhaustion of HSC in transplantation assays 
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Abstract 

The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone 

marrow (BM) niche is not well understood. We therefore investigated global transcriptomic 

profiling of normal human hematopoietic stem/progenitor cells, revealing that several 

chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, CXCL13) were up-regulated in 

human quiescent CD34+Hoescht-Pyronin Y- and primitive CD34+38-, as compared to 

proliferating CD34+Hoechst+Pyronin Y+ and CD34+38+ stem/progenitor cells. This suggested 

that chemokines may play an important role in the homeostasis of HSCs. In human CD34+ 

hematopoietic cells, knock-down of CXCL4 or pharmacological inhibition of the chemokine 

receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) 

potential. Studies on Cxcr2-/- mice demonstrated enhanced BM and spleen cellularity, with 

significantly increased numbers of HSC, hematopoietic progenitor cell (HPC)-1, HPC-2 and 

Lin-Sca-1+c-Kit+ sub-populations. Cxcr2-/- stem/progenitor cells showed reduced self-renewal 

capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated 

reduced numbers of CFC in primary and secondary assays following knock-down in murine 

c-Kit+ cells and Cxcl4-/- mice showed a decrease in HSC and reduced self-renewal capacity 

after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 

play a role in the maintenance of normal hematopoietic stem/progenitor cell fates, including 

survival and self-renewal.  
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Introduction 

Hematopoietic stem cells (HSC) are responsible for maintenance of the hematopoietic system 

throughout life and their fate is tightly balanced between self-renewal and differentiation in 

order to sustain the production of multi-lineage differentiated cells.1,2 In mice and humans, 

most adult HSCs are quiescent, yet remain poised for activation in response to bone marrow 

(BM) injury or growth factor/interferon stimulation.3,4 This balanced state between 

quiescence, proliferation, and differentiation is tightly controlled by numerous transcriptional 

networks, modulated by both cell autonomous factors and the surrounding BM niche.5  

Chemokines are a family of chemotactic cytokines which bind to specific 7-transmembrane 

G-protein-coupled receptors.6 Chemokines are classified into four main families based on the 

position of conserved cysteine residues within their N-terminal region; CXC, CC, CX3C and 

XC chemokines. Chemokines are functionally divided into two groups, homeostatic and 

inflammatory chemokines. The first are expressed constitutively and are mainly involved in 

controlling the migration of cells during development and tissue maintenance. Inflammatory 

chemokines are produced in response to infection or injury and attract inflammatory cells to 

sites of injury.7 Chemokines have a variety of roles in development, disease and 

hematopoiesis, in addition to their role in chemotactic activity on leukocytes.7,8 HSC 

proliferation and survival have been shown to be mediated by members of the chemokine 

family.9,10 Members of the CXC family of chemokines, such as CXCL12 and its receptor 

CXCR4, play important roles in hematopoietic cell survival, BM localization/retention and 

mobilization at early stages of life and during adulthood.11,12  

The role of chemokine ligands and their receptors in HSC fates has not been extensively 

characterized so far.  We have shown that CCL3 is a negative regulator of HSC proliferation 

with potential for therapeutic application.13 A previous study has shown that CXCL1 
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promotes growth and self-renewal in embryonic stem cells,14 while CXCL4 has been shown 

to inhibit cell cycle entry in endothelial cells, together with inhibition of DNA synthesis.15  

Importantly, recent data have shown that CXCL4 expressed by megakaryocytes also 

regulates HSC quiescence.16 In addition, CXCL12 and CXCR4 play an important role in 

maintaining HSC quiescence and repopulating activity.17,18 HSC survival in vivo is dependent 

on expression of CXCL12 from endothelial cells and mesenchymal progenitors of the 

surrounding BM stroma.19 Finally, it has been shown that chemokines support murine 

leukemia stem cells in myeloproliferative disorders.20-22 

To identify important regulators of hematopoietic stem/progenitor cell fate decisions, we 

performed transcriptional profiling of human quiescent and actively dividing stem/progenitor 

cells and demonstrated that several chemokine ligands (CXCL1-4, CXCL6, CXCL8, CXCL10, 

CXCL11, CXCL13) were up-regulated in the quiescent fraction.23 These data suggested that 

chemokine signalling pathways may be involved in the regulation of HSC fates, such as 

survival or self-renewal. Here we have further investigated and characterized the requirement 

for members of the chemokine family in mouse and human hematopoietic stem/progenitor 

cell survival, focusing on CXCR2 and CXCL4.  
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Materials and Methods 

Reagents 

SB225002 was purchased from Merk (Nottingham, UK) and used at the concentrations 

indicated. All reagent grade chemicals were purchased from Sigma-Aldrich (Poole, UK), 

unless otherwise stated. 

 

Human samples 

The research was approved by West of Scotland Research Ethics Committee 4 and all human 

participants gave written informed consent. G-CSF-mobilized peripheral blood (PB) stem cell 

samples were obtained as excess material from normal donors for allogeneic transplantation. 

CD34-enrichment was performed using CliniMACS (Miltenyi Biotec Inc., Auburn, CA, 

USA) as previously reported.24 CD34+, Hoescht+/-, Pyronin Y+/-, CD34+38+/- populations were 

isolated as previously described.25 Samples were isolated using CD34 (Becton Dickinson, 

340667, Oxford, UK) and CD38 (Becton Dickinson, 551400) antibodies, Pyronin Y (Santa 

Cruz, CAS 92-32-0, Heidelberg, Germany)   and  Hoechst (Thermo Fisher  33342, Life 

Technologies, NY, USA). 

 

Mouse strains  

All experiments were carried out according to UK Home Office regulations using 8-12 week 

old animals on a C57BL/6 background (CD45.2) with age and sex matched wild type (WT) 

controls (Cxcr2-/-, Cxcl4-/-). C57BL/6 animals expressing CD45.1 were used as recipient mice 

for BM reconstitution experiments. Cxcl4-/- mice were donated by Professor Mortimer Poncz 

(the Children’s Hospital of Philadelphia). 
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Cell isolation 

Human CD34+ cells were cultured in serum free medium supplemented with a high growth 

factor cocktail as described previously.23 Murine BM cells were isolated by crushing whole 

bones. Cells were filtered after crushing. Mouse BM cells were cultured in IMDM 

supplemented with 10% FCS, penicillin, streptomycin, L-glutamine and IL-3 (20 ng/ml), IL-

6 (20 ng/ml) and SCF (40 ng/ml) (Biolegend, London, UK). Prior to lentiviral transduction, 

mouse BM samples were enriched for c-Kit+ cells using MicroBead (Miltenyi Biotec Inc.). 

 

FACS 

Flow cytometry was performed using the FACSCantoII and FACSAria cell sorter (Becton 

Dickinson, Oxford, UK) and analyzed using FlowJo (Tree Star Incorporation, Oregon, USA). 

Murine BM cells were incubated in Fc block prior to antibody staining. Human BM was 

stained with CD34 (Becton Dickinson, 340667) and CD38 (Becton Dickinson, 551400).  

Mouse tissue was stained with a lineage cocktail against CD4 (Becton Dickinson, 553649) 

CD5 (Becton Dickinson, 553019), CD8a (Becton Dickinson, 553029), Gr-1 (Becton 

Dickinson, 553125), B220 (Becton Dickinson, 553086), Ter-119 (Becton Dickinson, 553672) 

and CD11b (Becton Dickinson, 553309). The stem/progenitor population was assessed using 

antibodies against c-Kit (eBioscience, Hatfield, UK; 47-1171-82), Sca-1 (BioLegend, 

122514), CD150 (BioLegend, 115910), and CD48 (BioLegend, 103406). For apoptosis 

assays, cells were stained with Annexin-V (Becton Dickinson, 556570) and DAPI. 

Transplantations were monitored using antibodies against CD45.1 and CD45.2 (Becton 

Dickinson, 558701 and 553772, respectively). 

 

RNA isolation and real-time PCR 
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RNA was extracted using the RNeasy RNA extraction kit (Qiagen Sciences, MD, USA) and 

reverse transcribed into cDNA (Life Technologies, NY, USA). If lower than 5,000, cells were 

sorted using the cells direct one-step qRT-PCR kit (Life Technologies, Paisley, UK). Real-

time PCR was carried out using Taqman™ probes and data was acquired using an Applied 

Biosystems 7900HT fast real-time PCR machine (Life Technologies) or Fluidigm™ platform 

(Fluidigm™) and data analysis was performed using the RQ manager software (Life 

Technologies). Human Taqman probe ID numbers: Human CXCL1: Hs00236937_m1, 

Human CXCL2: Hs00601975_m1, Human CXCL4: Hs00427220_g1, Human CXCL6: 

Hs00605742_g1, Human CDC6: Hs00153374_m1, Human CD38: Hs01120071_m1, Human 

CXCL8: Hs01115388_m1. Mouse Cxcr2: Mm00438258_m1, Mouse Cxcl4: 

Mm00451315_g1, Mouse Cxcl1: Mm04207460_m1, Mouse Cxcl2: Mm00436450_m1, 

Mouse Cxcl3: Mm01701838_m1, Mouse Cxcl12: Mm00445553_m1.  

 

Immunofluorescence staining 

Cells were fixed and permeabilized with 4% formaldehyde and 0.25% triton-X-100, blocked 

in 10% goat or donkey serum (Sigma-Aldrich) and incubated overnight in primary antibodies 

against CXCL1 (1:100, sc-1374, Santa-Cruz, Heidelberg, Germany), CXCL2 (1:100, sc-

1375, Santa-Cruz), CXCL4 (1:100, sc-73638, Santa-Cruz), CXCL6 (1:100, sc-5813, Santa-

Cruz), CXCL8 (1:100, MAB208, R&D Systems, Abingdon, UK) CXCR2 (1:100, sc-682, 

Santa-Cruz) or IgG (AB-108-C, R&D Systems). Cells were incubated with appropriate 

secondary donkey anti-goat (1:500, ab150129, Abcam, Cambridge, UK), goat anti-mouse 

(1:500, ab150113, Abcam) or goat anti-rabbit (1:500, ab150077, Abcam), Alexa Fluor 488 

and mounted with DAPI (Vector Laboratories Ltd, CA, USA). Images were acquired using a 

Zeiss fluorescence microscope and 3-dimensional images generated using ImageJ. 
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CFC assay 

CFC assays were carried out using Methocult (H4434 or M3434, Stem Cell Technologies, 

Grenoble, France). Resulting colonies were counted after approximately 10-14 days in 

culture. Colonies were harvested, counted and reseeded into Methocult for serial replating 

assays. 

 

In vivo transplantation 

Donor mice were CD45.2+. HSC (Lin-Sca-1+c-Kit+[LSK], CD150+CD48-) were sorted from 

donor Cxcr2-/-, Cxcl4-/- or WT animals and transplanted by intravenous injections into 

CD45.1+ recipient mice (irradiated at 7 Gy) using 100 HSC together with 200,000 CD45.1+ 

support BM cells per mouse. Mice were given Baytril antibiotic in their drinking water for 2 

weeks following irradiation. Animals were bled every 4 weeks post-transplant to assess 

chimerism and sacrificed at 16 weeks post-transplant. BM, spleen and thymus were harvested 

and examined for donor cell contribution. For secondary transplantations, 2,000 CD45.2+ 

LSK cells were sorted from primary recipients and transplanted with 200,000 CD45.1+ 

support BM cells into CD45.1+ irradiated recipient mice and followed as above. For homing 

experiments sorted LSK donor cells (1×105) were transplanted into lethally irradiated 

recipient mice. 24 hours (hrs) after transplant, the recipient mice were analyzed. 

 

Lentiviral transduction and electroporation 

Mouse Cxcl4 shRNAs (Cat No. RMM4534-NM_019932) were purchased from Thermo 

Fisher (Life Technologies). ShRNA hairpins of interest were sub-cloned from the original 

pLKO.1 vectors into a pLKO.1 plasmid containing a GFP tag. Calcium chloride was used to 

transfect HEK-293 cells with specific hairpin or scrambled control using HIV-1 and VSV-g 

as accessory plasmids. Primary cells were cultured in viral medium supplemented with 
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Transdux™ (Cambridge Bioscience, Cambridge, UK) or Polybrene at 400g for 90 minutes. 

Viral medium was collected at 24, 48 and 72 hrs post transfection and the spin inoculation 

was repeated for 3 rounds of viral infection. Cells were resuspended in appropriate medium 

for 48 hrs before selection of positively transduced cells using positive expression of GFP 

and FACS. 

CXCL4-siRNA (Applied Biosystems, 221753) and scrambled siRNA1 (Applied Biosystems, 

AM4611) (100 nM) were electroporated into cells using the Amaxa Nucleofector Kit V 

(Lonza, Cambridge, UK) together with a GFP-containing plasmid following the 

manufacturer’s instructions. Transduction efficiency ranged between 30-50%. After 24 hrs 

the GFP+ cells were sorted and analyzed. 

 

Differential expression analysis of transcriptional data and network construction 

Raw data were obtained via ArrayExpress (E-MTAB-2508); RMA normalized and analyzed 

using Rank Products.26,27 MetaCore’s “Expand by one interaction” algorithm was used to 

expand the gene network around the eight chemokines differentially expressed in quiescent 

versus dividing CD34+ cells23; only those genes exhibiting differential expression (false 

discovery rate (FDR) = 0.05) between quiescent and dividing normal CD34+ cells were 

retained. 

 

Statistical analysis 

Statistical analyzes were performed using the Student’s t test. A values of p <0.05 was 

defined as statistically significant (*). p<0.01 (**) and p<0.001 (***) were taken to be highly 

statistically significant. 
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Results 

Chemokine ligands are up-regulated in human CD34+38- compared to CD34+38+ cells 

We previously analyzed the transcriptional differences between human quiescent (CD34+, 

Hoechst-, Pyronin Y-) cells and their more proliferative (CD34+, Hoechst+, Pyronin Y+) 

counterparts. We observed that several chemokine ligands, including CXCL1-3, CXCL6, 

CXCL10, CXCL11 and CXCL13, were up-regulated in the quiescent population, suggesting a 

possible role for these factors in the regulation of HSC maintenance.23 No probes for CXCL4 

were included in the microarray. Here we have further analyzed these data with a focus on 

the chemokine family. Figure 1 shows the up-regulated chemokines and genes predicted to be 

connected with the chemokine network in human HSCs.  In quiescent cells the chemokine 

network highlighted regulation of factors relevant for proliferative status, such as regulators 

of cell cycle E2F1 (down-regulated) and EGR1 (up-regulated).28 To validate chemokine 

regulation and examine a possible mechanism by which these ligands are linked to HSC cell 

cycle status, BM stem/progenitor cells from normal, healthy volunteers were sorted into 

primitive (CD34+38-) and more proliferative progenitor cell (CD34+38+) populations. Cell 

cycle and differentiation status of these two populations was confirmed by the differential 

expression of CDC6 and CD38, respectively (Supplementary Figure 1). As predicted, CDC6 

and CD38 were down-regulated in CD34+38- compared to CD34+38+ cells, indicating that 

CD34+38- cells were mainly quiescent and undifferentiated. Chemokine genes were selected 

for real-time PCR validation based on the level of up-regulation in the microarray with the 

addition of CXCL4, which has recently been shown to be relevant in the regulation of HSC 

quiescence.16 The expression of CXCL1, CXCL2, CXCL4, CXCL6 and CXCL8 was 

significantly increased in CD34+38- compared to CD34+38+ cells (Figure 2A, *p<0.05; 

**p<0.01) suggesting a possible role for these chemokines in maintenance of the quiescent 

HSC pool.   
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Immunofluorescence staining showed that human CXCL4 protein was detectable in both 

CD34+38- and CD34+38+ cells, but was higher in expression in CD34+38- cells (Figure 2B). 

Similarly, immunofluorescence staining was carried out in human CD34+38+ and CD34+38- 

cells to investigate the expression of CXCL1, CXCL2, CXCL6 and CXCL8 (Supplementary 

Figure 1B). Whilst CXCL6 and CXCL8 were barely detectable at the protein level in either 

population, CXCL1 and CXCL2 showed clear expression in CD34+38+ cells, but in contrast 

to what was observed at the gene level, no up-regulation was detected in the CD34+38- cells. 

As CXCR2 is the best characterized of the receptors for chemokine ligands, we examined its 

expression at the mRNA (Figure 2D) and protein level (Figure 2C and Supplementary Figure 

1B) in the CD34+38- and CD34+38+ fractions. CXCR2 mRNA and protein were expressed at 

similar levels in both cell populations. CXCR2 mRNA level was compared to that of 

neutrophils and mononuclear cells (PBMNCs) which were used as positive controls. Based 

on their roles in cell growth or self-renewal in other cellular contexts, CXCL4 and CXCR2 

were selected for functional studies.15,16  

 

CXCL4 and CXCR2 support viability and colony forming potential of human CD34+ 

cells 

We investigated the role of the most differentially expressed chemokine CXCL4, in CD34+ 

cells. In keeping with the <50% reduction in gene expression achieved, siRNA-mediated 

knock-down of CXCL4 resulted in a modest but significant decrease in cell viability 

compared to non-targeting siRNA (Figure 3A). To investigate the role of CXCL4’s known 

chemokine receptor CXCR2, CD34+ cells were treated with the CXCR2 inhibitor SB225002. 

SB225002 is a potent and selective antagonist of CXCR2 which results in inhibition of ligand 

mediated signal transduction.29 CD34+ cells were treated for 72 hrs. A reduction in cell 

viability and colony formation was observed in a drug concentration-dependent manner 
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compared to the vehicle treated control (Figure 3B) (drug concentration based on published 

literature30). Similarly, CD34+38- cells treated for 72 hrs with SB225002 showed a marked 

decrease in cell viability and colony formation ability in comparison to control (Figure 3C). 

In addition, treatment of CD34+38- cells with SB225002 at 1 μM led to an obvious increase in 

the percentage of cells in G0 of the cell cycle (Supplementary Figure 1C). Taken together, 

these data suggest that inhibition of chemokine signalling, in particular that of CXCL4 and 

CXCR2, impairs human stem/progenitor cell function and imply that these factors may be 

required for survival and maintenance of these cells. 

 

Chemokine expression in murine stem and progenitor cells 

To investigate a role for the chemokine family in the maintenance of HSCs in their 

physiological BM microenvironment, parallel murine models were employed. We first 

interrogated a publicly available gene expression dataset and determined that Cxcl4 was 

expressed in murine LSK cells.31 Following cell sorting, real-time Q-PCR was used to assess 

the expression of Cxcl1, Cxcl2, Cxcl3, Cxcl4, Cxcl12, and Cxcr2 across HSC 

(LSKCD150+CD48−), multipotent progenitors (MPPs; LSKCD150−CD48−), and primitive 

hematopoietic progenitor cells (HPC-1; LSKCD150−CD48+ and HPC-2; LSKCD150+CD48+) 

derived from adult murine BM (sorting strategy in Supplementary Figure 2A; data in 

Supplementary Figure 2B and Calaminus et al32). As shown Cxcl4 and Cxcr2 were 

expressed in the HSC fraction.   

 

Cxcr2-/- HSCs have impaired self-renewal capacity  

We next investigated the requirement for Cxcr2 in mouse HSC function. Cxcr2-/- mice have 

previously been characterized and are known to show a considerable expansion of myeloid 

cells in the BM, spleen and PB, an effect that was shown to be caused by deletion of Cxcr2 
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from the BM microenvironment.33,34 However, to our knowledge, a comprehensive analysis 

of the hematopoietic stem and progenitor compartments and their functionality has not 

previously been investigated in these mice. Total BM and spleen cellularity were increased in 

the Cxcr2-/- mice (*p<0.05; **p<0.01) (Figure 4A). Immunophenotypic analyzes revealed 

that the absolute numbers of LSK cells were increased in BM and spleen of Cxcr2-/- mice 

(*p<0.05; **p<0.01) (Figure 4B). More detailed analyzes of the LSK compartment using 

CD150 and CD48 markers indicated a significant increase in the HSC, HPC-1 and HPC-2 

populations in the Cxcr2-/- mice, both in the BM and the spleen (*p<0.05) (Figure 4C). A 

decrease in the erythroid (*p<0.05) and an increase in the myeloid compartments 

(***p<0.001) of Cxcr2-/- mice were also observed in the BM, consistent with the previous 

report (Figure 4D, left).34 In the spleen of Cxcr2-/- mice an increase in both erythroid and the 

granulocytic compartments was seen (*p<0.05; **p<0.01) (Figure 4D, right). No differences 

were detected in the T cell compartments (CD4 and CD8) between the Cxcr2-/- and the WT 

mice, either in the spleen or the thymus (Figure 4E-F). When cell cycle was analyzed in LT-

HSC from WT and Cxcr2-/- mice, a decrease in the percentage of Cxcr2-/- cells in G0 phase, 

together with an increase in those in G1 phase was detected (Supplementary Figure 3A). No 

changes in apoptosis were detected (Supplementary Figure 3C). 

In previous examples of genes that are critical for HSC maintenance, an expansion in stem 

and progenitor cell numbers has often been associated with an alteration in the balance 

between self-renewal and differentiation, leading to stem cell exhaustion.35 To determine 

whether the difference observed in overall HSC frequency in Cxcr2-/- mice translated into a 

change in self-renewal capacity, Cxcr2-/- HSC were investigated in serial transplantation 

assays (Figure 5A). No difference in homing ability was detected between the WT or Cxcr2-/- 

HSC at 24 hrs following transplantation (Figure 5B). HSC from WT or Cxcr2-/- mice (CD45.2 

background) were transplanted into irradiated recipients (CD45.1 background), together with 
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CD45.1+ support BM cells. Chimerism between donor CD45.2 and recipient CD45.1 was 

analyzed (Figure 5C). A decrease in the percentage of CD45.2+ chimerism was observed in 

the PB up to 16 weeks post-transplant for Cxcr2-/- HSC in comparison to the control 

(**p<0.01 and ***p<0.001) (Figure 5D). To further investigate the self-renewal capacity of 

Cxcr2-/- HSC, secondary transplantation assays were carried out at 16 weeks post primary 

transplant. BM from the recipients of the primary transplants was harvested and donor 

derived LSK were transplanted into irradiated secondary recipients together with support 

BM. A decrease in the percentage of donor derived cells was found in the PB of secondary 

recipients transplanted with Cxcr2-/- LSK in comparison to the controls out to 16 weeks 

(**p<0.01 and *p<0.05) (Figure 5E). To elucidate whether the phenotype observed in Cxcr2-

/- mice was due to an HSC autonomous effect or conferred by the surrounding niche (non-

autonomous effect) we analyzed the phenotype of donor-derived BM cells after primary 

transplantation in WT recipient mice (Figure 5F). In contrast to what was observed in mutant 

LSK prior to transplant (significant increase as compared to WT; Figure 4B), a significant 

decrease was observed in the percentage of donor mutant LSK compared to the WT 

following transplantation, suggesting that signals from the microenvironment may play a role 

in the phenotype observed. Collectively, the results show that Cxcr2 plays a key role in HSC 

maintenance.  

 

Cxcl4 contributes to the regulation of self-renewal of HSC and progenitor cells 

To support the in vitro data on human CXCL4 (Figures 1-3) and to complement the Cxcr2-/- 

mouse model we analyzed hematopoiesis in Cxcl4-/- mice.36 Previous studies have shown that 

Cxcl4-/- mice exhibited an increased number of HSC and increased HSC proliferation.16 We 

observed that Cxcl4-/- mice showed normal spleen and BM cellularity (Figure 6A), while the 

LSK numbers in BM were increased (*p<0.05) (Figure 6B). Furthermore, we found that 
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Cxcl4-/- mice had a significant decrease in the HSC and an increase in MPP in the BM, but 

not in the spleen (*p<0.05, ***p<0.001) (Figure 6C). Mature cell subsets, including 

erythroid, granulocytic, B and T cells, were not significantly altered in BM, spleen or thymus 

of Cxcl4-/- mice (Figure 6D-F). When cell cycle (LSK cells) was analyzed in the WT and 

Cxcl4-/- mice, no significant difference was detected between phases (Supplementary Figure 

3B). No changes in apoptosis were detected (Supplementary Figure 3D). 

To investigate changes in self-renewal capacity, a specific Cxcl4 shRNA construct was used 

to reduce Cxcl4 expression in mouse c-Kit+ BM cells using a lentiviral transduction system. 

A reduction in Cxcl4 gene expression was found in Cxcl4 knock-down cells (n=2 control; 

n=3 Cxcl4-sh1) (Figure 7A). To determine whether Cxcl4 played a role in progenitor cell 

self-renewal, Cxcl4 knock-down cells were plated into methylcellulose and then re-plated 

after 7 days. A significant reduction in CFC was detected in both the primary (***p< 0.001) 

and secondary cultures (*p<0.05) (Figures 7B-C). Cxcl4-/- HSC were then investigated for 

their ability to reconstitute myeloablated hosts in primary and secondary transplantation 

assays, as previously carried out for Cxcr2-/- HSC (Figures 5 and 7D). No changes in the 

percentage of CD45.2+ donor chimerism were observed in the PB up to 16 weeks post 

primary transplant for the Cxcl4-/- HSC in comparison to the control (Figure 7E). However, 

secondary transplantation assays showed a significant decrease in the percentage of donor 

derived cells in the PB of recipients transplanted with Cxcl4-/- LSK in comparison to the 

controls out to 16 weeks (***p<0.001) (Figure 7F) indicating that Cxcl4 also contributes to 

HSC maintenance.  

Similar to the analysis performed for Cxcr2-/-, we analyzed the phenotype of Cxcl4-/- donor-

derived BM cells after primary transplantation into WT recipient mice, but no difference was 

seen between the WT and the mutant percentage of donor cells (Figure 7G). However, 

significant decreases were observed in the percentages of donor mutant cells after secondary 
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transplantation in all populations except MPP, when compared to the WT counterparts. In 

this case, the effect observed in the Cxcl4-/- HSC before transplantation (significant decrease 

as compared to WT; Figure 6C) was maintained after transplantation into a WT 

microenvironment.  

 

Discussion 

Our results indicate that chemokines play an important role in the regulation of HSC survival 

and self-renewal. HSC homeostasis is a critical process required for the correct functioning of 

HSC and their progeny. Here we propose that chemokine signalling pathways are involved in 

the regulation of HSC and cooperate to maintain the quiescent and self-renewing state typical 

of these cells. Our findings suggest that some chemokines, in particular CXCL4 and the 

receptor CXCR2, play a key role in the maintenance of the HSC pool. We have observed that 

Cxcr2 and Cxcl4 proved to be critical for HSC reconstitution, suggesting a role in self-

renewal.  

CXCL1-4, together with CXCL6, CXCL8, CXCL10, CXCL11 and CXCL13, were all 

significantly up-regulated in the quiescent/primitive fraction of human stem/progenitor cells 

and, upon modest knock-down of CXCL4, the survival of primitive cells was impaired. It has 

been shown previously that human hematopoietic CD34+ cells and endothelial cells respond 

to exogenous CXCL4, with effects on cell viability, adhesion and stem cell expansion.15,37-40  

CXCL4 signalling is complex and in certain biological contexts its functions appear to be 

mediated by the alternatively spliced receptor CXCR3 (CXCR3B)41. However, to date, 

expression of CXCR3B has not been described on human or murine HSC. It has also been 

suggested that CXCL4 functions may be mediated through another, unnamed 

receptor/mechanism, with CXCL4 binding to integrin receptors which have indeed been 

shown to be important for HSC behaviour42.  



18 
 

Interactions between CXCL12 and CXCR4 are of key importance for the maintenance of 

HSCs in humans.41-43 AMD3100, a selective CXCR4 antagonist (plerixafor), antagonizes the 

binding of CXCL12 to CXCR4, leading to a rapid and reversible mobilization of HSC into 

the peripheral circulation.44 Currently, plerixafor is used for mobilization of stem cells in 

patients with non-Hodgkin’s lymphoma or multiple myeloma.45-47 

It has been shown that microenvironmental Cxcl4 derived from megakaryocytes regulates 

HSC cell cycle activity. Using transgenic inducible diphtheria toxin receptor  (IDR) mice (in 

which megakaryocytes are depleted by IDR expression) crossed with Cxcl4-cre mice, Bruns 

et al. showed that short-term (7 days) depletion of Cxcl4 led to an increase in HSC 

proliferation, 4.6-fold increase in HSC numbers and enhanced reconstitution following a 

single transplantation. However more extended Cxcl4 depletion (for 6 weeks) resulted in an 

attenuated effect and the authors suggested that the reduced quiescence driven by loss of 

Cxcl4 may lead in time to HSC exhaustion as previously described4,48. We showed that 

complete loss of Cxcl4 caused a decrease in HSC numbers, followed by a decrease in self-

renewal capacity detected after secondary transplantation. It is therefore likely that Cxcl4 

inhibition does lead at first to a temporary increase in HSC numbers (seen by Bruns et al.) 

and that this effect is then followed by HSC exhaustion and depletion (due to increased 

proliferation and differentiation) and by a decrease in self-renewal capacity as we observed in 

our serial transplantation assay. 

By interrogating a previously published transcriptional array we observed that in mice Cxcl4 

was the only chemokine ligand up-regulated in the HSC compartment (in house observation 

and Mansson et al31), providing rationale to investigate this factor in vivo. Our results 

indicated that mice lacking Cxcl4 showed changes in LSK, MPP and HSC numbers and 

reduced secondary transplantation capacity, possibly due to changes in the microenvironment 

as well as in autocrine HSC signalling itself. Whilst several chemokines acts through 
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CXCR2, CXCL4 is not known to and thus this receptor does not provide a unifying 

explanation for the similarity in function of CXCL4 and CXCR2. One possibility is that 

CXCR2-ligands and CXCL4 function as a heterodimer within the BM, which mediates 

CXCR2 dependent signalling. Such a mechanism is supported by the clear evidence of 

complex heterodimeric interactions between chemokines which lead to biological outcomes 

different from those of either of the individual component chemokines.49-51 

Similar to what happens in other systems,52-55 our results showed that the CXCR2 signalling 

pathway played an important role in HSC maintenance. CXCR2 inhibition with the specific 

CXCR2 inhibitor SB225002 replicated the results for knock-down of CXCL4. Importantly, 

despite previous studies having shown that human primitive HSC do not express CXCR2, we 

were able to clearly detect CXCR2 protein expression in human CD34+38- and CD34+38+ 

cells by immunofluorescence.56,57 To further characterize the known effect on the myeloid 

compartment in Cxcr2-/- mice,34 we investigated how its deletion affected the primitive HSC 

compartment. Cxcr2-/- mice exhibit a marked expansion of viable LSK, HSC and HPC in the 

BM and spleen, while analysis of serial transplantation data showed significantly reduced 

long-term repopulating ability of these cells. Taken together these results indicate that Cxcr2 

deficiency led to a marked perturbation in normal hematopoietic homeostasis. 

Our previous research has shown that differences in chemokine expression between quiescent 

and primitive cells is maintained in normal as well as in leukemic (chronic myeloid leukemia; 

CML) HSC.23 Recently, it has been shown that CCL3 expression is required for the 

development of CML in mice and that inflammatory chemokines, such as CCL3, promote 

leukemia development.21 Therefore, high levels of chemokine expression in primitive 

HSC/LSC, may suggest that chemokine signalling pathways play a role in the development 

and maintenance of hematological cancers of stem cell origin. With Bhatia and colleagues, 

we have previously shown that CML LSC show a decreased homing ability due to a lower 
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CXCL12 expression in CML BM compared to HSC and treatment with the tyrosine kinase 

inhibitor imatinib reverted the abnormal cytokine levels and HSC growth.20 Similarly, 

multipotent stromal cells derived from mouse models of myeloproliferative neoplasia have 

been shown to remodel the BM niche into a self-reinforcing leukemic niche, through 

expression of the chemokine CCL3.22 In light of our novel findings presented here, although 

chemokines could represent a novel therapeutic target in myeloproliferative disorders, 

prudence would be advised as some chemokine family members regulate survival and self-

renewal in normal HSC and their modulation may be detrimental in the longer term. 

Collectively, these data indicate that chemokines play an important role in human and mouse 

HSC survival and maintenance. These studies represent a starting point for elucidation of the 

role of the chemokine family in hematopoietic homeostasis, both in normal stem cells and in 

leukemia, however further investigations into the mechanisms through which the chemokines 

act at the level of HSC are required to fully understand HSC behavior in the BM niche. 
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Figure legends 

Figure 1. Chemokine ligands are up-regulated in quiescent versus dividing CD34+ cells. 

The transcriptional differential regulation connected to chemokine expression (shown in 

rectangles) in human quiescent (CD34+, Hoechst-, Pyronin Y-) versus dividing (CD34+, 

Hoechst+, Pyronin Y+) cells.  Up-regulation is shown in red and down regulation in green; 

color intensity indicates the extent of differential regulation as indicated in the color key.  

logFC values for the chemokines are given to the bottom-right of the relevant box.  

 

Figure 2. CXCL4 and CXCR2 are expressed on CD34+38- and CD34+38+ cells. 

(A) Real-time PCR in human CD34+38- and CD34+38+  cells shows gene expression 

differences for the chemokine ligands CXCL1, CXCL2, CXCL4, CXCL6 and CXCL8. Fold 

change was calculated relative to the reference gene (GAPDH) according to the ΔΔCT 

method. n=5. *p<0.05; **p<0.01. All error bars indicate standard deviation of the mean.  

(B) Human CD34+38- and CD34+38+ cells show expression for CXCL4 and (C) CXCR2. 

Nuclei were stained using DAPI and images were acquired using a Zeiss microscope. 3-

dimensional (3-D) figures generated with ImageJ software are shown for CXCR2 staining 

(n=3). (D) Real-time Q-PCR in human CD34+38-, CD34+38+ , neutrophils and peripheral 

blood mononuclear cells (PBMNCs) shows the gene expression profile for CXCR2 (n=3). 

The fold change was calculated relative to the reference gene (GAPDH) according to the 

ΔΔCT method. h=human. 

 

Figure 3. Inhibition of CXCL4 ligands and CXCR2 signalling reduces cell viability and 

colony formation in vitro.  

(A) CD34+ enriched cells were transduced with CXCL4 siRNA and relative scrambled control 

and level of knock-down (left) and viability (right) measured (n=3). (B) CD34+ cells were 
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treated with increasing concentrations of SB225002 and viable cells analyzed using Annexin-

V/DAPI staining (left) (n=3). CFC count was performed in the same cells treated with 

SB225002 at the concentration indicated (right) (n=3).  (C) CD34+38- enriched cells were 

treated with increasing concentrations of SB225002 and viable cells analyzed using Annexin-

V/DAPI staining (left) (n=3). CFC count was performed in cells treated with SB225002 at 

the concentration indicated (right) (n=3). Statistical analysis was performed using an 

paired two-tailed Student’s t test (*p<0.05; **p<0.01; ***p<0.001). All error bars indicate 

standard deviation of the mean. h=human. 

 

Figure 4. Cxcr2-/- mice show an expansion of the stem cell compartment. 

(A) BM and spleen from WT mice (n=6) or Cxcr2-/- mice (n=6) were harvested and assessed 

for total cellularity. (B) Numbers of LSK cells for BM and spleen from WT mice or Cxcr2-/- 

mice. (C) Numbers of HSC, MPP, HPC-1 and HPC-2 in the BM and spleen from WT mice or 

Cxcr2-/- mice are shown. (D) Numbers for BM and spleen erythroid, granulocytic and B cell 

populations from WT and Cxcr2-/- mice are shown. (E) Numbers for T cell populations in the 

WT and Cxcr2-/- spleen identified with CD4 and CD8 markers are shown. (F) Numbers for T 

lineage populations in the WT and Cxcr2-/- thymi identified with CD4 and CD8 markers are 

shown. Statistical analysis was performed using an unpaired two-tailed Student’s t test. All 

error bars indicate standard deviation of the mean (*p<0.05; **p<0.01; ***p<0.001)(n=6).  

 

Figure 5. Cxcr2-/- HSC show a reduction in engraftment in primary and secondary BM 

transplantation assays. 

(A) Experimental layout for CD45.2+ HSC from WT or Cxcr2-/- mice (n=3/strain) 

transplanted into irradiated CD45.1+ recipients (n=6). (B) Graph showing engraftment ability 

of CD45.2+ WT or Cxcr2-/- HSC after 24 hrs from transplant in CD45.1+ recipients. (C) 
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Graph showing chimerism between CD45.2+ and CD45.1+ cells. (D) Engraftment was 

analyzed in the blood every 4 weeks post-transplant up to 16 weeks. Data are presented as the 

mean percentage of CD45.2+ cells within the PB. (E) After the primary recipients were 

sacrificed, CD45.2+ LSK cells were transplanted into irradiated recipients. Engraftment was 

analyzed in the blood every 4 weeks post-transplant up to 16 weeks.  (F) Percentage of 

CD45.2+ cells was analyzed in different BM populations after 16 weeks from primary 

transplant and compared between WT and Cxcr2-/- mice. Statistical analysis was performed 

using an unpaired two-tailed Student’s t test. All error bars indicate standard deviation of the 

mean (*p<0.05; **p<0.01; ***p<0.001) (n=6).  

 

Figure 6. Cxcl4-/- mice display reduction in HSC compartment. 

(A) BM and spleen from WT mice (n=6) or Cxcl4-/- mice (n=6) were harvested and total 

cellularity assessed. (B) Numbers of LSK cells for BM and spleen from WT mice or Cxcl4-/- 

mice. (C) Numbers of HSC, MPP, HPC-1 and HPC-2 in the BM and spleen from WT mice or 

Cxcl4-/- mice are shown. (D) Numbers for BM and spleen erythroid, granulocyte and B cell 

compartments from WT and Cxcl4-/- mice are shown. (E) Numbers for T cell populations in 

the WT and Cxcl4-/- spleen identified with CD4 and CD8 markers are shown. (F) Numbers for 

T lineage populations in the WT and Cxcl4-/- thymi were identified with CD4 and CD8 

markers. Statistical analysis was performed using an unpaired two-tailed Student’s t test. All 

error bars indicate standard deviation of the mean (*p<0.05; ***p<0.001).  

 

Figure 7. Inhibition of Cxcl4 reduces colony formation in vitro and Cxcl4-/- HSC show a 

reduction in engraftment in secondary BM transplantation assays. 

(A) WT BM cells enriched for c-Kit+ were transduced with a Cxcl4-shRNA vector or control 

and mRNA level analyzed by real-time PCR (n=2). (B, C) Positively transduced cells were 
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selected using GFP and plated into a primary and secondary CFC assays. Data are presented 

as the mean colony numbers from Cxcl4-shRNA transduced cells or the control. (D) 

Experimental layout for CD45.2+ HSC from WT or Cxcl4-/- mice transplanted into irradiated 

CD45.1+ recipients (n=5/strain). (E) Engraftment for primary transplant was analyzed in the 

blood every 4 weeks post-transplant up to 16 weeks. (F) After the primary recipients were 

sacrificed, CD45.2+ LSK cells were transplanted into irradiated recipients (n=5). Engraftment 

was analyzed in the blood every 4 weeks post-transplant up to 16 weeks. (G) Percentage of 

CD45.2+ cells was analyzed in different BM populations after 16 weeks from primary 

transplant and compared between WT and Cxcl4-/- mice. (H) Percentage of CD45.2+ cells was 

analyzed in different BM populations after 16 weeks from secondary transplant and 

compared between WT and Cxcl4-/- mice. Data are presented as the mean percentage of 

CD45.2+ cells within the PB.  (*p<0.05; ***p<0.001). 
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