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ABSTRACT 

The function of macroautophagy/autophagy during tumor initiation or in established tumors 

can be highly distinct and context-dependent. To investigate the role of autophagy in 

gliomagenesis, we utilized a KRAS-driven glioblastoma mouse model in which autophagy is 

specifically disrupted via RNAi against Atg7, Atg13 or Ulk1. Inhibition of autophagy strongly 

reduced glioblastoma development, demonstrating its critical role in promoting tumor 

formation. Further supporting this finding is the observation that tumors originating from Atg7-

shRNA injections escaped the knockdown effect and thereby still underwent functional 

autophagy. In vitro, autophagy inhibition suppressed the capacity of KRAS-expressing glial cells 

to form oncogenic colonies or to survive low serum conditions. Molecular analyses revealed 

that autophagy-inhibited glial cells were unable to maintain active growth signaling under 

growth-restrictive conditions and were prone to undergo senescence. Overall, these results 

demonstrate that autophagy is crucial for glioma initiation and growth, and is a promising 

therapeutic target for glioblastoma treatment. 
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INTRODUCTION 

 Glioblastoma multiforme (GBM) is the most common adult brain tumor and one of the 

most aggressive cancers with a median survival of approximately one year.1 Understanding 

survival response processes in GBM that contribute to its resistance would be crucial for 

therapy. One such survival process is autophagy, a cellular catabolic pathway frequently 

activated upon various stresses encountered by the cell including nutrient deprivation and 

hypoxia.2  

 During autophagy, cytoplasmic material is targeted for lysosomal degradation by a finely 

orchestrated series of vesicle formation and fusion events. A number of autophagy-essential 

protein complexes are required for the formation of a double-membrane structure, the 

phagohpore, that engulfs cytoplasmic materials, resulting in an enclosed vesicle called the 

autophagosome.3 At the heart of the autophagy pathway lies a family of ubiquitin-like proteins, 

such as MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3), essential for 

autophagosome maturation. Cytosolic LC3 (termed LC3-I) is recruited to the growing 

phagophore upon its ubiquitin-like conjugation to phosphatidylethanolamine forming LC3-II. 

This reaction is catalyzed by the activity of E1-, E2- and E3-like enzymes, which are ATG7, ATG3 

and ATG12–ATG5-ATG16L1, respectively. Autophagy activation can be sensed by the ULK (unc-

51 like kinase) signaling complex comprised of the protein kinase ULK1 and several regulatory 

components including ATG13 and RB1CC1/FIP200 (RB1-inducible coiled-coil 1).  

 Increasing evidence has demonstrated that autophagy is closely associated with 

cancer.2,4 Autophagic degradation of cytoplasmic components can promote tumor cell survival 
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by providing nutrient supply, or can suppress tumorigenesis by clearing toxic cellular materials 

that can otherwise be carcinogenic. Such dual effects of autophagy on cancer progression are 

most likely dependent on the tumor type, genetic composition and stage. Genomic studies of 

GBM patient samples revealed mutations in multiple signaling pathways, including gain-of-

function mutations in the receptor tyrosine kinase (RTK)-RAS-class I phosphoinositide 3-kinase 

oncogenic pathway,5 which modulate autophagy.6 Furthermore, in cultured GBM cells, 

autophagy is frequently activated as a stress response upon treatment with therapeutic 

agents.7 However, how autophagy affects GBM development in vivo has not been addressed.  

 Cellular and xenograft experiments suggest an important role of autophagy in GBM.8,9 

However, these experiments utilize established GBM cell lines, and thus do not reflect the 

process of tumor initiation. For this reason, we aimed to inhibit autophagy along with oncogene 

activation in a genetically engineered mouse model. We used a Replication-Competent Avian 

Sarcoma-leukosis virus LTR splice acceptor/Tumor Virus A (RCAS/TVA) mouse model, which 

allows specific manipulation of genes of interest in glial progenitors. In this model, 

gliomagenesis is driven by oncogenic KRAS, and autophagy is specifically disrupted using shRNA 

sequences targeting Atg7, Atg13 and Ulk1. Combined expression of the shRNA sequences and 

oncogene ensured inactivation of autophagy in tumor-forming cells. Unlike genetic deletion, 

which results in complete autophagy disruption, RNAi-mediated gene knockdown can more 

closely model the therapeutic situation by retaining residual activity of the target gene. Our 

results indicate that the autophagy inhibition strongly reduced GBM development in mice and 

abrogated the oncogenic potential of mutant KRAS-expressing glial cells ex vivo.  
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RESULTS AND DISCUSSION 

 RCAS/TVA mouse model for gliomagenesis.  

 In order to test the role of autophagy in GBM, we utilized the RCAS/TVA mouse model 

for gliomagenesis.10 GBM is induced in cdkn2a/ink4a-arf-/- mice using RCAS viruses carrying 

oncogenic KRAS (KRASG12D). Intracranial injection of the virus-producing chicken fibroblast DF-1 

cells into neonatal mice results in somatic gene transfer from the RCAS viruses to glial cells 

expressing the viral receptor, TVA, under the control of the Nes/nestin promoter (Fig. 1A). 

Importantly, tumors driven by KRAS expression using this model show a histopathology that 

closely mimics high-grade human tumors, including features such as pseudopalisading necrosis 

and microvascular proliferation.11 The RCAS vectors were further modified to co-express shRNA 

sequences targeting autophagy-related (Atg) gene products along with KRAS expression to 

inhibit autophagy in tumor-initiating cells (such as KRAS:shAtg7, KRAS:shAtg13 or KRAS:shUlk1) 

or control shRNA (KRAS:shLacZ). Using this system, efficient gene knockdown (Fig. 1B) and 

oncogene overexpression (Fig. 1C) can be achieved upon the infection of primary TVA-

expressing glial cells (termed XFM cells) derived from uninjected mice.12 Furthermore, shRNA-

mediated inhibition of Atg7, Atg13 or Ulk1 resulted in autophagy inhibition as assessed by 

endogenous LC3 lipidation, but maintained residual autophagic activity (Fig. 1D).  

 Autophagy is required for GBM development.  

 To test the effect of autophagy inhibition on KRAS-mediated gliomagenesis, we 

performed intracranial injection of DF-1 cells expressing RCAS viruses into neonate mice. 
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Injection of DF-1 expressing KRAS:shLacZ RCAS viruses resulted in tumor formation in 

approximately 60% of the mice within 6 weeks after injection (Fig. 2A-B) as reported 

previously.13 In contrast, the expression of shRNA targeting autophagy genes resulted in a 

dramatic reduction in KRAS-mediated tumor development (KRAS:shAtg7, ~10% of the injected 

mice developed tumors) or complete inhibition of tumor formation (KRAS:shAtg13 and 

KRAS:shUlk1). Overall, these results indicate that autophagy is required for gliomagenesis 

induced by KRAS expression.  

 Having observed that some tumors did form in KRAS:shAtg7-injected mice (2 out of 21 

mice), we assessed whether these tumors differed from the control (KRAS:shLacZ)-injected 

mice. We analyzed tissue sections by hematoxylin and eosin (H&E) staining and observed no 

difference in the tumor morphology between KRAS:shLacZ and KRAS:shAtg7 tumors (Fig. 2C). 

Similarly, there was no difference in NES/nestin (marker of GBM) or MKI67/Ki67 (proliferation 

marker) staining (Fig. 2D). Next we examined whether KRAS:shAtg7-derived tumors exhibited 

efficient reduction of ATG7 protein levels. Interestingly, immunohistological staining showed 

comparable ATG7 levels between shAtg7- and shLacZ-expressing tumors, suggesting that the 

tumor cells bypassed the Atg7 shRNA effect (Fig. 2E). We further confirmed the specificity of 

the anti-ATG7 antibody by staining mouse embryonic fibroblasts (MEFs) derived from wild type 

or atg7 knockout mice (Fig. 2F). Overall, these observations further support the conclusion that 

the expression of autophagy-essential genes is required for GBM formation in the KRAS-

RCAS/TVA model. 

 Autophagy is required for KRAS-driven oncogenic growth of glial cells.  
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 The lack of tumor formation upon RNAi-mediated inhibition of Atg7, Atg13 or Ulk1 

suggests that autophagy is required for KRAS-driven gliomagenesis in vivo. However, these 

results do not distinguish whether the absence of autophagy impedes KRAS-induced 

transformation or growth of transformed cells. In order to understand the role of autophagy in 

gliomagenesis, we infected XFM glial cells (cdkn2a/ink4a-arf-/-) with RCAS viruses co-expressing 

KRAS and shRNA against LacZ, Atg7, Atg13 or Ulk1 (as in Fig. 1B). We observed no growth 

defects upon autophagy inhibition in cells grown under normal culture conditions in monolayer. 

Interestingly, when cells were seeded in anchorage-independent conditions in soft agar, colony 

formation was strongly reduced in KRAS cells co-expressing shRNA targeting Atg7, Atg13 or 

Ulk1 compared to KRAS:shLacZ expressing cells (Fig. 3A). Therefore, autophagy appears to be 

critical for KRAS-driven glial transformation. Furthermore, we tested whether autophagy is 

required for clonogenic growth under suboptimal conditions by culturing cells in low serum 

(0.1% fetal bovine serum [FBS]), a condition mimicking poor angiogenic state in tumors. Under 

this condition, autophagy inhibition by Atg7-shRNA resulted in failure of clonogenic cell growth 

when cells were allowed to recover in full growth medium containing 10% FBS compared to 

control cells (Fig. 3B-C). Overall, these studies indicate that autophagy is required for both 

oncogenic transformation of KRAS-expressing glial cells and their sustained viability under 

stressful conditions associated with gliomagenesis. 

 We further tested the underlying mechanism for the lack of clonogenic growth in 

autophagy-inhibited cells by analyzing growth signaling and survival pathways. We observed 

neither morphological changes indicative of cell death induction in cells cultured under low-

serum condition (0.1% FBS) nor CASP3/caspase-3 activation, indicating that the difference in 
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growth capacity was not due to apoptotic cell death (Fig. 3D). Next, we tested whether growth 

signaling pathways were impeded by Atg7 knockdown. When grown in normal culture medium, 

the phosphorylation status of signaling factors AKT, MAPK1/ERK2-MAPK3/ERK1, and RPS6 was 

comparable in KRAS:shLacZ- and KRAS:shAtg7-expressing cells, indicating that autophagy was 

dispensable under this condition. Interestingly, under low-serum conditions, while 

KRAS:shLacZ-expressing cells could maintain modest levels of AKT, MAPK1/3 and RPS6 

phosphorylation, KRAS:shAtg7-expressing cells were more susceptible to serum withdrawal 

(Fig. 3E). We further confirmed the role of autophagy in maintaining growth signaling by 

culturing cells in hypoxic conditions (a critical aspect of GBM). Autophagy was significantly 

induced in KRAS:shLacZ cells grown under low oxygen conditions (0.5% O2, Fig. 3F). Importantly, 

both AKT and MAPK1/3 phosphorylation were significantly lower in KRAS:shAtg7 cells 

compared to control cells, indicating that growth signaling under hypoxia was compromised in 

the absence of autophagy. In contrast, no significant effects were observed on RPS6 

phosphorylation, suggesting that the MTOR (mechanistic target of rapamycin [serine/threonine 

kinase]) complex 1 (MTORC1) signaling pathway may be dispensable under these conditions. 

Overall, the above results strongly suggest that autophagy is required to maintain growth 

signaling pathways in cells deprived of growth factors or grown under hypoxia. 

 Autophagy inhibition induces senescence and reduces metabolic activity under low 

serum conditions.  

 We further sought to characterize the consequences of autophagy inhibition in cells 

grown under suboptimal culture conditions. Having observed that in the absence of autophagy 
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cells failed to recover after being cultured in low-serum media for 14 days (Fig. 3B), we 

examined whether cells underwent irreversible growth arrest. To do so, we measured 

senescence-associated β-galactosidase (SA-GLB1) activity as an assay for cellular senescence. As 

shown in Fig. 4A, autophagy inhibition resulted in a significant increase of senescent cells in 

KRAS-expressing XFM cells compared to control cells when grown in low serum for 7 and, to a 

lesser extent, 14 days. Similarly, BrdU incorporation assay showed a reduced proliferation rate 

in Atg7-knockdown cells compared to control cells after 7 days of serum starvation, but the rate 

became comparable at later time points (14 days, Fig. 4B). Consistent with these observations, 

we found that at various time points following serum starvation the dephosphorylation and 

thereby activation of RB1/p105 (retinoblastoma 1)14,15 and cellular levels of CDKN1B/p27 as 

well as markers of the senescence-associated secretory phenotype including IL1B/IL-1β and IL6 

were elevated in KRAS:shAtg7 cells compared to KRAS:shLacZ cells (Fig. 4C-D). These results 

suggest that when autophagy is defective, cells are more prone to undergo senescence. 

Interestingly, under low serum conditions, activation of TRP53/p53 was not detected, 

suggesting that in this context senescence may occur independently of TRP5316,17 (Fig. 4C). 

These observations highlight the importance of autophagy in maintaining cell cycle progression 

in culture following growth factors withdrawal in KRAS-transformed cells.  

 We further sought to measure whether the metabolic activity of KRAS-expressing cells 

differed in the absence of autophagy in growth-arrested cells during prolonged serum 

starvation (Fig. 4E). When cells were grown under normal growth conditions (10% FBS), there 

was no significant difference in glucose, glutamine and pyruvate consumption or lactate 

production between the 2 cell types (Fig. 4F). Under conditions of serum starvation, however, 
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uptake of these nutrients was markedly reduced in autophagy-deficient cells indicating that 

overall biosynthetic activity in these cells was lower. Lactate production was also lower in 

KRAS:shAtg7-expressing cells, indicating reduced aerobic glycolysis. Overall, these results 

indicate that autophagy acts as a stress response pathway and is required to bypass senescence 

and maintain metabolic activity in growth-arrested conditions.  

 In this study, we demonstrate that RNAi-mediated suppression of autophagy impedes 

tumor incidence in a KRAS-driven, RCAS/TVA GBM model. This is in agreement with previous 

studies where suppression of autophagy by genetic deletion restricts growth of KRAS- and 

BRAF-driven tumors of the lung, pancreas and skin.18-20 Further supporting our findings is the 

observation that tumors developing from KRAS:shAtg7 injections retain Atg7 expression. Loss 

of RNAi repression effect may be due to either silencing of the shRNA expression or additional 

mutations that render resistance to the shRNA.  

 The RCAS/TVA mouse model is a unique system to study gliomagenesis based on 

somatic gene transfer (using RCAS viruses) into a specific cell type (engineered to express viral 

TVA receptor).10 Unlike xenograft models that utilize established cancer cells, this genetically 

engineered mouse model allows for the assessment of tumor initiation in the presence of a 

functional immune system. In addition, xenograft experiments rely on the injection of a large 

number of cells into the recipient animals which differ considerably from the process of tumor 

development generally involving the transformation of a single or few cells.21 Indeed, 

considerable differences are observed when assessing the role of autophagy in GBM using the 

RCAS/TVA mouse model presented here and previously published xenograft studies. Xenograft 
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studies using GBM cell lines show that autophagy inhibition cooperates with drug treatment to 

restrict cell growth but has no effect on tumor growth in the absence of treatment.8,9 However, 

our studies indicate that autophagy inhibition in the absence of drug treatment can affect 

tumor development (Fig. 2). The differences between these results may be due to the presence 

of an intact immune response in the RCAS/TVA model. Furthermore, GBM cell lines may have 

acquired additional mutations during prolonged in vitro culture thereby altering their response 

to autophagy inhibition. Alternatively, it is possible that inhibition of autophagy after tumor 

formation (xenograft models) may impose different effects compared to autophagy inhibition 

in a tumor initiation model (RCAS/TVA model). Further studies are required to elucidate these 

differences.  

 How does autophagy inhibition suppress gliomagenesis? Autophagy may facilitate 

cellular changes that are required for KRAS-mediated transformation, including genomic 

instability, metabolic stress and lipid homeostasis resulting from KRAS expression.19,22 Our cell 

culture-based studies indicate that autophagy can support the growth of KRAS-expressing glial 

cells in unfavorable conditions such as the absence of cell attachment or reduced growth 

factors, key hallmarks of cellular transformation. Molecularly, we found that when grown under 

growth restrictive conditions, autophagy-deficient cells were unable to maintain activated 

growth signaling and were prone to senescence, characterized by the activation of RB1 and 

increased levels of CDKN1B/p27 and markers of the senescence-associated secretory 

phenotype.23-25 Interestingly, our results show that autophagy is also required to maintain 

metabolic activity in growth-arrested cells during prolonged growth factor withdrawal, 

consistent with previous publications.18,26 A recent study suggests that maintaining glycolysis 
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enhances cell survival during mitotic arrest induced by Cdc20 deletion.27 This may imply that, in 

a similar fashion, the absence of glycolysis in autophagy-defective cells may contribute to their 

inability to proliferate when restimulated with full growth medium as observed in our system. It 

remains to be defined whether the role of autophagy in maintaining cell growth and metabolic 

activity is required for gliomagenesis in vivo. Mouse models allowing conditional autophagy 

inhibition after tumor establishment will be useful for this purpose.   

 Our study is the first to demonstrate the effect of autophagy inhibition by RNAi on 

gliomagenesis in a genetically engineered mouse model. A recent study showed that adult mice 

with conditional whole body deletion of Atg7 live for 2-3 months due to selective tissue 

damage.28 However, in this model, complete inhibition of autophagy in mice with lung tumors 

induces tumor regression within 5 weeks, suggesting that a therapeutic window exists and can 

be exploited.28 Additionally, when autophagy is significantly inhibited but not completely 

ablated, an anti-tumorigenic effect could already be achieved, as demonstrated by RNAi-based 

autophagy inhibition in our GBM mouse models. A partially inhibited autophagy pathway is 

likely to maintain the homeostatic function of autophagy in normal tissues during prolonged 

treatment, thus avoiding the lethal effect of complete, whole body elimination of autophagy 

function.  

 

MATERIALS AND METHODS 

 Cell culture and treatment.  
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 DF-1 chicken fibroblasts (ATCC, CRL-12203) and glial cells derived from the RCAS mouse 

model expressing TVA receptor XFM,12 were cultured in DMEM (Life Technologies, 41966029 

supplemented with 10% FBS, L-glutamine (2 mM), penicillin (10 units/mL) and streptomycin 

(0.1 mg/ml).   

 For amino acid starvation experiments, cells were grown in DMEM lacking amino acids 

and serum for 2 h prior to harvest, as described previously.29 The lysosomal inhibitor, 

bafilomycin A1 (Sigma, B1793), was added as indicated at a final concentration of 20 nM for 2 h. 

Staurosporine (STS; Sigma, S5921) was added to cells for a final concentration of 1 µM for 16 h.  

 Western blot and antibodies.  

 For western blot analyses, cell lysates were prepared in RIPA buffer (10 mM Tris pH 7.4, 

100 mM NaCl, 1 mM ethylenediaminetetraacetic acid, 1 mM ethylene glycol tetraacetic acid, 

0.1% sodium dodecyl sulfate, 1% Triton-X100 [Sigma, T9284], 1 mM 2-mercaptoethanol, 0.5% 

sodium deoxycholate and 10% glycerol) and analyzed by SDS-PAGE as described previously.7, 29 

The following antibodies were used: anti-LC3 (Sigma, L7543); anti-ACTB/beta-actin (Sigma, 

A5316); anti-ULK1 (Sigma, A7481); anti-ATG7 (Santa Cruz Biotechnology, clone H300, sc-33211; 

or Sigma, A2856); anti-pan-RAS (EMD Millipore, OP40); anti-RAS G12D mutant specific (Cell 

Signaling Technology, 14429); anti-ATG13 (Sigma, SAB4200100); anti-TUBG/γ-tubulin (Sigma, 

GTU-88); anti-HIF1A/HIF1α (R&D Systems, MAB1536); anti-phosphorylated (p)-AKT (Ser473; 

Cell Signaling Technology, 4060); anti-total AKT (Cell Signaling Technology, 9272); anti-p-

MAPK1/ERK2-MAPK3/ERK1 (Thr202/Tyr204; Cell Signaling Technology, 4370); anti-total 

MAPK1/ERK2-MAPK3/ERK1 (Cell Signaling Technology, 9102); anti-pRPS6/S6 (Ser235/236; Cell 
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Signaling Technology, 4858); anti-total RPS6/S6 (Cell Signaling Technology, 2217); anti-

CASP3/caspase-3 (Cell Signaling Technology, 9665); anti-RB1/p105 (BD Biosciences, 554136); 

anti-TRP53/p53 (Cell Signaling Technology, 2524); anti-CDKN1B/p27 (Cell Signaling Technology, 

2552); anti-IL6/interleukin 6 (R&D Systems, BAF-406); anti-IL1B/interleukin 1 beta (R&D 

Systems, AF-301-NA).   

 Injections.  

 All animal experiments were done in accordance with protocols approved by the 

Institutional Animal Care and Use Committees of Memorial Sloan Kettering Cancer Center and 

followed NIH guidelines for animal welfare. The RCAS/TVA system used in this work to induce 

gliomas in vivo in immunocompetent mice has been described previously.30 

N/TVA;cdkn2a/ink4a-arf)-/-;Ptenfl/fl mice were used for the RCAS mediated gliomagenesis in this 

study.13 Briefly, DF-1 cells were transfected with the relevant RCAS viral plasmid using 

Lipofectamine2000 (Invitrogen, 11668019) according to the manufacturer’s protocol. The cells 

were regularly maintained for at least 3 passages for propagation of the RCAS viruses to entire 

cells. Cells were then used for injection into murine brain. Newborn pups were injected 

intracranially with 1 μL of ~1x105 DF-1 cells. Then mice were monitored until they developed 

symptoms of GBM such as lethargy, poor grooming, weight loss, dehydration or macrocephaly. 

GBM incidence or absence was confirmed by H&E staining of brain sections in all injected 

animals. Kaplan-Meier analysis demonstrating symptom-free survival in murine gliomas was 

performed using the Prism software (GraphPad).  

 Vector constructs.  
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 For the generation of the RCAS-shRNA vector, shRNAs were initially assembled in the 

pSUPER.retro vector (OligoEngine, VEC-PRT-0002). The shRNAs containing the H1 promoter 

were PCR-amplified and then inserted into the RCAS-Y vector (generated and provided by Dr Yi 

Li, Baylor College of Medicine, Texas)31 using NotI and PacI restriction sites. KRAS was 

subsequently cloned using NotI restriction sites. The shRNA target sequences are as follows: 

Atg7 5’ CACATAGCATCATCTTTGA; Atg13 5’ GAGAAGAATGTCCGAGAAT; Ulk1 

5’GAGCAAGAGCACACGGAAA. 

 Immunocytochemistry.  

 Mouse brains harvested from animals were fixed in 10% formalin for 24-72 h and then 

transferred to 70% ethanol. Samples were then paraffin-embedded, sectioned and stained with 

H&E by Histoserv Inc, Maryland. Similarly, MEFs derived from wild-type or atg7 knockout cells 

were pelleted and processed for paraffin embedding. For immunocytochemistry staining, 

paraffin-embedded sections were treated with xylene twice for 10 min each before being 

sequentially hydrated in decreasing concentrations of ethanol. Epitope retrieval was performed 

by incubating slides in 10 mM sodium citrate buffer, pH 6 for 15 min at 95°C then allowed to 

cool for 20-45 min. Subsequently, slides were blocked with TBST (150 mM NaCl and 10 mM Tris 

pH 7.5, 0.1% Tween 20 [Sigma, P5927] + 5% BSA [Thermo Fisher Scientific, BP1605-100]) for 45 

min, and incubated with primary antibodies overnight at 4°C. Subsequently, slides were 

incubated with Alexa fluorescent secondary antibodies (Life Technologies, A-11012 and A-

11032) and images acquired using a Nikon Eclipse Ti-U Confocal Microscope. The antibodies 
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used in this study are anti-ATG7 (Sigma, A2856), anti-MKI67/Ki67 (Vector Labs, VP-K451), and 

anti-NES/nestin (BD biosciences, 556309).  

 Colony formation assay.  

 XFM cells were seeded in 6-cm dishes; 24 h later cells were cultured in 0.1% FBS for 2 

weeks (with medium replenished after 1 week) followed by growth in 10% FBS for a further 1 

week. Cells were then fixed with 10% formaldehyde and stained with Giemsa (Sigma, GS500) to 

visualize colonies. 

 Hypoxia.  

 For hypoxia experiments, cells were incubated in a Whitley H35 Hypoxystation set to 

37°C and 0.5% O2. 72 h later, cells were lysed inside the Hypoxystation and analyzed by western 

blotting.  

 Soft agar assay.32  

 XFM cells were seeded at 10,000 cells/well in a 6-well dish. Cell suspension (final volume 

1.5 mL) containing 0.4% low gelling agarose (Sigma, A4018) in full growth DMEM was overlaid 

with a layer of 0.5% agarose and left to solidify at 4°C. Cells were then incubated at 37°C, fed 

weekly with 0.4% agarose-containing DMEM and analyzed after ~3 weeks by staining with 

0.02% Iodonitrotetrazolium chloride (Sigma, I10406). Colonies were quantified using an 

Optronix Gelcount (Oxford Optronix). All assays were conducted in triplicates in 3 independent 

experiments. 

 Senescence-associated β-galactosidase assay (SA-GLB1).23  
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Cellular senescence was measured using an SA-GLB1 assay. Briefly, cells were fixed with 

0.5% glutaraldehyde then incubated with X-gal staining solution, pH 6.0 (1mM MgCl2 

phosphate-buffered saline [Fisher BioReagents, BP399], X-gal [Thermo Fisher Scientific, R0941], 

0.12 mM K3Fe[CN]6 [Sigma, 60299], 0.12 mM K4Fe[CN]6 [Sigma, 60279]) overnight at 37°C. 

Images of cells were taken using a Nikon Digital Sight DS-L3. 

 BrdU incorporation assay.  

 For the BrdU incorporation assay, cells were pulsed with 50 μM BrdU (Sigma, B5002) for 

18 h followed by fixation with 3.7% paraformaldehyde and permeabilization with 0.2% Triton-

X100. Cells were blocked with 0.2% gelatin-fish (Sigma, G7765) in 5% BSA-phosphate-buffered 

saline and incubated with anti-BrdU primary antibody (1:2000; BD Biosciences, 555627), 0.5 U/L 

DNase (Sigma, D4527), and 1 mM MgCl2 in blocking solution. Subsequently, slides were 

incubated with Alexa secondary antibodies (Life Technologies, A-11001) and 1 μg/ml DAPI; 

images were acquired using ImageXpress and analyzed using MetaXpress software. 

 Metabolite measurement.  

 XFM cells were grown in 0.1% FBS for 2 weeks and fresh 0.1% FBS medium was added 

and cells grown for a further 3 or 5 days. Alternatively, cells grown in 10% FBS were analyzed 

after 3 days of culture. Metabolites were extracted from the medium using ice-cold extraction 

buffer (50% methanol, 30% acetonitrile). Extracted metabolites were separated on a Zic-pHILIC 

column (Merck Millipore) using a Thermo Ultimate BioRS HPLC with a single step linear gradient 

of 10%-95% A over 20 min (mobile phases were [A] 20 mM ammonium carbonate [B] 

acetonitrile). Metabolites were eluted into a Q-Exactive mass spectrometer (Thermo Fisher 
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Scientific) using a flow rate of 300 µl/min. Metabolite masses were acquired in negative mode 

within the range of 78-250 m/z. Relative metabolite abundance was then determined by 

integrating the ion peak area (Quan Thermo Xcalibur) and normalized to cell number. 

 Statistical analyses. 

All data are presented as the mean ± SEM. The statistical significance was evaluated 

using two-tailed, unpaired student’s t-test. Percentage tumor-free survival Kaplan Meier curve 

was analyzed using Log-rank Mantel-Cox test (Graphpad Prism software). The data were 

considered significant when the P value was less than 0.05 (*).  

 

LIST OF ABBREVIATIONS  

ATG  autophagy-related  

FBS  fetal bovine serum 

GBM  glioblastoma multiforme  

H&E  hematoxylin and eosin  

KRAS  Kirsten rat sarcoma viral oncogene homolog 

MAP1LC3/LC3  microtubule-associated protein 1 light chain 3 (MAP1LC3) 

MEFs  mouse embryonic fibroblasts 
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RCAS  replication-competent avian sarcoma-leukosis virus LTR splice acceptor/tumor 

  virus A 

SA-GLB1 senescence-associated galactosidase, beta 1 

ULK1  unc-51 like kinase 1 
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FIGURE LEGENDS 

Figure 1. RCAS mouse model for gliomagenesis. (A) Outline of the RCAS mouse model. RCAS 

viruses harboring an oncogenic KRAS gene and autophagy shRNA are amplified in chicken 

fibroblasts. Intracranial injection of the fibroblasts in neonatal mice expressing the viral 

receptor, TVA, under the control of the Nes/nestin promoter results in gene transfer from the 

RCAS vectors to glial progenitors. (B-C) Validation of the RCAS-mediated gene knockdown (B) 

and KRAS overexpression (C). Primary glial cells (XFM) expressing the viral receptor TVA 

harvested from uninjected mice were infected in culture with RCAS viruses expressing KRAS and 

the indicated shRNA. (D) Inhibition of autophagy in glial cells expressing KRAS in the presence of 

shRNA against Atg7, Atg13 or Ulk1. XFM cells were amino acid starved (AA starve) for 2 h in the 

presence or absence of bafilomycin A1 (BafA1; 20 nM) to inhibit lysosomal degradation.  

Figure 2. Autophagy is required for GBM development. Mice were injected with RCAS vectors 

expressing KRAS in the presence of shRNA against LacZ, Atg7, Atg13 or Ulk1. (A) Kaplan Meier 

curve measuring tumor-free animals monitored up to 10 weeks after injection with the 

indicated RCAS expressing cells. ***, p<0.001 (Log-rank Mantel-Cox test). (B) Animal numbers 

of those plotted in (A). (C) Representative H&E images of mouse brain sections showing GBM 

development in the indicated injections. (D) Tissue sections of normal or GBM brains were 

stained with antibodies to NES/nestin, or MKI67/Ki67 or with DAPI. (E) Immunocytochemical 

staining of brain sections using an antibody against ATG7. (F) Similar staining procedures using 

atg7 knockout (KO) or wild-type (WT) MEF cells to confirmed antibody specificity.   
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Figure 3. Inhibition of autophagy suppresses oncogenic growth and growth signaling pathways 

in KRAS-expressing glial cells. Primary glial cells (XFM) were transduced with RCAS viruses co-

expressing KRAS along with the indicated shRNA and grown under the indicated conditions. (A-

B) Transduced XFM cells were grown in (A) soft agar or (B) low serum (0.1% FBS) for 2 weeks 

followed by incubation in full growth medium for 1 week. (C) Representative images of cell 

morphology for cells treated as in (B). (D) No induction of apoptosis was observed (measured 

by cleaved CASP3) in cells cultured in 0.1% FBS for the indicated time points. Staurosporine 

(STS) treatment in KRAS:shLacZ cells was used as a positive control for CASP3 activation. (E) 

Cells grown in low serum (0.1% FBS) for the indicated times and cell lysates were analyzed by 

western blot using antibodies against the indicated proteins. (F) KRAS:shLacZ- or KRAS:shAtg7-

expressing XFM cells were grown under hypoxic conditions (0.5% O2) for 72 h and cell lysates 

analyzed. Statistical analyses are shown of 3 independent experiments performed in triplicates 

including error bar (SEM values). *, p<0.05; **, p<0.01, ***, p<0.001 (student’s t-test, unpaired 

two-tailed). 

Figure 4. Autophagy is required for suppressing senescence and maintaining metabolism under 

low-serum conditions. (A) KRAS:shLacZ- or KRAS:shAtg7-expressing XFM cells were incubated in 

0.1% serum for 7 or 14 days. Cells were fixed and SA-GLB1 activity was measured as an 

indicator of cellular senescence. Quantification of approximately 200 cells per condition of 3 

independent experiments is shown with SEM values. Representative images are shown below. 

(B) BrdU incorporation assay of cells treated as in (A). Statistical analyses are shown of 3 

independent experiments performed in triplicates including error bar (SEM values). (C-D) 

Western blot analyses of XFM cell lysates cultured in 10% FBS (day 0) or 0.1% FBS (3, 7 or 14 
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days). (E) Schematic presentation of the experimental outline used to analyze metabolites in 

tissue culture medium. Cells were cultured in 10% FBS and medium collected after 3 days (10%, 

Day 3). Alternatively, cells were cultured in 0.1% FBS for 14 days, fresh medium containing 0.1% 

FBS was added and medium was collected following a further 3 or 5 days of culture (0.1%, Day 

3 or Day 5). (F) Ion count (i.c.) measurements of the indicated metabolites normalized to cell 

numbers in tissue culture medium using mass spectrometry of XFM cells grown as described in 

(E). *, p<0.05; **, p<0.01; ***, p<0.001, ns, nonspecific (p>0.05; student’s t-test, unpaired two-

tailed).  
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