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Concise Review: Advances in Generating
Hepatocytes from Pluripotent Stem Cells
for Translational Medicine
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ABSTRACT

The liver is one of the major organs in the human body. Severe or prolonged exposure of the
liver to different factors may cause life-threatening disease, which necessitates donor organ
transplantation. While orthotopic liver transplantation can be used to effectively treat liver fail-
ure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alterna-
tive sources of liver support have been proposed and studied. This includes the use of
pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition
to cell-based therapies, in vitro engineered liver tissue provides powerful models for human
drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like
cells from pluripotent stem cells and their application in translational medicine. STEM CELLS

2016;00:000–000

SIGNIFICANCE STATEMENT

There has been tremendous progress in the development of efficient and defined hepatocyte
differentiation from pluripotent stem cells, yet instability of hepatocyte cell phenotype still
exists. We have shown that this is not specific to stem cell-derived hepatocytes, but also
observed in gold standard primary hepatocytes cultured in two or three dimensions [48].
Therefore, we need to stabilize cell phenotype, so that somatic cell technology can be depend-
ably scaled for application. Key to this will be the building of supportive liver niches in vitro.
This review focuses on the new advances in the generation of hepatocyte-like cells and their
application in translational medicine.

THE LIVER

The liver is a multifunctional and highly regener-
ative organ, playing an important role in human
physiology [1]. While resilient, the liver is sus-
ceptible to tissue damage and, therefore, degen-
erative diseases. Significant morbidity, mortality,
and economic burden are associated with
human liver disease. Therefore, the develop-
ment of new systems that improve the study
and treatment of liver disease are essential.

The structure of the liver is essential to its
multifunctional performance. In the context of
disease, liver structure becomes gradually more
distorted with the loss of the hepatocyte com-
partment and consequently organ function [2].
Hepatocytes are located in the parenchyma and
comprise approximately 70-80% of the liver
mass [3]. Their function is supported by the non-
parenchymal cells, forming a functional unit
termed the acinus [4]. Hepatocyte polarization

is essential for proper function. The basolateral
surface of hepatocytes is directly connected
with sinusoidal endothelial cells, which facilitate
mass transport between the parenchyma and
the blood stream. At the apical surface, tight
junction formation between hepatocytes is
required for canaliculus formation and bile acid
transport [5].

Although hepatocytes are extremely stable
in vivo, they rapidly lose their phenotype in vitro
[6]. This has significant consequences for scien-
tists and clinicians who wish to build models of
human liver biology “in a dish” or develop
pioneering treatments for human liver disease.

CELL-BASED MODELS

Although human hepatocytes are scarce and
inherently unstable in vitro, they have been
successfully deployed to model human biology
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and bridge patients until their liver recovers or a transplant
becomes available [7]. To bypass the issues of scarcity and
instability, several groups have immortalized human hepato-
cytes (Fig. 1). Unfortunately, the derivative cell lines exhibited
both poor function and karyotypic instability, limiting their
large-scale application (for a review see ref. 28).

Given the practical issues associated with primary material,
researchers have turned to cancer-derived cell lines to perform in
vitro studies. Hepatic cancer cell lines such as HepG2, Hep3B,
HepaRG, or Fa2N-4 have been extensively used in drug metabo-
lism studies. Although these cell lines have their uses, poor cell
phenotype and their resilience to toxicological insult, limit their
accuracy and extrapolation to human biology. To overcome
the issues associated with cancer or immortalized cell lines,
researchers have focused on improving hepatocyte cell expansion
and phenotype using synthetic polymers [29] and small mole-
cules [10, 24]. More recently, Levy et al. [30] have expanded pri-
mary human hepatocytes, for up to 40 population doublings, by
ectopic expression of Human Papilloma Virus (HPV) E6 and E7
oncoproteins. Although the cells produced in vitro will be useful
for in vitro modeling studies, their utility is limited, as they are
not derived from self-renewing populations and are not appropri-
ate for use in the clinic.

Human pluripotent stem cells (PSCs), human embryonic
(hESCs), and induced pluripotent (hiPSCs) stem cells, offer a
scalable alternative to primary and transformed cells [31].
hESCs are derived from the inner cell mass of blastocysts that
are unsuitable for human implantation. The cells display two
important attributes, self-renewal and pluripotency, promising
an unlimited supply of human somatic cells in vitro [32, 33].

Induced pluripotent stem cells (iPSCs) were initially gener-
ated by the introduction of four transcription factors (Oct 3/4,
Sox2, c-Myc, Klf4) using integrative retrovirus technology [11,
34]. This led to multiple genomic insertions and was a major
concern for the field. Since those seminal studies there have
been numerous attempts to generate insertion-free human
iPSCs, using Sendai virus [35], adenovirus [36], episomal vec-
tors [37], the piggyBac system [38, 39] or mRNAs [40]. Those
methods have proved successful, with Sendai virus reprogram-
ming system currently considered as the most efficient
reprogramming system [41, 42].

PSCs have created new opportunities to model human
biology and provide the prospect of personalized medicine. In
recent years, significant progress has been made in differentiat-
ing PSCs into HLCs (Fig. 1). The use of defined factors and
serum-free media has facilitated the development of efficient

Figure 1. Hepatocyte differentiation and expansion. Hepatocytes can be derived from human pluripotent stem cells (HLC) and via con-
version of human somatic cells (hiHeps). Hepatocytes can also be expanded from primary human hepatocytes (PHH) using cell transfor-
mation techniques and small molecules. Abbreviations: hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell;
PHH: primary human hepatocytes.
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procedures for HLC specification using either spontaneous or
directed differentiation. Spontaneous differentiation involves for-
mation of three-dimensional (3D) multicellular aggregates,
termed embryoid bodies. In the presence of particular growth
factors (e.g., Wnt, BMP, FGF, HGF, or OSM) these 3D structures
differentiate into HLCs [15–17]. Although this method is repro-
ducible, its spontaneous nature has several drawbacks, including
low efficiency and mixed cell type generation, which limit tech-
nology scale-up. In contrast, directed differentiation is performed
in two dimensions and has proved to be more efficient [18–23,
43–48]. Some of the achievements to date using HLCs include;
the accurate prediction of human drug metabolism [49–51], the
mechanistic analysis of drug-induced liver injury [52, 53], the use
of noncoding RNAs to modulate drug overdose [54], the study of
virus infection and replication [55–59] and the ability to model
inherited monogenic metabolic disorders of the liver [60, 61].

Such findings demonstrate the importance of PSC based
liver models in the development of platform technologies to
study human biology. This will likely lead to the identification
of new medicines or the re-purposing of existing medicines to
treat human disease.

In addition to PSCs, somatic cells have been transdifferenti-
ated to hepatocytes (iHeps). Like iPSCs, iHeps can be derived
from defined genetic background. Importantly, the production
of iHeps bypasses the need for pluripotency (Fig. 1). Initially,
Huang et al. [62] and Sekiya & Suzuki [63] generated induced
hepatocytes (iHeps) from mouse fibroblasts using viral transduc-
tion and expression of either GATA4, HNF1A, and FOXA3 and
inactivation of p19Arf or HNF4A in combination with FOXA1,
FOXA2, or FOXA3. Three years later Huang et al. [25] and Du
et al. [26] generated functional hiHeps from human somatic
cells using viral transduction and expression of either FOXA3,
HNF1A, and HNF4A or overexpression of hepatic nuclear factors
(HNF1A, HNF4A, HNF6) in combination with ATF5, PROX1, and
CEBPA. The same year, Zhu et al. [27] used a panel of small
molecules to initiate hepatocyte differentiation from incom-
pletely reprogrammed human fibroblasts. While the small mole-
cules studies were of interest, the incompletely reprogrammed
nature of the cells plus the cocktail of small molecules will com-
plicate technology transfer and scale-up. The issue of hiHep cell
scale-up has recently been addressed in an elegant study by Shi
et al. [64]. Excitingly, the scaled hiHep populations were
deployed in an artificial liver device and corrected abnormal
blood biochemistry following acute liver failure in pigs, offering
a significant therapeutic potential for the future.

IN VIVO TRANSPLANTATION OF LIVER PROGENITORS AND

HEPATOCYTE LIKE-CELLS

Currently, the only cure for advanced liver disease is donor organ
transplant. Although highly successful, the lack of donors has
forced scientists to look for the alternative sources of liver sup-
port. Hepatocyte transplantation has been used to successfully
treat compromised liver function. However, routine access to
good quality donor livers, as for organ transplant, remains a sig-
nificant limitation. Therefore, the development of a scalable and
renewable source of hepatocytes would be a game changing
addition.

Although several studies have demonstrated successful
transplantation of pluripotent-derived hepatic cells in rodents

[65, 66], the limited capacity of cell proliferation in vivo, poor
engraftment, and immune rejection rates are major challenges
to clinical application. To address this, Song et al. [67] have effi-
ciently transplanted hiPSC-derived cells in immunocompetent
mice by pre-engineering 3D cell coaggregates with stromal cells
followed by hydrogel encapsulation. Nagamoto et al. [68] took a
different approach, improving hepatocyte engraftment and ani-
mal survival by attaching the PSC-derived hepatocyte sheets
onto the surface of the liver during acute liver failure. In addi-
tion, noncoding RNAs have also been used to improve cell-
based therapies. In a study by M€obus et al. [69] miR-199a-5p
inhibition in hESC-derived HLCs enhanced cell engraftment in
the liver.

Transplantation of adult hepatic progenitors is another prom-
ising cell-based therapy. Recently, Lu et al. [70] transplanted
hepatic progenitor cells (HPCs) from wild-type mice to adult mice
livers where the hepatocyte compartment had been conditionally
deleted. Wild-type HPCs successfully engrafted and expanded in
vivo, restoring both hepatic and biliary compartments. In addi-
tion, Huch et al. [71] have demonstrated that murine Lgr51 liver
stem cells can be expanded as epithelial organoids using a Wnt
agonist and subsequently differentiated into functional hepato-
cytes and bile ducts in vivo. Two years later, the same group
reported the successful isolation, expansion, and differentiation
of human bile duct-derived progenitor cells [72].

CULTURE DEFINITION AND TECHNOLOGY SCALE-UP

Human PSC biology has revolutionary potential for modern
medicine. The majority of procedures, published to date rely on
undefined and/or xenobiotic containing culture systems. The
undefined components found in bovine serum, MatrigelTM, or
from feeder cell layers, among others, elicit unknown biological
effects and lead to phenotypic variability in vitro. This is a signifi-
cant limitation, which hampers the scale-up and application of
PSCs and their derivatives [73].

To overcome these issues, researchers and companies
have focused on developing defined, xeno-free, and serum-
free media formulations [74–81]. In a multicenter trial, Ako-
pian et al. [73] examined eight different serum-free media for-
mulations in five different laboratories and concluded that
StemPro and mTeSR1 were the only formulations, which sup-
ported stem cell self-renewal for at least 10 passages.

In addition to stem cell self-renewal and the maintenance
of pluripotency, defined culture is essential for cellular differ-
entiation, scale-up, and biomedical application. To improve
the definition of the differentiation procedures, serum-free
processes have been developed [45] and used in combination
with recombinant extracellular matrices [47]. To improve cul-
ture definition and further reduce differentiation costs, small
molecules have also been used to hepatic differentiation [19,
20, 24, 27]. While promising, those small molecule studies
relied on undefined culture components, demonstrating the
need for further research and development in this space.

IMPROVING THE CURRENT STATE OF THE ART AND

TECHNOLOGY SCALE-UP

Many studies have focused on improving hepatocyte physiology
and biology “in the dish.” Studies by Miki et al. [82] demonstrated
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that oxygenation as well as continuous supply of nutrients, using
hollow fiber technology, promoted mature hepatocyte gene
expression. Additional studies using defined media and synthetic
tissue culture substrata, have shown promise in cell specification
and the maintenance of hepatic phenotype from both research
and GMP hESC lines [46, 47]. These provide GMP ready options for
large-scale manufacture. In addition to culture definition, faithful
markers of cell specification are required to ensure proper cellular
differentiation and to control for quality. Currently, the most widely
used markers for tracking endoderm induction from PSCs are C-KIT,
CXCR4, and EPCAM [14, 83]. Although efficient, these markers are
not endoderm specific. Therefore, new lineage markers are
required to track endoderm and ultimately hepatic specification.

Recently, Holtzinger et al. [84] have identified two new
endodermal markers, HDE1 and HDE2. HDE1 marked the com-
ponent of the definitive endoderm population with high
hepatic potential, whereas HDE2 tracked developing hepatic
progenitors and hepatocytes.

Those markers are important additions to the field and allow
for the formation of purer DE population from stem cells, improv-
ing cell identity and phenotype in culture. Along similar lines, Kido
et al. [85] have shown that carboxypeptidase M is an efficient
marker to isolate and culture hepatic progenitors from PSCs. In
addition to cell tracking, the identification of gene signatures,
which predict stable cell phenotype are also important. Recently,
we demonstrated that the use of a defined polymer substrate, in
conjunction with serum-free hepatic differentiation, revealed a
unique gene signature (MMP13, CTNND2, and THBS2), which pre-
dicted stable hepatocyte performance from both research and
GMP hESC lines [46]. In the future, gene signatures may serve as
important criteria for large-scale manufacture and product release.

In addition to directing and monitoring cell differentiation,
it is important to provide a supportive niche, which transmits
key stimuli to support somatic cell phenotype. While two
dimensional hepatic differentiation systems are efficient and
functional, they are not equivalent to freshly isolated human
hepatocytes [47, 48]. To overcome these issues, and mimic 3D
tissue architecture, efforts have focused on developing new in
vitro platforms using natural and/or synthetic materials, fluid
flow and bioprinting [29, 86–89]. Excitingly, hiPSC-based sys-
tems have also been shown to generate functional and
implantable human liver tissue [90].

In the quest for large-scale automated tissue production, bio-
printing is an attractive approach. Recently, Faulkner-Jones et al.
[88] bioprinted hiPSC-derived hepatocytes in a 3D alginate
matrix. The printed cells survived this process and expressed the
hepatic markers hepatocyte nuclear factor 4 alpha, albumin, and
zona occludin 1. While these studies are encouraging, future

experimentation should extensively characterise the performance
of bioprinted tissue in vitro and in vivo.

Bioinformatics has also proved highly effective in studying cell
specification and phenotype. We have recently performed a
genome-wide study where PSC-derived hepatocytes were compared
to freshly isolated and cultured primary human hepatocytes (PHHs)
[48]. In these studies, we identified unfavorable gene regulatory
networks present in PSC-derived hepatocytes. In addition, the
expression of essential nuclear factors such as constitutive andro-
stane receptor, pregnane X receptor and the farnesoid X receptor
were much lower in stem cell-derived hepatocytes than in PHHs.
Therefore, to further differentiate PSC-derived hepatocytes to
mature populations, the modulation of factors responsible for
appropriate and inappropriate gene expression are required. Most
recently, we have made progress in this space removing MatrigelTM

extracellular matrix from our differentiation system and replacing
this with recombinant laminins. This has resulted in improved hepa-
tocyte maturity, organization, and phenotype [47]. We believe that
this offers the prospect that stem cell-derived hepatocytes can be
fabricated from GMP grade hESC lines, under defined conditions
and may be close to clinical application [47].

CONCLUSION

There has been tremendous progress in the development of
hepatocyte differentiation systems from PSCs. Yet, hepatocyte
immaturity and instability still persist. We have shown that this is
not specific to stem cell-derived hepatocytes, but also observed
in adult hepatocytes cultured in vitro [48].We believe that key to
solving this issue is the provision of a supportive cell niche, which
ensures faithful hepatic differentiation and long-term hepatocyte
performance in vitro and in vivo.
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