
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bringing the magic of light to remote areas where resources are
scarce: Beautiful demonstrations of interference patterns using
laser pens and fibres

Citation for published version:
Mignard, D 2016, 'Bringing the magic of light to remote areas where resources are scarce: Beautiful
demonstrations of interference patterns using laser pens and fibres', Physics Education, vol. 51, no. 5, pp.
054002-054009. https://doi.org/10.1088/0031-9120/51/5/054002

Digital Object Identifier (DOI):
10.1088/0031-9120/51/5/054002

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Physics Education

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322478393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/0031-9120/51/5/054002
https://doi.org/10.1088/0031-9120/51/5/054002
https://www.research.ed.ac.uk/portal/en/publications/bringing-the-magic-of-light-to-remote-areas-where-resources-are-scarce-beautiful-demonstrations-of-interference-patterns-using-laser-pens-and-fibres(ff16a022-b301-4f0e-90fd-7d8d495ddfac).html


1 
 

Bringing the magic of light to remote areas where resources are scarce: 

Beautiful demonstrations of interference patterns using laser pens and fibres  

D. Mignard 

The University of Edinburgh, School of Engineering, The King’s Buildings, Mayfield Road, Edinburgh EH8 9JL 

Scotland (UK) 

d.mignard@ed.ac.uk 

Tel. : + 44 131 651 9024 

 

Keywords: laser; diffraction; interference; double-slit experiment; surface waves; international 

development  

Abstract:  

The training of physics teachers in remote areas in the developing world require s dedicated trainers 

(who typically are volunteers), as well as robust logistics. The latter must include the supply of 

equipment for experiments in the classroom. This task is greatly aided by the use of cheap, safe and 

readily available consumer goods that do not require local power supplies. In this paper, a simple 

experiment using a laser pointer pen and samples of hair as well as wire and transparent thin fibre is 

presented, reproducing a variant of Thomas Youngs’ famed double slit experiment. The spread of 

the interference pattern as it projects itself on a screen is sufficiently large to catch the interest of 

students, and its orientation being perpendicular to that of the hair is also strikingly counter-

intuitive. The students are then encouraged to apply the simplified Fraunhofer equation to the 

various samples to find out the width of their hair. Ideally, these samples would also include 

calibrating materials like fibres and wires of known diameters, the use of which should give 

confidence in the model by confirming that it can predict the sample diameter. A fruitful discussion 

supported by diagrams can also be conducted on the differences that coul d be expected between a 

straight edge and a rounded edge, the latter throwing an unexpected challenge to the initial model. 

However, the use of a transparent fibre also clearly illustrate the limitations of this model, a 

perception that is amplified by the particularly wide and bright interference pattern that it produces. 

This mismatch between the model and the real system should prompt the students to further refine 

their description of the physical system and the resulting model. Throughout the session, their 

reasoning may be helped by encouraging them to produce diagrams showing the path of optical 

rays.  

 

1. Introduction 

Thomas Young’s original experiments on the diffraction and interference of light in the early years of 

the 19th century were decisive in proving the wave-like nature of light [1].  
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Generally, the concept is demonstrated in the classroom in a very similar manner to Young’s original 

experiments, and usually the double slit experiment is used. Nowadays, cheap and widely available 

laser sources are increasingly used instead of lamps, with the advantage that their monochromatic 

light produces very clearly defined nodes in the fringes without the need for a filter [2]. However, 

little else has changed, and the screens and splitting devices are sti ll pretty much specialist 

equipment that must be bought for the classroom. 

Young also used a hair to a similar effect to that produced by the screen with double slit, this time 

the edges of the hair behaved like the emitting sources [1]. What we present here is a simpler 

demonstration of the same hair experiment, making use of the wide availability and very low cost of 

laser pointers. The focused nature of the laser beam neatly avoids the use of screens on the side. We 

also would like to point out the strong impression that it can produce on the observer. The 

brightness of the light means that the fringes appear as a dashed line that remains very visible at 

large distances (sometimes tens of centimetres) away from the centreline. Provided that the hair or 

fibre is fairly straight, this dashed line appears to be perpendicular to its direction, an observation 

which combined with the unexpected long length of the dashed line should impress the observer.   

A similar demonstration was mentioned in a short note by Greenslade Jr. [3], who used one of his 

cat’s whisker and a He-Ne laser. However, the note solely emphasized the effect that the tapering of 

the whisker has on the spacing of the fringe, rather than the overall visual effect or the potential for 

further extension and insight. 

This experiment could be of particular interest in the classroom if resources are very limited , for 

example in rural areas of developing countries where even the electricity grid is typically weak or 

non-existent. In fact, the motivation and inspiration behind this paper came from the work done by 

volunteers from the Institute of Physics who train teachers in Malawi [4] as part of the IOP’s Physics 

for Development programme [5]. A couple of dollars would pay for a battery-powered laser pointer, 

and local materials can be used to provide supporting structures.  The same experiment can also be 

combined with others that use laser pointers and cheap materials (e.g. references [6]-[17]).  

 

2. Materials and method 

While the required equipment is not regarded as being particularly hazardous, laser radiation can 

nevertheless cause harm and a risk assessment must be conducted. School teachers should refer to 

CLEAPPS guidance in England, Wales and Northern Ireland [18], or SSERC guidance in Scotland [19]. 

The laser pointer must be of class 1 or 2 as defined in the IEC 60825-1 standard [20] (i.e. class I or IIa 

of the previous ANSI Z136.1 standard).  

The laser is pointed straight at a matt vertical wall or screen at a distance L from the aperture, with 

the hair or wire of diameter do held at a short distance in front of the laser aperture (a few 

millimetres). If a clamp is too coarse in its grip or positioning, the hair may be secured in position 

with a more convenient implement, for example a washing line peg, itself held by the clamp. Any 

hair sample must first be visually inspected to ensure an approximately cylindrical shape, and it must 

be straight or pulled so. Duct-taping or otherwise fastening a ruler or measuring tape (preferably 

with a matt finish) on the screen is helpful for recording the result of the experiment, or alternatively 

graph paper may be used. Figure 1 illustrates this set-up. 
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Figure 1: Example of experimental set-up. 

 

Everyone must move behind the pointer before the laser is switched on.  

Assuming do << L (the ‘far field’ for the Fraunhofer’s equation), Young’s formula links do, L, the 

spacing D between consecutive minima of intensity in the diffraction fringe, and the wavelength  of 

the incident light:  

do =  L / D   (Eqn. 1) 

In these experiments, we used a class 1 red laser pointer advertised as having a power output of 

1mW and wavelength 650 nm (supplier not known). 

The distance D in Eqn. 1 was obtained as the average value within a series of consecutive, well-

defined dashes of light on the pattern on one side of the central spot.   Assuming that  is known, 

this estimate for D would be expected to be the dominant contribution to the uncertainty of do in 

Eqn. (1), since L can be determined within +/- 1mm over 1m, whereas the uncertainty on D (arising 

from the combined uncertainties on the positions of two minima) will be of the order of +/- 2mm 

over distances of about 50 mm, i.e.  about one order of magnitude larger. 

Since cheaply available laser pens come with limited technical information (and often no information 

regarding the identity of the manufacturer), it is recommended to calibrate the experiment with 

threads or wires of known diameters. This also provides a direct mean of assessing the accuracy of 

the method. Here we used tinned copper wire supplied by RS Components Ltd, 0.152 mm (SWG 38), 

and a monofilament nylon thread of 0.15 mm diameter supplied by HaberCraft Ltd. Ideally, the 

specified tolerance on the diameter, if any is available from the supplier, would also be referred to  ̶  

though this is not strictly necessary for the purpose of this educational experiment.  

 

3. Results 

Unless specified otherwise, L was set at 2.000 m +/- 0.002 m in all the experiments. 
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3.1 Tinned copper wire 

Figure 2 shows the pattern produced by the 0.152 mm tinned copper wire.  

Wire breadth = Distance to wall x wavelength / distance between consecutive shaded area 

                         = 2000 x 0.00065 / (50/6) = 0.156 mm 

with an uncertainty of  +/- 2 mm over 50 mm, i.e. +/- 4%, or +/- 0.006 mm.  

 

Figure 2: Pattern produced by tinned copper wire, 0.152 mm diameter (SWG 38), at L = 2.00 m.  

 

3.2 Nylon monofilament 

Figure 3 shows the pattern produced by the 0.150 mm nylon thread in the same conditions as for 

Figure 2. This time,  

Fibre breadth = 2000 x 0.00065 / (52/6) = 0.150 mm +/- 0.006 mm. 

However, this result should be treated with caution. Firstly, the pattern had a distinct appearance in 

that it seemed brighter overall and stretched over a distance several times longer that produced by 

either the wire or hair samples (Figure 4). In addition, beyond a handful of dashes away from the 

central spot the separation between dashes of light also appeared to be less bright (i.e. the intensity 

of minima varied), and individual dashes varied in brightness. Finally, the dashes of light appeared 

about twice as long at some distance from the central spot as they were nearer the spot: at 0.8 m, 

we could count 8 dashes spread over 130mm, i.e. a separation of 130/8 = 16.5 mm between minima, 

which when used as input for Eqn. 1 would give an erroneous value of 0.079 mm.  

50 mm
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Figure 3: Pattern produced by monofilament nylon 0.15 mm diameter), at L = 2.00 m. 

 

Figure 4: Same conditions as in figure 3, showing the extent of the pattern (> 1m on each side). 

 

3.3 Hair 

Figure 5 shows the pattern produced by a sample of human hair. This time L was reduced to 0.6 m 

+/- 0.002 m and the room was darkened. The greater contrast reduced the apparent width of the 

shaded gaps, allowing lower uncertainty in positioning them (+/- 0.5 mm for each) 
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Hair breadth = 600 x 0.00065 / (47/9) = 0.075 mm +/- 0.0015 mm. 

 
Figure 5: Pattern produced by a human hair, this time at L= 0.6 m in a darkened room. The picture is 

showing the left hand side of the pattern only.  

 

4. Discussion 

The following discussion aims at highlighting some issues with the theory and the method, to 

stimulate discussion in the classroom and the student’s development.  

 

4.1 Apparent success of the experiment 

The experiment is very cheap and straightforward to set-up, and even with daylight in the classroom 

the pattern is easy to see. Calibrations experiments seem to confirm that accuracy is within a few % 

at most from the expected value of the diameter of the object under observation.  

 

4.2 Conceptual issues arising from Eqn. 1 

Typically, Equation 1 assumes that Babinet’s principle applies in the far field, i.e. the hair, wire or 

other cylindrical body can be equivalently substituted by an aperture within a screen whose 

dimension and position matches that of a two dimensional projection of the body into the plane of 

observation [21]. However, students might query how the light can diffract from the edge of the 

shaded area of the cylinder without somehow crossing through some of the cylinder material, since 

the tangent at the surface is aligned with the direction of the incident ray. Solving the problem 

requires due consideration of the dielectric properties of the cylinder (at least on its surface), which 

can be done with Maxwell’s equations as presented by Rayleigh nearly a century ago and by others 
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[22]. The corresponding physical interpretation involves surface waves of light that result from the 

coupling of the light with the excitation of dipoles at the surface of the cylinder. The waves 

propagate along the surface in an extension of Fermat’s principle of “least time”, and leave from 

behind to allow the rays to penetrate into the shadow of the object [23, 24].  

A simple geometrical construction shown in Figure 6 can be used by students to estimate that it 

should be enough for the light to ‘creep’ over distances of a couple of wavelengths along the 

circumference of the cylinder before diffracting in order to account for the observed spread of the 

interference pattern behind the cylinder.  

 

 

 

 

 

 

 

Figure 6: A cylinder of diameter do obstructs light at normal incidence (on the left hand side). The 

light at grazing incidence ‘creeps’ over a distance xc along the circumference of the cylinder before 

diffracting in all directions. Only some of the diffracted rays that are going towards the right are 

shown here, in particular those tangent to the circumference which are shown as solid lines. The 

latter define the boundaries of the interference pattern, which is shown as a shaded triangle on the 

figure with a width W at a distance L from the cylinder. (NB: Dimensions are not to scale. In 

particular, the diameter of the hair has been exaggerated by 3 to 4 orders of magnitude with respect 

to L and W). 

 

Defining xc as the propagation length of the surface wave, and W the width of the interference 

pattern at distance L from the cylinder, we have the following relationships: 

W + do = 2L·sin    (Eqn. 2) 

 

and 

xc = ·do / 2   (Eqn. 3) 

 

Since   is small and do << W, Eqn. 2 can be approximated as W ≈ 2L·  , which allows straightforward 

substitution of   in Eqn. 3. Hence, 



W 
L 

xc 

do /2 
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xc ≈ do·W /4L   (Eqn. 4) 

 

At L = 2m with hair we observed W ≈ 0.3 m with do ≈ 0.08 mm hence  xc ≈ 3 m. This represents 

about 4 to 5 wavelengths of the monochromatic light used in the experiment.   

Likewise with wire, we would get xc ≈ 6 m.  

However, the overall width of the diffraction pattern for the nylon monofilament could not be 

explained with this model, since its value was of comparable order of magnitude to that of L as 

shown in Figure 4 – an observation which we are discussing in the next section. 

 

4.3 Influence of materials 

The strikingly brighter and more extended diffraction pattern produced by the nylon thread as 

compared with the other materials may be a great advantage in the classroom, but it comes with 

additional complexity in the interpretation. Nevertheless, this may be a great opportunity to 

stimulate students thinking with enquiry based learning.  

Firstly, the students should be encouraged to describe the interference pattern to the same level of 

detail as was presented in section 3.2. When prompting them to suggest distinctive properties for 

the nylon thread that may account for the observations, they should remark that the nylon thread 

was transparent unlike the wire or the hair samples. Therefore, refraction and internal reflection 

could contribute to the diffraction pattern. In particular, the thread would be expected to behave 

like a cylindrical lens, focusing the beam behind the cylinder. These focused rays would then diverge 

and interfere with the diffracted rays at wide angles. 

This type of mechanism was in fact proposed by Harris [25] for explaining the experimental results 

presented by Lundberg on the light scattering pattern produced by Nylon 6-6 fibres illuminated by a 

632.8 nm wavelength He-Ne laser [26]. Figure 5 on Lundberg’s paper showed the minima near the 

centre to vary in intensity, and the dashes away from the centre  to have about twice the length just 

as we too observed.  Allen-Booth and Eaton [27] also provided a detailed description of the 

underlying mechanisms when using changes to the fringe pattern when a nylon fibre was stretched 

as part of an elegant demonstration to estimate the Poisson’s ratio of the material.  

It may be worthwhile asking the students to interpret the results in a very approximate way, by 

asking them to modify Figure 6 to include the path of rays that get transmitted and focused by the 

transparent cylinder. In the shaded area on Figure 6 the refracted rays would diverge after the focal 

point, and they would now interfere with the diffracted rays on both sides of the cylinder, thus 

superimposing additional dashes of light on the expected pattern from interference of the diffracted 

rays. This would explain the varying intensity of the minima. Outside the shaded area, only one of 

the two diffracting edges could interfere with the refracted rays on any one side, thus producing a 

more regular pattern of dashes but with a distance between minima that may not be the same as 

what it is in the shaded area.   
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However, this explanation may not be sufficient on its own for explaining the difference in pattern 

between hair and nylon, since human hair is typically translucent. Typically, hair has a transmittance 

(defined as the ratio of light intensity that is transmitted through the hair to that which is incident) in 

the range 0.45  ̶  0.65 for the red part of the visible spectrum (625 nm was used in [28]); and a 

refractive index of about 1.55 over the visible spectrum [29]. By comparison, the nylon 

monofilament used here has a transmittance close to 1, and a refractive index of ca. 1.5 [30]. The 

two fibres must be different in other respects that impact on light transmission, reflection and 

diffraction. For example, the hair surface is not smooth at all, having instead a scaly appearance at 

sufficient magnification [31]. The nylon fibres by contrast are smooth and reflective, with Allen-

Booth and Eaton [27] attempting to model the interference pattern at wide angles by combining the 

rays that are reflected at the surface with those that are refracted through the fibre.  

 

4.4 Practical applications 

Finally, it may be of interest asking students what practical applications they think these 

observations may have. One of them is quality control in the manufacture of wires or fibres [21, 25]. 

Another one might be party lights for dance floors. Beyond wires and fibres, diffraction (i.e. strictly 

speaking, interference) patterns are also of interest for the sizing and characterization of particulates 

in research and industry laboratories.  

  

5. Conclusions: 

The experiment described here is very cheap and straightforward to set up, and also of sufficient 

depth to prompt discussions that allow students to query further the physics behind the 

observations and the models that are used to attempt describing and predicting these observations. 

In particular, the comparison between the expected behaviour of straight and rounded edges, and 

the different patterns produced by distinct materials both provide insight into the assumptions 

behind the model and should stimulate the students thinking. This experiment can also be 

integrated with others that were described in the introduction as part of a more comprehensive 

introduction to optics. 
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