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Highlights 

- Synaptic changes occur early in most neurodegenerative diseases. 

- Synaptic changes likely contribute to cognitive decline in ageing. 

- Targeting synaptic pathology is a promising therapeutic strategy. 

 
 

  



 

Abstract 

Synaptic proteomes have evolved a rich and complex diversity to allow the exquisite 

control of neuronal communication and information transfer. It is therefore not 

surprising that many neurological disorders are associated with alterations in synaptic 

function. As technology has advanced, our ability to study the anatomical and 

physiological function of synapses in greater detail has revealed a critical role for both 

central and peripheral synapses in neurodegenerative disease. Synapse loss has a 

devastating effect on cellular communication, leading to wide ranging effects such as 

network disruption within central neural systems and muscle wastage in the 

periphery. These devastating effects link synaptic pathology to a diverse range of 

neurological disorders, spanning Alzheimer’s disease to multiple sclerosis. This 

review will highlight some of the current literature on synaptic integrity in animal 

models of disease and human post-mortem studies. Synaptic changes in normal brain 

ageing will also be discussed and finally the current and prospective treatments for 

neurodegenerative disorders will be summarised. 
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Introduction 

The approximately one hundred billion neurons found within the human brain act in 

beautifully intricate arrangements to generate and control our every thought, memory, 

emotion and dream. They also control our ability to sense the world, to communicate 

those sensations to others and decide how to plan our lives. These remarkable abilities 

are only possible if neurons can efficiently coordinate with other cells in the network, 

and the transfer of information occurs at specialised compartments called synapses 

(Figure 1). 

 

Depending on the chemical signal released, synapses can have excitatory or inhibitory 

effects on the target cell. Excitatory synapses most commonly form on small dendritic 

protrusions known as spines, where the synapse can be isolated from the main 

dendritic branch and become highly specialised. Inhibitory synapses tend to form 

directly onto the dendritic branch or onto the neuronal cell soma, although some 

exceptions to this general rule do occur. Once formed, these synaptic contacts are not 

rigid and can strengthen in response to increased activity or become shrunken and 



even lost following lack of activity [1]. This plasticity is thought to play a 

fundamental role in the formation, storage and removal of memory [2]. Furthermore, 

spine dynamics can often be used as a quantifiable means of analysing circuit activity 

as spine number and morphology change in response to fluctuations in neuronal 

activity [1]. See Figure 1D for a summary of this concept. 

 

Given the critical role synapses play in normal neurophysiology, it is not surprising 

that loss of synaptic integrity may underlie many of the most common 

neurodegenerative diseases. Synaptic dysfunction or synaptic loss often precedes late-

stage features of many neurological conditions such as Alzheimer’s disease [3], 

Motor Neuron disease [4, 5], Huntington’s disease [6], Parkinson’s disease [7, 8] and 

multiple sclerosis [9]. While synaptic pathology is a common feature of these 

disorders, the nature of the synaptic change is not necessarily consistent, which 

illustrates how critical normal neuronal function is for brain health. Given the 

plasticity of synapses and the malleability of dendritic spines, it raises the possibility 

of exploiting these features as potential therapeutic targets. If we can prevent synaptic 

loss or strengthen existing connections between neurons, we may be able to slow or 

even reverse disease-driven neurological change.  

 

In this review, we will highlight a selection of neurodegenerative disorders that 

exhibit synaptic dysfunction as an early feature of the disease, discuss the changes 

that occur during normal brain ageing and discuss the current and prospective ways in 

which synaptic function can be targeted for therapeutic exploitation. 

 

Synapse Structure 

Synapses are the point of contact between two neurons and can exist as either 

electrical or, more often, chemical synapses. In both cases the cells don’t touch, but 

communicate by passing ions (electrical synapse) or neurotransmitters (chemical 

synapse) across a small gap known as the synaptic cleft. Adhesion proteins such as 

neuroligins and neurexins span this cleft, physically holding the synapse in place [10] 

(Figure 1C). Intriguingly, these cleft-spanning proteins are critical for synaptic 

integrity and mutations in the genes for these proteins have been implicated in 

neurological disorders [10]. 

 

The presynaptic bouton contains the complex machinery required for synthesis, 

storage and release of neurotransmitters [11] (Figure 1C). This is a tightly regulated 

process, ensuring efficient and accurate transmitter release following action potential 

propagation. Synaptic vesicles, packed with neurotransmitter, undergo calcium-

dependent fusion with the presynaptic membrane and release their contents into the 

synaptic cleft. Altered protein homeostasis in the presynaptic terminal has been linked 

to neurological disorders. The abundant presynaptic protein alpha-synuclein forms 

striking pathological aggregates in a group of neurological disorders known as 

synucleinopathies [12]. 

 

Once released from the presynaptic terminal, neurotransmitters cross the synaptic 

cleft and interact with receptors in the postsynaptic membrane. Ligand-gated ion 

channels (ionotropic receptors) open rapidly upon neurotransmitter binding and allow 

the direct flow of ions into the postsynaptic neuron, altering the local membrane 

potential. G-protein coupled receptors (GPCRs; metabotropic receptors) induce an 

array of downstream signalling cascades following neurotransmitter binding, which 



are important for local protein homeostasis and dendritic spine morphology (Figure 

1C). 

 

The receptors are held in place by a vast protein scaffold known as the postsynaptic 

density (PSD), which contains almost 1500 proteins [13] and can be seen as an 

electron-dense structure under the electron microscope (Figure 1B). Disruptions of 

this critical protein scaffold can have severely detrimental effects on synaptic 

function, and altered expression of PSD proteins are a common feature of many 

neurological disorders [13]. Figure 1 shows an example of a typical excitatory 

synapse with some important proteins highlighted. 

 

In summary, to ensure efficient information transfer between neurons, the synapse 

must be anatomically intact. Disruptions in synaptic composition can have severe 

effects on synaptic function, leading to altered network activity and ultimately the 

clinical manifestation of disease. 

 

Alzheimer’s Disease 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder exhibiting 

striking brain atrophy.  The brains of AD patients contain two definitive hallmarks of 

the disease, insoluble beta-amyloid plaques and hyperphosphorylated-tau positive 

tangles. Plaques are formed extracellularly by the deposition of insoluble amyloid 

beta peptides, whereas the neurofibrillary tangles are found intracellularly as long tau 

fibrils characteristically tangled around the nucleus in neuronal cell soma. Neurons 

and synapses are progressively lost during the disease in tandem with the spread of 

tau pathology through the brain [14].  However, the early clinical manifestations of 

memory impairment are likely due to synapse dysfunction and loss rather than to 

neuron loss or the accumulation of plaques and tangles. A large amount of evidence 

suggests that the fibrillar plaques and neurofibrillary tangles are not in themselves 

toxic.  These lesions are often found in cognitively normal aged brains [15-17].  The 

strongest pathological correlate with cognitive change is synapse loss [18], suggesting 

that the loss of synapses is sufficient to drive AD-related cognitive decline, before the 

loss of neurons [3, 19]. What causes the synaptic loss is yet to be fully elucidated but 

it appears that both soluble amyloid and soluble tau have a role to play [20]. In mouse 

models of amyloid pathology and human post-mortem tissue, synapses are 

predominantly lost around mature, dense-core amyloid plaques [21, 22]. Interestingly, 

there is no increased synapse loss in or around diffuse plaques, which don’t appear to 

affect the surrounding neuropil and are made up of small scattered bundles of amyloid 

fibrils [23]. This may suggest that dense-core amyloid plaques release synaptotoxic 

molecules in their vicinity. In support of this idea, work in transgenic mouse models 

revealed a halo of oligomeric amyloid around the edge of plaques and some of this 

soluble amyloid is found within synapses [21, 22], as independently observed using 

electron microscopy [24]. The presence of soluble amyloid in the synapse appears to 

drive shrinkage and ultimately loss of that connection perhaps through microglial-

mediated mechanisms regulated by C1q and complement 3 [25]. Before synapses are 

lost synaptic function is significantly disrupted by the presence of soluble amyloid. 

Mouse models have shown that the application of synthetic amyloid species results in 

impaired LTP [26, 27] and enhanced LTD [28], ultimately weakening the synapse. 

These effects are due to the dysregulation of numerous signalling pathways, but it is 

evident that the synaptic AMPA [29] and NMDA [30] receptors play a critical role. 

LTP causes an increase in spine size and requires high calcium levels within the 



spine, as a result of rapid influx through NMDA receptors [31]. LTD causes spine 

shrinkage, as a result of a slower influx through NMDA receptors and ultimately a 

lower level of calcium in the spine [32]. Oligomeric amyloid can bind NMDA 

receptors and block NMDA-evoked currents resulting in slower calcium dynamics, 

which favours the induction of LTD in the spine [33]. Furthermore, the effect of 

numerous kinases within the spine critical for LTP induction such as JNK [34], p38 

MAPK [34] and CaMKII [35, 36] can be altered by oligomeric amyloid. Also, the 

calcium-dependent phosphatase Calcineurin is activated by amyloid [37], leading to 

the internalisation of AMPA [37, 38] and NMDA [33] receptors away from the 

synapse, leading to the loss of synapses and spines. This synapse-specific loss of 

NMDA receptors is important in a number of ways. Firstly, it reduces excitatory 

synaptic activity leading to synapse weakening and secondly, it leads to a change in 

the balance of synaptic and extra-synaptic signalling. Synaptic NMDA receptors are 

thought to induce pro-survival signalling pathways, whereas NMDA receptors outside 

the synapse (extrasynaptic) promote toxic, cell-death pathways [39], therefore a loss 

in synaptic signalling will lead to a greater influence of toxic, extrasynaptic 

signalling. It has been shown in cultured mouse cortical neurons and in synaptic/non-

synaptic fractions of homogenized mouse hippocampal slices that extrasynaptic 

NMDA receptor levels are not changed following amyloid-β treatment, whereas 

synaptic levels significantly decrease [33, 40]. Therefore, amyloid-β may induce 

synapse loss via a combination of synaptic weakening and a shift towards toxic 

extrasynaptic signalling. Another way in which amyloid-β may significantly alter 

synaptic function is by disrupting mitochondrial physiology. Mitochondria are critical 

for maintaining the high-energy supply required for efficient synaptic function and it 

is thought that mitochondrial dysfunction plays an important role in AD pathogenesis 

[41]. For example, a recent study has found a direct molecular link between amyloid-

β and Abeta-binding alcohol dehydrogenase (ABAD), leading to mitochondrial 

dysfunction, oxidative stress and cell death [42]. 

 

Intriguingly, a very recent study utilising human tissue and rodent models has shown 

that amyloid binds to and disrupts an adhesion protein that spans the synaptic cleft 

and holds the synapse in place. The authors suggest that amyloid-dependent 

breakdown of NCAM2 leads to synapse disassembly [43]. 

 

The role of tau in synapse loss is less well established. Tau is a microtubule binding 

protein which during the course of AD becomes hyperphosphorylated and 

accumulates in neuronal somata and dendrites [44]. Despite the historical belief that 

tau is confined to the axon, recent studies have revealed an important role for tau in 

the PSD [45]. Furthermore, imaging studies have revealed the abnormal accumulation 

of tau in spines from both mouse models and human AD post-mortem tissue [46-49]. 

Given the important role tau plays in microtubule stabilisation and subsequent protein 

trafficking, it is easy to imagine that pathological tau dislocation would result in failed 

trafficking of critical proteins required for synaptic function. In support of this, it has 

been shown that expression of hyperphosphorylated tau disrupts the trafficking of 

glutamate receptor subunits [50, 51]. Furthermore, mitochondrial transport is 

significantly disrupted when tau is overexpressed, resulting in disrupted ATP 

production and calcium buffering, and altered mitochondrial distribution in tau over-

expressing neurons in transgenic mice and post-mortem AD brain [49, 52, 53].  

 



Intriguingly, the spread of phosphorylated tau follows a remarkably predictable 

pattern throughout the brain. Abnormal deposits of tau first appear in the 

transentorhinal region before spreading into the nearby entorhinal cortex [54]. The 

pathological spread then appears to follow the flow of synaptic connections from the 

entorhinal cortex into the hippocampus and then from there, out into other cortical 

and subcortical regions [54]. This predictable spread of pathology has led some to 

believe that phosphorylated tau is passed between neurons that are synaptically 

connected [55-58]. However, the route of transmission and the identity of the 

propagating toxic tau species are yet to be fully elucidated [59, 60]. Research is now 

beginning to focus on potential synergistic or hierarchical effects of amyloid and tau 

in synapse loss [20]. One interesting potential link between amyloid-β and tau 

pathology is the finding that specific activation of extrasynaptic NMDA receptors 

enhances tau phosphorylation in cultured mouse hippocampal neurons [61]. This may 

suggest that amyloid-β not only induces synaptic dysfunction, but drives tau 

pathology via extrasynaptic NMDA receptor signalling.  Treating primary neurons 

with physiological concentrations of amyloid-β induces synapse loss, which has 

recently been associated with tau mislocalization to dendrites [62].  Further, 

genetically removing endogenous mouse tau prevents some of the synaptic deficits 

associated with overexpressing mutant amyloid [63, 64]. 

 

In summary, the vulnerability of synapses in AD is striking and is supported by a vast 

literature describing presynaptic, postsynaptic and even trans-synaptic sites of damage 

following the generation of pathological species of amyloid and tau.  

 

α-synucleinopathies: Parkinson’s disease and Dementia with Lewy Bodies 

Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) belong to a group of 

neurodegenerative disorders called α-synucleinopathies. Patients’ brains contain 

pathological aggregates of the presynaptic α-synuclein protein, which can exist as 

neuronal cytoplasmic aggregates called Lewy bodies or longer fibril-like structures in 

the neuronal processes, known as Lewy neurites. Aggregates can also be found in 

glial cells in other α-synucleinopathies, such as multiple system atrophy. It is 

currently unknown why this protein leaves the synapse, or why it aggregates. 

 

The loss of dopaminergic neurons in the substantia nigra causing a dramatic reduction 

of striatal dopamine release leads to the clinical motor problems (rigidity, tremor, 

bradykinesia, freezing and postural instability) which are characteristic of PD [65]. 

However, pathology is not restricted to the substantia nigra, as evidenced by a number 

of other non-motor clinical symptoms such as constipation, hyposmia, depression and 

sleep disturbance [66]. In PD it is proposed that the presence of Lewy bodies begins 

before overt clinical symptoms as evidenced by the widely reported incidental Lewy 

body disease (iLBD). The hypothesis put forward by Heiko Braak states that Lewy 

bodies spread in a predictable pattern from the brainstem to subcortical structures and 

finally throughout the cortex in severe late stage cases [67]. Whether Lewy body 

formation is a result or cause of neuronal degeneration is a matter of debate, although 

the progression and severity of disease appears to follow their presence [68].  

 

DLB is a common form of dementia, following Alzheimer’s disease, vascular 

dementia, and mixed AD/vascular dementias in prevalence. The classical core 

features of DLB include fluctuating cognitive impairment with loss of attention and 

executive function, visual hallucinations and Parkinson’s-like motor problems 



(rigidity, tremor, bradykinesia, freezing and postural instability) [69]. As in PD, the 

loss of neurons in the nigrostriatal pathway can account for the motor symptoms 

observed in DLB, yet the number and location of cortical Lewy bodies in DLB don’t 

necessarily track with the severity of disease [69]. However, high incidence of Lewy 

bodies in the anterior and inferior temporal lobe, which is important for forming 

complex visual images, does associate with the presence of visual hallucinations [69]. 

 

In both PD and DLB the severe brain degeneration observed post-mortem cannot be 

explained purely by the presence of Lewy bodies and alternative factors likely play a 

role. One alternative is that small synaptic α-synuclein inclusions may drive a loss of 

synapses in the brain of patients. Indeed, loss of excitatory synapses in the striatum 

has been described in animal models of PD and in human post-mortem brain [7, 70-

72]. Using a PET blot technique, a sucrose gradient fractionation technique and 

electron microscopy, one group have suggested that up to 90% of aggregated α-

synuclein exists in small presynaptic inclusions rather than large somatic Lewy 

bodies, in PD and DLB brains [73, 74]. In DLB cases, this associated with a 

significant decrease in the levels of presynaptic proteins such as synaptophysin. 

Furthermore, filled neurons in DLB brain had significantly fewer dendritic spines, 

corresponding with a decrease in synaptic levels of PSD95. In an α-synuclein 

overexpressing mouse model of DLB, significant loss of presynaptic terminals are 

observed in the hippocampus at 8 months, a few months after α-synuclein aggregates 

begin to appear [75]. However, when the overexpressing transgene was later switched 

off, the synapse loss was reversed and the α-synuclein pathology cleared. 

 

Vesicular monoamine transporter 2 (VMAT2) and the dopamine transporter (DAT) 

are important for the vesicular storage of dopamine in the presynaptic terminal and 

studies have shown a significant reduction in levels and activity of these in human PD 

[76, 77]. Importantly, these proteins appear to inversely correlate with the level of α-

synuclein in the substantia nigra suggesting that increased α-synuclein deposition 

leads to decreased levels of VMAT2 and DAT [77]. In support of a presynaptic 

dysfunction in Parkinson’s, mouse models of the disease exhibit a redistribution of 

numerous critical presynaptic proteins to sites of aggregated α-synuclein, resulting in 

reduced dopamine release in the striatum [78]. Human brain imaging has reinforced 

the case for synaptic failure in PD pathology and has revealed presynaptic disruption 

of numerous neurotransmitter systems [79].  

 

Despite the growing literature describing presynaptic dysfunction in PD, it is clear 

that other synaptic compartments can be affected. For example, exogenously applied 

oligomers of α-synuclein to rat hippocampal slices can disrupt LTP via postsynaptic, 

NMDA receptor-dependent mechanisms [80], and in cultured dopaminergic neurons, 

application of α-synuclein to the culture media leads to internalisation of NMDA 

receptors [81]. In cultured hippocampal neurons, α-synuclein also internalises NMDA 

receptors and affects NMDA-induced Ca
2+

 changes, leading to decreased NMDA-

dependent currents [82]. Given the importance of these receptors in synaptic 

signalling and spine morphogenesis, it is no surprise to find in human post-mortem 

tissue and numerous models of PD that spine densities are altered [83, 84]. 

Furthermore, postsynaptic calcium disruption has been shown in striatopallidal 

medium spiny neurons, leading to rapid loss of glutamatergic axospinous synapses 

and disconnection of the motor system [7]. 

 



It is also clear that mitochondrial dysfunction plays a prominent role in PD and DLB 

pathogenesis and may explain some of the synaptic deficits. Some of the known genes 

associated with familial PD play important roles in normal mitochondrial function, 

such as PINK-1 and Parkin [85]. Also, in numerous model systems, over-expression 

of mutated human α-synuclein can lead to mitochondrial degeneration [86, 87]. 

Furthermore, one of the most common models of PD is the MPTP-induced 

breakdown of dopaminergic neurons and this neuronal death occurs due to inhibition 

of mitochondrial complex I, resulting in massive reactive oxygen species 

accumulation and mitochondrial damage [88, 89]. In DLB post-mortem tissue it has 

been shown that there is a significant loss of mitochondria from neuronal processes, 

with aggregation of mitochondria around cytoplasmic Lewy bodies [90]. Furthermore, 

once the mitochondria are engulfed by the expanding Lewy body their membranes 

rupture and the mitochondria are destroyed [90]. In both PD and DLB, mitochondrial 

dysfunction will hamper energy supply to synapses and this may be a driving force in 

synaptic disconnection. 

 

The overall picture emerging from the current literature is that synaptic pathology is 

an early feature of PD and DLB and that α-synuclein aggregation and deposition can 

affect the synapse both pre- and post-synaptically. This assault from both sides of the 

synapse leads to significant neurophysiological disruption and subsequent anatomical 

change, resulting in spine alterations which affect overall neuronal function and 

circuit activity, leading to neuronal death and clinical manifestation. 

 

Motor Neuron Disease 

Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron 

disease and is characterised by the loss of upper and lower motor neurons. This leads 

to progressive muscle weakness and atrophy, and the denervation of respiratory 

muscles is often the cause of death, commonly occurring within 5yrs of diagnosis 

[91]. Catastrophic motor neuron loss represents the final step in disease progression, 

however mounting evidence suggests that synaptic disconnection at the 

neuromuscular junction occurs prior to cell death [4, 5, 92]. This has led to the “dying 

back” hypothesis of disease progression, which states that following toxic insult at the 

neuromuscular synapse, the axon disconnects from the target muscle, leading to 

axonal degeneration and finally neuronal death. Both cell autonomous and non-

autonomous factors have been suggested as the initiating insult [91]. Betz cells are 

giant pyramidal cells residing in layer five of the motor cortex and project directly 

onto the lower motor neurons in the spinal cord. Research has shown that synaptic 

terminals on the soma of normal-looking Betz cells in ALS patients appear 

dysmorphic and exhibit a degenerative appearance [93]. Loss of synaptic input may 

contribute to the dysfunction and loss of these critical cells in muscle control. Recent 

studies using ALS mouse models have revealed that cortical synapse loss may be an 

early presymptomatic feature of ALS. Presymptomatic spine loss was observed in the 

motor cortex of the hSOD1
G93A

 transgenic model [94] and an early shrinkage/loss of 

synapses was observed in the sensorimotor cortex of the FUS-R521C mouse [95]. 

Furthermore, disconnection of the upper and lower motor neuron circuit appears to be 

supported by a loss of synapses onto lower motor neurons in the ventral horn of the 

spinal cord [96-98].  

 

Although the source of the synaptotoxic insult has yet to be fully elucidated, 

interestingly, as described above for Alzheimer’s and Parkinson’s disease, protein 



aggregates also feature in the neuropathology of motor neuron disease. Mutations in 

the Cu/Zn superoxide dismutase (SOD1) gene are found in approximately 20% of 

familial forms of ALS which corresponds to 1-2% of all ALS cases and much of the 

pre-clinical work has been performed in mouse models containing mutations in SOD1 

[91]. SOD1 protein is located on the outer mitochondrial membrane and plays an 

important role in mitochondrial physiology [99]. Aggregated forms of mutant SOD1 

are found in sporadic and familial ALS, as well as in SOD1 transgenic models, in the 

form of cytoplasmic inclusions [100-102]. Whether these inclusions are also found in 

synapses has yet to be fully elucidated. Intriguingly, cultured motor neurons show a 

propensity for accumulating SOD1 aggregates when compared to cultured dorsal root 

ganglion or hippocampal neurons transfected with similar levels of mutant SOD1 

[103]. However, things are further complicated by the fact that these aggregates often 

include one or more other proteins known to play a role in ALS such as TAR DNA-

binding Protein 43 (TDP-43), ubiquitin, Fused in Sarcoma (FUS) and Sequestesome-1 

(p62/SQSTM1) [104].  Interestingly, the two RNA-binding proteins TDP-43 and FUS 

have been shown in cultured mouse neurons to traffic into dendritic spines and their 

synaptic levels significantly increase following neuronal activity [105, 106]. 

Therefore, given the high incidence of cytosolic protein aggregates it’s possible that 

sequestration of these important synaptic proteins away from their target site 

contributes to synaptic failure and loss. In support of this, it was recently shown in 

primary mouse neurons and human-derived motor neurons that ALS-associated 

mutations in TDP-43 led to reduced motility of TDP-43+ve mRNA granules along 

axons and a decrease in synapse-associated mRNA [107]. New protein synthesis is 

critical for long-lasting changes in synaptic remodelling and local synaptic mRNA 

trafficking and processing plays an important role. Therefore, disrupting either the 

temporal or spatial processing of synaptic mRNAs can have severely deleterious 

effects on neuronal function. 

 

Further evidence of synaptic disruption in ALS is the growing revelation of 

excitotoxicity in the disease. The strongest argument for a role of excitotoxicity in 

ALS is that the only drug capable of slowing disease progression in patients is 

riluzole, a suppressor of excitatory synaptic activity [108]. Furthermore, in human 

synaptoneurosomes preparations it has been found that glutamate re-uptake is 

significantly decreased compared to samples from control or non-ALS patients [109] 

and that CSF levels of glutamate are significantly higher in ALS patients [110, 111].  

Loss of glutamate transporters in ALS is found in both post-mortem tissue and rodent 

models [112, 113]. Motor neurons appear to be intrinsically vulnerable to 

excitotoxicity due to their high expression of Ca
2+

-permeable AMPA receptors and 

low expression of Ca
2+

 buffering proteins [114]. Therefore, subtle changes in their 

Ca
2+

 buffering capacity could render the postsynapse vulnerable to Ca
2+

-dependent 

excitotoxicity. In support of this idea it has been shown that mutated SOD1 can 

accumulate within vacuolated mitochondria [115], significantly disrupt mitochondrial 

function [116] and diminish the Ca
2+

-buffering capacity of these organelles [117]. 

Furthermore, corticostriatal plasticity is significantly altered in a mutated SOD1 

mouse model. In acute slices, tetanic stimulation (100 Hz, 1-s, 6-s interval) induced 

LTD in control slices but induced LTP in SOD1 mutants [118]. This synaptic 

alteration would shift the excitatory/inhibitory balance and transfer a physiological 

network into a hyperexcitable one. Altered physiology is not just limited to the brain 

however, as SOD1 transgenic mice also show alterations in spinal motor neuron 

activity. Electrically stimulated motor neurons from transgenic mice fired shorter 



action potentials in a higher frequency, due to decreased repolarization time [119]. 

Also, spinal motor neuron hyperexcitability appears to be a presymptomatic feature in 

SOD1 mouse models [120]. 

 

In summary, although it has been well established that neuromuscular synaptic loss is 

an early presymptomatic feature of ALS progression, the nature and source of the 

initiating toxic insult has yet to be convincingly described. Furthermore, the multi-

faceted pathology suggests that ALS is a multifactorial disorder, likely affecting 

synapses in numerous diverse ways, ultimately rendering them extremely vulnerable 

in the early stages of disease pathogenesis. 

 

Huntington’s Disease 

Huntington’s disease (HD) is caused by a trinucleotide (CAG) repeat expansion in the 

huntingtin gene, resulting in a polyglutamine expansion in the huntingtin protein. 

Patients exhibit classical movement disorders such as chorea and bradykinesia, 

cognitive deficits which progress into dementia and psychiatric symptoms such as 

depression [121]. These clinical features can be attributed to significant neuronal cell 

death in the striatum in the early stages (up to 95% loss of striatal medium spiny 

neurons), followed by more global brain atrophy [122]. Preceding neuronal death, 

alterations in spines and synapses are evident in both human post-mortem tissue and 

animal models of the disease [123]. In human post-mortem striatum, dendrites of 

medium-sized spiny neurons appear tortuous with recurved endings and exhibit a loss 

of spines [124, 125]. Similar findings are described in layer five of the prefrontal 

cortex [126]. Rodent models expressing mutant huntingtin transgenes (R6/1 HD mice) 

have revealed changes in dendritic spine density and anatomy, in HD-relevant brain 

regions [127]. Earlier attempts to generate rodent models of the disease involved 

intrastriatal injections of quinolinic acid, an endogenous NMDA receptor agonist, 

which produced neurodegenerative lesions that appeared neurochemically similar to 

those in human post-mortem tissue [128]. This suggested a prominent role for the 

excitatory glutamatergic system in HD pathogenesis. Furthermore, it has been shown 

in a mouse model of HD that an early increase in extrasynaptic NMDA receptor 

signalling may contribute to disease pathogenesis [129]. The authors revealed a 

significant increase in extrasynaptic NMDA-dependent currents, which coincided 

with increased extrasynaptic NMDA receptors. Environmental enrichment induces 

synapse formation and delays symptom onset and ameliorates symptoms in mouse 

models of HD, potentially by rescuing axonal transport of BDNF to the striatum and 

hippocampus [130-132]. Furthermore, it has been shown that wild-type huntingtin 

protein exists in postsynaptic membranes, binds PSD-95 [133, 134] and mutant 

protein can interfere with correct trafficking of postsynaptic receptors [135, 136]. 

Interestingly, specific loss of PSD-95 and GluR1-containing glutamatergic receptors 

occurs before the onset of spine loss [137], which suggests that spine loss is a result of 

synaptic dysfunction rather than a cause. As expected from the anatomical changes 

described, electrophysiological alterations are apparent in numerous model systems, 

with both resting and activity-dependent changes in neuronal physiology [138-140].  

 

Mitochondrial dysfunction is also evident in HD and appears to be a very early stage 

of pathogenesis, occurring presymptomatically [141, 142]. Striatal mitochondria 

containing mutant huntingtin have a reduced calcium uptake capacity than wild type 

cells [143]. Furthermore, mutant huntingtin binds to the mitochondrial outer 

membrane and directly lowers the threshold required for Ca
2+

-induced mitochondrial 



permeability [144]. Therefore, studies suggest that the dysfunction of mitochondrial 

Ca
2+

 handling may render HD neurons unable to cope with excessive neuronal 

activity, leading to early synaptic loss, followed by cell death.  

 

From the current literature, one can imagine a scenario in which mutated huntingtin 

initiates a cascade of disruption, starting with perturbed protein trafficking, synaptic 

dysfunction and spine loss, leading to network disconnection and ultimately neuronal 

death. 

 

Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic, autoimmune disorder exhibiting inflammatory 

lesions in the CNS and subsequent axonal demyelination and neurodegeneration. The 

pathological hallmarks of the disease are sclerotic plaques, which represent the end-

point of a destructive process involving inflammation, demyelination, gliosis and 

axonal/neuronal death [145]. Clinically, neurodegeneration leads to progressive 

physical disability as neuronal networks and muscle control are lost [145]. Also, in 

addition to the sensory and motor deficits, up to 65% of MS patients present with 

cognitive deterioration [146]. The clinical course is complex, as the disease tends to 

wax and wane under the control of the inflammatory episodes with patients improving 

during remission. However, recovery from each relapse is usually incomplete and 

65% of patients will advance into a secondary progressive form of neurodegeneration 

[145]. 

 

Despite the well-described pathology, the exact order of events that lead to the 

formation of sclerotic plaques is hotly debatable. Recently, focus has centred on the 

role of inflammation-driven synapse alteration in MS pathogenesis. Using a non-

invasive imaging technique called Transcranial Magnetic Stimulation (TMS) to 

measure cortical activity in MS patients, it has been shown that intracortical 

facilitation is evident in MS patients [147] and that cortical hyperexcitability 

correlates with increased levels of pro-inflammatory cytokines in the CSF [148]. 

Furthermore, elevated levels of glutamate have been found in the CSF [149] and brain 

[150] of MS patients, pointing towards glutamate-induced excitotoxicity in the CNS. 

In support of this hypothesis, pharmacological blockade of glutamate receptors in 

rodent models of MS (experimental autoimmune encephalitis (EAE)), perturb disease 

progression and severity, reduce neurological deficits and decrease damage to axons 

and myelinating cells (oligodendrocytes), despite having no effect on CNS 

inflammation [151, 152]. Furthermore, in acute brain slices from EAE models it has 

been shown that LTP is enhanced and LTD is reduced, leading to an overall 

hyperexcitable environment, similar to the human cortex [153-155].  

 

In human post-mortem hippocampi, dramatic demyelination is observed [156, 157]. 

The loss of myelin associates with synaptic dysfunction, as although neuron number 

remains stable, synaptic density is significantly decreased [156, 157]. Interestingly. A 

role for the compliment system (C1q and C3) has been implicated in hippocampal 

synapse loss [157], which is a system thought to play an important role in 

supernumerary synapse elimination during development, but may be erroneously 

activated during disease [158]. Furthermore, in demyelinated hippocampi the levels of 

astrocytic glutamate uptake transporters EEAT1 and EEAT2 were significantly 

decreased [156], likely driving increased synaptic glutamate levels and subsequent 

synaptic breakdown. This is an important finding as approximately 50% of MS 



patients exhibit impaired long-term memory, a process that requires functional 

hippocampi [159]. Synapse loss has also very recently been documented in the cortex. 

In demyelinated areas of the post-mortem human insular and frontotemporal lobes, 

there were fewer intracortical axons and a dramatic decrease in spine numbers [160]. 

Interestingly, even in MS patients with normal appearing grey matter (without 

demyelination), spine density was significantly lower than control and not different to 

the densities in demyelinated patients [160]. Thus in the cortex, it appears synapse 

loss does not necessarily associate with demyelination. 

 

Excessive excitatory signalling could result from uncontrolled glutamate release, 

decreased glutamate clearance or increased postsynaptic expression of receptors. In 

fact, it appears all three may play a role. Glutamate transporters and metabolizing 

enzymes are lost from oligodendrocytes in and around active MS lesions and 

infiltrating immune cells express high levels of glutamate-synthesising enzymes, all 

contributing to the increased levels of synaptic glutamate and localised axon damage 

[161, 162]. Also, increased expression of glutamate receptors in glial cells and ectopic 

expression in axons is observed around active MS lesions [163, 164].  

 

Another condition in which network excitation can become excessive, is if inhibitory 

control is lost. Almost one quarter of neurons in the cortex are inhibitory [165] and 

they play an important role in regulating rhythmic firing across cortical networks. 

Numerous studies have shown that the inhibitory GABAergic system is disrupted in 

MS patients. It has been known for more than 30yrs that GABA levels in the CSF of 

MS patients are lower that controls [166] and around 10yrs ago it was shown by 

microarray and confirmed by RT-PCR and western blotting that many components of 

the GABAergic system were significantly down regulated in MS patients [167]. The 

authors reported a decrease in GABA receptor subunits, receptor associated proteins 

and presynaptic proteins involved in GABA synthesis. Also, they discovered that the 

cortical area covered in parvalbumin (Ca
2+

-binding protein highly expressed in a 

subpopulation of inhibitory cells) -positive cells and their processes was almost 30% 

lower in MS patients. These findings suggest that GABA release is lower in MS 

patients and the machinery required to send and receive inhibitory signals is 

significantly hindered in the MS brain. 

 

Another pathological feature described by Dutta et al. [167] in post-mortem MS 

motor cortex, was the breakdown of mitochondrial function. Interestingly, 

mitochondrial number and protein composition were the same in MS and control 

motor cortex preparations, however mitochondrial respiratory chain function was 

reduced by approximately 50% in MS samples [167]. Mitochondrial DNA (mtDNA) 

damage can induce significant mitochondrial dysfunction and in human MS cortical 

grey matter, there are extensive mtDNA deletions, leading to respiratory dysfunction 

[168]. In the EAE animal model of MS, mitochondrial breakdown and dysfunction 

appeared as early as three days after EAE sensitisation, long before leukocyte 

infiltration into the CNS [169]. Due to the mounting evidence in animal models and 

human tissue, mitochondrial dysfunction is becoming more appreciated as an 

important factor in MS pathogenesis [170], which may play a significant role in 

neuronal physiology, leading to synaptic breakdown. 

 

In summary, mounting evidence supports the supposition that changes in the neuronal 

milieu during inflammatory relapse leads to early synaptic dysfunction and a shift 



towards increased excitatory transmission, resulting in hyperexcitation and 

excitotoxic neurodegeneration. Furthermore, increased energy demands required to 

propagate signal transduction along demyelinated axons, coupled with decreased 

energy production due to dysfunctional mitochondria, leads to a virtual hypoxic state, 

further enforcing neurodegenerative processes. 

 

Normal cognitive ageing 

Despite the wealth of literature describing pathological changes in the diseased brain, 

we are yet to fully understand the changes that occur during normal ageing of the 

brain and it’s important to remember that age is a major risk factor for most 

neurodegenerative diseases. Normal cognitive ageing is likely influenced by a number 

of underlying factors and the term refers to age-related changes in cognition in the 

absence of any known neurologic disease [171]. Interestingly, this trait of age-related 

cognitive change is not restricted to humans and can be found in other aged species 

such as rodents and non-human primates [172]. Declarative and working memory are 

mediated by the hippocampus and dorsolateral prefrontal cortex respectively and are 

the most vulnerable cognitive processes in ageing [172]. Furthermore, it is known that 

regional coordination, required for higher order tasks, begins to breakdown during 

ageing [173] and is thought to be a result of alterations in the connections between 

these brain regions, driven by a deterioration of white matter physiology [174]. Post-

mortem, a number of structural changes are evident such as neuronal loss, white 

matter deterioration, gliosis, neurovascular changes and increased deposition of 

pigments and proteins inside cells [175]. Furthermore, glutamatergic signalling and 

glutamate homeostasis are disrupted in normal brain aging and this has knock-on 

deleterious effects on other neurotransmitter systems [176]. For example, the 

breakdown of important neurotransmitter systems such as the dopaminergic and 

serotonergic systems appears to be an age-dependent process [177, 178]. However, 

despite all these diverse changes it has been frequently shown that synaptic health is 

essential in maintaining cognitive performance in older age and it is synaptic density, 

not neuronal loss, that associates most strongly with age-related cognitive decline 

[172].  

 

Using genome-scale microarrays it has been shown that genes involved in the 

regulation of synaptic function are significantly down regulated in aged human brain 

[179, 180]. Also, genetic variability within genes coding for postsynaptic proteins 

preferentially associates with the inherent variability in general intelligence [181]. 

Evidence supporting an age-dependent change in synapses is not merely genetic. In 

non-human primates there is a significant age-related decrease in volume of the 

dorsolateral prefrontal cortex, which is not caused by neuronal loss but associates 

with a dramatic loss of glutamatergic, axospinous synapses [182]. Furthermore, this 

synaptic loss (specifically in cortical layer 3) correlates with the degree of cognitive 

decline in the aged animals. This is similar to human ageing studies that have shown 

an association between high presynaptic protein levels and lower odds of dementia 

diagnosis in later life [183]. Also, human post-mortem studies have revealed a 

decrease in synaptic density in an array of cortical regions, including the prefrontal 

cortex, without changes in neuron number [184-187]. Thus it appears that synaptic 

loss is a feature of normal brain ageing across a variety of distinct species, but what 

drives or initiates this process? Interestingly, some genes involved in vital processes 

such as mitochondrial function, immune regulation and inherent stress responses are 

changed in an age-dependent manner and these changes are evolutionarily conserved 



throughout the animal kingdom from humans to nematode worms [188]. Thus it 

appears that the brain ages in a similar way across species and that common factors 

likely drive synaptic loss. For example, genes encoding mitochondrial proteins are 

decreased across species in aged individuals [180] and studies have shown significant 

mitochondrial dysfunction in many animal models of ageing [189]. Human 

mitochondrial DNA deletions increase with age [190], and interestingly deletions 

were common in the cortex but largely absent from the cerebellum. This may partly 

explain the more prominent cognitive decline associated with ageing. In rodents, 

mitochondrial enzyme activity correlates with neurological performance and median 

life span and ageing associates with increased mitochondrial dysfunction and fragility 

[189]. Furthermore, in non-human primates, mitochondrial number and morphology 

in the presynapse correlates with performance in working memory tasks, which 

declines with age [191].  

 

As the brain ages, postmitotic neurons that have worked diligently for decades, begin 

to tire. Underlying degeneration of DNA repair mechanisms and mitochondrial 

function begin to take their toll on neuronal physiology and the critical points of 

contact and communication between cells (synapses) start to breakdown. As synapses 

are lost during ageing, there is an inevitable change in neuronal electrophysiology, 

and for a long time it has been known that aged animals showing a brain region 

specific decrease in LTP [192-195]. Also, as Ca
2+

 homeostasis alters, likely due to 

dysfunction in Ca
2+

-buffering organelles, synaptic plasticity favours LTD induction 

rather than LTP [196]. Synapse loss and physiological alterations occur as a prelude 

to neuronal loss and synapse loss correlates with early cognitive change. However 

given the inherent malleability of spines and synapses, this could provide a 

therapeutic opportunity for slowing the progression of not only ageing but also some 

neurodegenerative diseases, such as those described above.  

 

Current and potential therapies in neurodegenerative disease 

During neurodegenerative disease, the processes regulating synaptic signalling and 

adaptation are hindered and as a result, physiological plasticity is lost. However, by 

pharmacologically altering synaptic function to regain the delicate balance of synaptic 

physiology, we could potentially prevent synaptic loss and even induce synaptic 

growth. This is critically important given that synapse loss often occurs in the early 

prodromal phases before overt and irreversible neuron death has occurred. This would 

considerably widen the therapeutic window for such disorders, providing aid to 

millions of patients around the world.  

 

Most of the treatments currently licenced for neurodegenerative diseases act by 

boosting diminishing synaptic function or blocking excessive synaptic activity in 

overactive circuits. For example, acetylcholinesterase inhibitors are used to prevent 

the breakdown of the neurotransmitter acetylcholine in the brain and thus boost 

cholinergic signalling. These treatments are based on the early Cholinergic 

Hypothesis of Alzheimer’s pathogenesis from the observations in the 1970s that 

cholinergic neurons are lost early in the disease process [197]. While these treatments 

ameliorate symptoms to some extent in some stages of the disease, they do not slow 

progression because the loss of cholinergic neurons is not the primary cause of the 

disease.  One example of a cholinesterase inhibitor is Donepezil which is used in AD 

to enhance the signalling capacity of the degenerating cholinergic cells of the basal 

forebrain, having a small positive effect on cognition and daily living in patients with 



mild-to-moderate AD [198]. Rivastigmine (cholinesterase inhibitor) is the favoured 

treatment for DLB and has produced significant improvement in patients’ 

hallucinations, cognition and behavioural changes in DLB patients over a 96-week 

treatment period [199], but again this symptomatic relief does not alter disease 

progression. In PD, the treatments are more effective because loss of a single 

neurotransmitter, dopamine, does appear to drive the disease process. Levodopa is 

currently the most effective treatment for the motor symptoms of PD and is used in 

combination with carbidopa, which inhibits the peripheral breakdown of levodopa 

allowing more drug to enter the brain [200]. Levodopa counteracts the loss of 

dopamine producing neurons in the substantia nigra by replacing dopamine in the 

brain. Another common therapeutic approach is to block excessive excitatory 

signalling. Memantine is a non-competitive NMDA receptor antagonist that appears 

to have specificity for open, extrasynaptic channels thus preventing glutamatergic 

excitotoxicity but leaving normal synaptic function unhindered, however the exact 

mechanism of action is still debated [201, 202].  Memantine can enhance cognition in 

patients with moderate-to-severe dementia [203]. Riluzole is used as a 

neuroprotective drug in ALS. It has many effects on neuronal physiology and 

certainly inhibits neurotransmitter release and glutamate receptors, leading to the 

hypothesis that it’s effects in ALS are to dampen excitotoxicity [204]. Interestingly, 

Riluzole is currently in Phase II trials as a combination therapy with two other drugs 

for treating MS [205-207]. Tetrabenazine has an unknown mode of action, but is 

believed to deplete levels of monoamines in the presynapse, by inhibiting vesicular 

monoamine transporter 2 (VMAT2) and is effective at controlling chorea in HD 

[208].  

 

The number of licensed drugs for these disorders may seem encouraging, however 

none of these can be cured and most of the drugs have very limited effect if any on 

slowing disease progression. In fact, despite Riluzole being the only available 

medication with any proven effect in ALS, it can only prolong life by around two to 

three months [209], thus new therapeutics and novel approaches are desperately 

needed. One approach being pursued in a number of diseases is gene therapy. Gene 

therapy trials have already been run for PD, however despite positive safety results 

the trials have yet to yield clinical efficacy [210]. Encouraging success in the 

treatment of the motor neuron disease, spinal muscular atrophy (SMA) has inspired 

hope in the field of ALS, however given the genetic heterogeneity of the disease, it 

will likely not prove a viable therapy available for all patients [211]. Gene therapy 

approaches are also being considered for HD [212], however the fine balance of 

huntingtin levels will be crucial as conditional removal of the gene in adult mice led 

to neurodegeneration [213]. While gene therapy represents an exciting potential 

approach for some neurological disorders, vector properties, cellular targeting and 

precise control over transgene expression remain considerable hurdles to be cleared 

before widespread use [214]. Another approach that has reached clinical trial stage for 

AD, PD, DLB and HD is the specific targeting of the pathological proteins (amyloid-

 tau, α-synuclein and huntingtin) associated with the disease and aiding clearance 

from the brain. These include increasing protein clearance by enhancing proteasomal 

function, dampening post-translational modifications associated with pathological 

forms of protein and preventing protein aggregation [121, 215]. However, this 

approach should be treated with extreme caution and lessons must be learned from 

AD in which trials aimed at clearing toxic amyloid from the brain have so far all 



failed to reach their primary clinical endpoints [216], highlighting the difficulty of 

translational medicine in the field of neurodegenerative diseases. 

 

It is clear that new medications are required for neurodegenerative disease, potentially 

to prevent or reverse synapse loss.  One potentially interesting novel approach is the 

targeting of neuronal extracellular matrix components. The formation of perineuronal 

nets (PNNs) is thought to be a critical stage of neurodevelopment and results in the 

formation of neuroprotective barriers around cells, and helps stabilise mature synaptic 

contacts [217]. Interestingly, in AD it appears that PNNs are lost in plaque cores and 

cells that retain these nets are devoid of tau pathology, despite being surrounded by 

severely affected cells [218]. Furthermore, cultured neurons with an intact PNN were 

protected against treatment with exogenous Aβ1-42, whereas cells without a PNN, 

degenerated [219]. Many of the extracellular matrix molecules are found at synapses, 

although their exact role in synaptic physiology and whether they are 

synaptoprotective has yet to be elucidated [217]. However, this interesting therapeutic 

avenue is not without it’s paradoxes. Recent data suggests that digesting PNNs with 

chondroitinase actually reverses memory deficits in mouse tauopathies by specifically 

aiding synaptic plasticity, without altering pathological load [220]. Therefore more 

research is required into the role(s) of the extracellular matrix in disease pathogenesis, 

however it is interesting to consider the possibility of altering the PNN defences 

around synapses to inhibit or even reverse synapse loss in neurodegenerative disease. 

 

Conclusion 

While the neurodegenerative diseases mentioned above appear distinct in their 

causative factors and end-point pathologies, examining their early-stage pathogenesis 

reveals a coalescent point at the synapse (see Table 1). Our understanding of synaptic 

structure has expanded immeasurably since the beautiful observations and drawings 

of dendritic spines by Ramon Cajal in the 19
th

 century. Modern technology now 

allows us to probe neuronal and network function with a flash of light [221] and to 

visualise numerous proteins within a 3-dimension nanometre scale, at individually 

identified synapses  [222]. While these are amazing advances for academic research, 

most are only applicable to transgenic model systems and our ability to perform such 

experiments in living patients is a long way off. If such techniques were available to 

assess synaptic function in living patients, neurodegenerative diseases could be 

diagnosed at prodromal stages. 

 

Currently, most neurodegenerative diseases have their own distinct therapeutic 

programmes for tackling the disease, with varying levels of successes. Most drugs 

treat the symptoms of the disease, but a better approach may be to combine efforts in 

an attempt to identify common factors and focus on preventing or delaying disease 

pathogenesis. As described above, some medications are useful for more than one 

disease, which suggests common features must play a part in disease pathogenesis. 

With greater collaboration between researchers working on different diseases, both in 

and outside the clinic, our hopes of finding novel synaptoprotective therapies can be 

achieved. 

 

 

Table 1: Summary of common disease-related synaptic pathologies 

Disease Synapse loss 
Synaptic 

accumulation 

Disrupted 

synaptic 

Disrupted 

mitochondria 

Alterations 

in synaptic 



of disease-

related 

protein 

plasticity machinery 

AD 

Early synapse 

loss even before 

amyloid plaque 

formation and 

loss correlates 

with cognitive 

decline 

(18, 20, 21, 23, 

41) 

Amyloid-β and 

pTau 

(21, 24, 44-47) 

Disrupted 

LTP and 

enhanced 

LTD 

(26-30, 33, 

48, 49) 

Amyloid-β 

induces 

mitochondrial 

dysfunction and 

pTau disrupts 

mitochondrial 

trafficking 

(41, 42, 47, 50, 

51) 

Disrupted 

trafficking of 

synaptic 

receptors 

(33, 37, 38, 40, 

48, 49) 

PD 

Early loss of 

synapses in the 

striatum 

(7, 70-72) 

α-synuclein 

(73-75) 

Disrupted 

LTP 

(80, 81) 

PD genetic risk 

factors are 

associated with 

mitochondrial 

dysfunction 

(85-89) 

Presynaptic 

disruption of 

numerous 

neurotransmitter 

systems 

(76-79) 

DLB 

Loss of 

hippocampal 

and cortical 

synapses  

(74, 75) 

α-synuclein 

(74, 75) 

Disrupted 

LTP 

(80, 81) 

Mitochondria 

accumulate and 

breakdown 

around Lewy 

bodies 

(86, 87, 90) 

α-synuclein-

induced 

internalisation 

of synaptic 

receptors 

(80-82) 

MND 

Early synapse 

loss in the 

motor and 

sensorimotor 

cortices and 

onto lower 

motor neurons 

of the spinal 

cord 

(92-96) 

Unknown 

Increased 

excitability 

and 

enhanced 

LTP 

(118-120) 

SOD1 is a 

mitochondrial 

protein, when 

mutated it 

accumulates in 

mitochondria 

and disrupts 

their function 

(91, 99, 115-

117) 

Decreased 

glutamate 

clearance in 

motor cortex 

and spinal cord 

(109-113) 

HD 

Presymptomatic 

loss of synapses 

and spines 

(123-127) 

Huntingtin 

(133-137) 

Disrupted 

LTP 

(138-140) 

Mitochondrial 

calcium handling 

defects occur 

early in disease 

pathogenesis 

(141-144) 

Disrupted 

trafficking of 

synaptic 

receptors 

(135, 136) 

MS 

MS cortex and 

demyelinated 

hippocampi 

contain less 

synapses 

(156, 157, 160) 

Unknown 

Disrupted 

LTD and 

enhanced 

LTP 

(147, 148, 

153-155) 

Mitochondrial 

dysfunction 

occur early in 

mouse models of 

MS and defects 

are commonly 

found in patients 

(167-170) 

Altered 

glutamate 

release and 

uptake  

(147-152, 156, 

161-164) 

Ageing 

Age-dependent 

synapse loss 

correlates with 

cognitive 

decline 

(172, 179-187) 

Unknown 

Disrupted 

LTP and 

enhanced 

LTD 

(192-195) 

Mitochondrial 

dysfunction 

increases with 

age 

(180, 189-191) 

Age-related 

decline in 

numerous 

neurotransmitter 

systems  

(176-178) 
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Figure Legends 

Figure 1: Synaptic structure  

A. Neurons within a network frequently communicate by passing excitatory messages 

from one cell (pink) to another (blue) at small compartments known as synapses. 

Excitatory synapses often occur between a presynaptic axon terminal and a 

postsynaptic dendritic spine (lower panel) and this is known as an axospinous 

synapse. B. Electron micrograph from the mouse nucleus accumbens showing an 

axospinous synapse. The presynaptic terminal (pink) contains the machinery required 

to release small packets of neurotransmitter inside synaptic vesicles (s.v.) which when 

released, cross the synaptic cleft and act on the next cell (blue). Synapses require a lot 

of energy and two small mitochondria (m) can be seen inside the presynaptic 

terminal. The postsynaptic cell contains a clearly identifiable spine, protruding from 

the dendritic shaft. The spine head receives the synaptic message from the presynaptic 

cell at an electron dense accumulation of proteins known as the PSD (within the red 

arrowheads). Note the dendritic mitochondria (m) in close proximity to the spine. 

Scale bar = 100nm. C. Diagram highlighting a select few of the presynaptic and 

postsynaptic components of the synapse. Presynaptically, the microtubule-binding 

protein Tau can be found bound to microtubules and Ca
2+

-permeable ion channels are 

located on the terminal’s plasma membrane. Synaptic vesicles are presynaptic and 

contain α-synuclein in the membrane and neurotransmitters within their lumen. 

Neurexins protrude into the synaptic cleft, looking for their postsynaptic neuroligin 

partners and help hold the synapse in place. Postsynaptically, ionotropic 

glutamatergic receptors such as NMDA and AMPA receptors are found directly 

opposing the presynapse. These are held in place by scaffolding proteins such as 

PSD95 and SAP102, which form an integral part of the PSD. Other important 

scaffolding molecules such as Homer, GKAP and Shank combine to hold 

metabotropic glutamate receptors such as mGluR5 in place, in perisynaptic regions. 

Spine architecture is maintained by important structural proteins such as F-actin, 

which are found in the spine neck and base of the spine head. It is believed that 

interactions between Shank and cortactin allow synaptic changes to influence spine 

dynamics, via alterations in F-actin. 
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