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Abstract: 
The combination of SIFT descriptors with other features usually improves image classification, like Edge-
SIFT, which extracts keypoints from an edge image obtained after applying the compass operator to a 
colour image. We evaluate for the first time, how the use of different radii in the compass operator affects 
the classification performance. We demonstrate that the value proposed in the literature, radius = 4.00, is 
not the optimum from an image classification point of view. We also put in evidence that in ideal 
conditions, choosing an appropriate radius for each image yields accuracy values even higher than 95%. 
Finally, we propose a new method to estimate the best radius for the compass operator in each dataset. 
Using a training subset selected on the basis of a minimum dispersion criterion of edges density, we 
construct a richer dictionary for each dataset in our Bag of Words pipeline. From that dictionary it is 
selected a radius for the whole dataset that yields higher accuracy than using the value proposed in the 
literature. Using this method, we obtained improvements in the accuracy up to 24.4% in Soccer, 6.77% in 
COIL-RWTH-2, 4.46% in Birds, 3.82% in ImageNet_Dogs, 2.75% in ImageNet_Birds, 2.02% in Flowers 
and 1.75% in Caltech101 datasets. 
 
Keywords: Image Classification, Bag of Words, dense SIFT, Edge-SIFT, Edge Compass Operator, Radius 
estimation, Support Vector Machine. 
 

1. Introduction 

Feature extraction is one of the most critical steps in image classification and, for this reason, the 

performance of different kinds of descriptors has been widely studied in the literature. One very well-

known example are SIFT descriptors [1], which have mainly been used to obtain intensity-based 

information related to the appearance of objects [2]. Other works describe objects and scenes using 

different characteristics based either on colour features [3], histograms [4], adding chromatic information 

to the Bag of Words descriptor [5], employing Colour Name features [6] or proposing adaptive colour 

mathematical-morphology-based descriptors [7] among others. There are also approaches that characterize 

objects of interest by means of their texture [8]. Among the last ones, Local Binary Patterns (LBP) [9] are 
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probably the most popular in the literature, either some of the original proposals from Ojala et al. [9] or 

any other of the several improvements that have been proposed more recently [10][11][12]. 

The information is relevant when the descriptors are extracted just from the region of interest, or 

foreground. The data extracted from the background do not provide relevant information to the image 

description, so extracting features from the whole image may result in suboptimal classifications [13]. 

There are several ways to deal with this drawback and select an appropriate region of interest to 

work with. One of them is visual saliency, which highlight the most relevant objects or regions by means 

of different methods. A complete revision on recent advances in Visual Saliency can be found in [13]. 

Other efficient methods for image segmentation are the active contour models [14], which extract the 

contour of the object of interest using energy minimization. The success of these methods is demonstrated 

in [14], [15] and [16]. 

Following a different perspective, Xie et al. [17] proposed the extraction of a new set of descriptors, 

called Edge-SIFT. This method extracts the dense SIFT descriptors from the edges of the image, which are 

obtained by means of the compass operator proposed by Ruzon et al. [18]. The information extracted from 

these edges complements the one provided by the dense SIFT descriptors extracted from the original 

image. Henceforth, these images will be called “edge images”.   

The information contained in the edge image depends on the radius parameter used to calculate it. 

Although compass operator has been widely used [19][20][21][22], the parameter to obtain the edge 

images always remains fixed. In the experiments carried out by Xie et al. the value of the compass 

operator radius is fixed as proposed in literature [17] for all images. The use of a fixed radius will not 

always guarantee that the edges of the objects of interest are contained in the resulting edge image but also 

might contain noise from the background. 

In this work we demonstrate how the radius of the compass operator affects the type of information 

extracted from the image. It influences the number of features extracted from both the background and 

foreground and, thus, the quality of the description and the classification results.  The objective will be to 

create edge images that mainly contain descriptors from the object of interest in order to obtain a more 

accurate object description and classification. Moreover, it is empirically demonstrated that if the best 

radius parameter to create an edge image is manually chosen for each image on a dataset, the accuracy 

obtained would outperform the results obtained when only one radius is used for all the dataset. 

As we have discussed, the radius selected for the compass operator influences the amount of 

information that the edge image provides. So we propose an algorithm that predicts what it will be the best 

parameter to use in the complete dataset. This estimation is carried out by means of a richer dictionary 
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built using a subset of images selected upon a minimum dispersion criterion. The edge-based descriptors 

computed using this radius yield better accuracy when they are combined with the dense SIFT descriptors. 

In the experiments carried out using several datasets it is demonstrated that the accuracy obtained when 

using the estimated radius is superior than the one obtained when using the fixed radius proposed in the 

literature [17]. 

The rest of the paper is organized as follows. In Section 2 the image classification pipeline is 

explained. Then, Section 3 describes the performance of using different radius parameters into the 

compass operator and makes an overview of the resulting classification with the best radius parameter 

manually chosen for each image. Section 4 describes the radius estimation method and its effectiveness in 

the datasets described in Section 2. Results on six publicly available datasets and two subsets from 

ImageNet are discussed in Section 5. Finally the conclusions and future perspectives are presented in 

Section 6.  

 

2. The image classification process 

In the next subsections, the image classification pipeline followed in this paper is briefly described. 

 

2.1 Feature extraction 
 

An image dataset can be represented as a set of pairs of images and their corresponding labels, as 

follows: 

   ! = {(!!,!!)} ,      (1) 

where !! represents the n-th image of the dataset, !! stands for its label, ! = !…! and m is the dataset 

size. 

In the first step we extract the dense SIFT descriptors following the same procedure as Xie et al. [17]. 

In this way, an image can be represented by the set !!: 

   !! = { !!,!! , !!,!! ,… !!,!! } ,    (2) 

where !! is the descriptor extracted at the coordinates of the keypoint !!  and s the number of descriptors 

computed from the image.  

In this work, dense SIFT features are extracted from each original image and Edge-SIFT 

descriptors are extracted from the edge image, i.e. the image containing object’s contours as a result of 

applying the compass operator to each original image in the dataset. We use the values of the parameters 
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proposed by Xie [17]. These values are sampling density (step) 7 and scale of the extracted descriptors 

(size of the window) 7, for the original images and sampling 7 and scale 12 for the edge images. To 

compute the dense SIFT descriptors, the VLFeat library [23][24] has been used. 

 

2.2 Visual dictionary and Bag of Words 
 

Once all features are extracted for each image, the dataset S can be represented as a set of descriptors 

D: 

! = {!!",!!",… ,!!"} ,     (3) 
where !!"  is the set of descriptors of an image !!..  The size of ! is 128 x s x m, being 128 the standard 

size for a SIFT descriptor, s the number of descriptors computed for each image and m is again the size of 

the dataset. 

 Subsequently, a visual dictionary is built by clustering !. Each cluster is called a visual word, or a 

codeword, which is a vector representative of similar patches within the image. The most usual clustering 

method to create the dictionary is K-means [25] and, thus, the visual words will be the centroids of the 

resulting clusters. Since we are going to use large dictionaries, the clustering process has been carried out 

by means of the approximate nearest neighbour algorithm proposed by Lloyd [26] because it is 

computationally more efficient. 

For the dataset represented in (3), the following visual dictionary is built: 

! = [!!,!!,… ,!!]  ,     (4) 
where V is the Visual Dictionary of size 128 x c, where c is the number of visual words. The number of 

words, 2048 in our experiments, is the number of centroids, c, that are selected with the K-means method 

[25] implemented in the VLFeat library [23]. No more than 2 million of descriptors were used, as in Xie 

did [17].  

Bag of Words feature vectors [27] are built upon this visual dictionary. To do that, each image is 

represented by a histogram that counts the number of times that each visual word is present in the 

dictionary. In our case, each image will be represented by the frequency of 2048 visual words. 

B= !!,!!,… ,!!  ,     (5) 
where B is the Bag of Words matrix of size m x c and Hn is the histogram for the image In.   

The recognition of the visual words and the encoding process has been carried out using Euclidean 

distance. 
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2.3 Classification 
 

The BoW feature vectors were used to create a model with a Support Vector Machine (SVM) 

[28][29] with a linear kernel and using LibLinear library [30]. Five different training and test sets have 

been randomly chosen for accuracy repeatability evaluation. Results are measured as the average of these 

five classification values. To understand better how the sets were chosen, some examples of these sets of 

images can be seen in Table 1 and Table 2. Information about the size of each training and test set used is 

presented in Section 2.4. 

 
  Images_class1 Images_class2 Images_class3 		
Train_set_1 16 17 18 19 … 32 33 34 35 56 57 58 59 … 77 78 79 80 96 97 98 … 		
Train_set_2 3 17 20 9 … 28 11 32 22 61 41 50 52 … 53 80 48 51 91 94 110 … 		

…         …                 …               … 		
Train_set_5 34 23 9 17 … 26 7 35 28 72 71 69 59 … 56 44 58 48 85 113 111 … 		

Table 1. Sample of the training sets. Selected images for 3 out of 10 training sets on Soccer Dataset. 

 

  Images_class1 Images_class2 Images_class3 		
Test_set_1 1 2 3 4 … 12 13 14 15 41 42 43 44 … 52 53 54 55 81 82 83 … 		
Test_set_2 25 23 2 7 … 1 8 37 5 57 43 63 74 … 42 55 78 45 86 115 84 … 		

…         …                 …               … 		
Test_set_5 25 15 4 29 … 22 3 39 40 51 45 54 73 … 67 70 65 47 89 97 120 … 		

Table 2. Sample of the test sets. Selected images for 3 out of the 10 tests used on Soccer Dataset. 

 

2.4 Datasets  
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Fig. 1 presents samples from the six datasets used to validate our method. Soccer contains 280 

images that show 7 football teams (40 images per team) [4]. Birds dataset is formed by 600 images of 6 

different species of birds (100 images per specie) [33]. 1360 images grouped in 17 classes (80 images per 

class) make up Flowers dataset [34]. COIL-RWTH-1 contains 5760 images coming from 20 different 

objects placed on a homogeneous black background [35]. This dataset is based on COIL-20 [36]. COIL-

RWTH-2 consists of 5760 images of 20 objects with heterogeneous real-world background [35]. The 20 

objects are the same as the ones on COIL-RTWH-1. Unlike the three first datasets, in both COIL-RWTH-

1 and COIL-RWTH-2 the images are not uniformly distributed on each class. Finally, Caltech101 [37] is 

composed by 9136 images divided in 101 categories with 40 to 800 images per class. Most of the classes 

have around 50 images. 

 

 

 

 
Fig. 1.  Col (1): Soccer Dataset samples. (up) Barcelona players with the referee, (middle) Real Madrid player, white, with two 
rivals of different team and (down) Liverpool player standalone. Col (2): Birds Dataset samples: (up) Egret, (middle) Wood 
duck and (down) Snowy owl. Col (3): Flowers Dataset samples: (up) Daffodil, (middle) Crocus and (down) Daisy. Col (4): 
COIL-RWTH_1 Dataset samples: (up) duck toy, (middle) car toy and (down) cat toy. Col (5): COIL-RWTH_2 Dataset 
samples: (up) car toy, (middle) medicine box and (down) piggy bank. Col (6): Caltech101 Dataset samples: (up) Spanish guitar, 
(middle) butterfly and (down) Garfield. 
 

In addition to the former six datasets we also validated our proposal using two subsets of ImageNet 

[38], the image database based on WordNet hierarchy nouns [39]. In ImageNet, each node of the 

mentioned hierarchy is depicted by a non-fixed number of images. WordNet [39] is an English lexical 

database where verbs, adverbs, nouns and adjectives are grouped into “synsets”. Each one is a set of 
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cognitive synonyms with a distinct concept and it is related with other synsets by means of lexical and 

conceptual-semantic relations.  

At the moment of the elaboration of this paper, the ImageNet database counts with 14,197,122 

images with 21,841 synsets indexed, and it tries to provide an average of 1,000 images to illustrate each 

synset.  

Based on the previous description and considering the already used datasets, we have selected two 

subsets of ImageNet that fulfil the following restrictions: 

- Synsets are selected for fine-grained classification, i.e. classification among categories that are 

both visually and semantically very similar, like Birds [33] and Flowers [34], since it is one of 

the errors that a human is more susceptible to make than a computer [38]. 

- The selected synsets should contain images with only one object per image. 

- At least 6 different objects, or categories, should be selected, as it is the minimum different 

number of classes in Birds dataset. 

Fig. 2 presents samples from the two selected subsets of ImageNet. “ImageNet_Birds” contains 1400 

images that show 7 species of birds (200 images per class). “ImageNet_Dogs” is composed by 1600 

images of 8 different dogs species (200 images per class). 

 
 

Fig. 2.  Row (1): ImageNet Sub-dataset “ImageNet_Birds”. From left to right, the following synsets have been used: Chaja, 
Eagle, Frigate Bird, Peacock, Pelican, Sage Grouse and Whydah. Row (2): ImageNet Sub-dataset “ImageNet_Dogs”. From 
left to right: Irish Setter, Irish Washer, Miniature Schnauzer, Sealyham Terrier,Vizsla, Welsh Springer, Afghan Hound and 
Yorkshire Terrier. 
 

  Images Classes 
Images 

per 
class 

Training set 
Images 

Training set 
Images 

per class 

Test set 
Images 

Test set Images 
per class 

Soccer 280 7 40 62.5% - 175 25 37.5% - 105 15 
Birds 600 6 100 75% - 450 75 25% - 150 25 

Flowers 1360 17 80 75% - 1020 60 25% - 340 20 
COIL-RTWH-1 5760 20 N/A 75% - 4320 N/A 25% - 1440 N/A 
COIL-RTWH-2 5760 20 N/A 75% - 4320 N/A 25% - 1440 N/A 
ImageNet_Birds 1400 7 200 75% - 1050 150 25% - 350 50 
ImageNet_Dogs 1600 8 200 75% - 1200 150 25% - 400 50 
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Caltech101 9146 101 40-800 75% - 6860 N/A 25% - 2286 N/A 
 

Table 3. Summary of each dataset. N/A means that there is no uniform number of images per class. In Soccer we have used 62.5% 
instead 75% as the Soccer references [4][6] indicates, 25 images for training and 15 for test on each class = 62.5%. To avoid 
confusion with the Birds dataset [33] we will refer to the ImageNet subset of Birds as “ImageNet_Birds” from now on. 

 

3. Impact of the radius selection in the compass operator for image classification 

3.1 Obtaining edge images using the compass operator 
 

The compass operator [18] compares colour distributions and detects edges in RGB images. For 

each pixel, it compares the colour distributions on either side of an oriented circle for a number of 

orientations using the earth-movers distance, a robust histogram-matching method. The resulting edge 

image is computed using equation (6). 

!! = !! !!, !!  ,     (6) 

where !! is the edge image obtained after applying the compass operator !! with a radius !! to the original 

image !!.  

In [18] ! = !" is defined, where σ is the standard deviation of the Gaussian used to weight the 

pixels in the compass operator, and r is the parameter radius. 

 

3.2 Radius evaluation. 
 

We evaluate how the number and size of the edges extracted using the compass operator affect the 

information contained on Edge-SIFT descriptors. Our objective is to assess the impact of the chosen radius 

in the image classification process. To do that, 14 different values for the radius parameter r for the 

compass operator have been evaluated: 0.75, 1.50, 2.25, 3.00, 4.00, 4.50, 5.25, 6.00, 6.75, 7.50, 8.25, 9.00, 

15.00 and 30.00. These values have been selected following a homogeneous sampling process. As it is 

shown in Fig. 3, for the first radius chosen, ! = 0.75, object's edges are barely visible and with the last 

value, ! = 30, edges are blurred and ill-defined. The value used by Xie et al. [17] when they proposed the 

use of Edge-SIFT for image classification is ! = 4, the same as in the literature. 
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Fig. 3.  In the first row an image of an egret from Birds dataset. In the second row, edge images obtained after applying 
compass operator with different radius values to image on top. 
 

 

Fig. 4 shows the different BoWs that were computed using visual words from three different 

situations. In the first row (i) the dense SIFT descriptors are computed only from the original images. In 

the dotted rectangle (ii), Edge-SIFT descriptors are obtained from the edge images with the compass 

operator using different values of radius rj. And in the last three rows of the diagram (iii), the BoW 

classification was carried out after concatenating dense SIFT (i) and Edge-SIFT descriptors (ii) as an early 

fusion stage to provide a more discriminative visual vocabulary. In this way, it is possible to compare the 

influence of the different values of r, and how they affect the classification. There are other cutting-edge 

fusion techniques [40][41], but we use concatenation to fairly compare the approach of Xie et al. [17].  
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Fig. 4.  Diagram of the image classification process when using (i) dense SIFT descriptors, (ii) Edge-SIFT descriptors with 
different radius and (iii) SIFT+Edge-SIFT descriptor with the previous radius used. 
 

Edge-SIFT descriptors, (ii) in  

Fig. 4, are used to evaluate the impact of the radius in classification performance. It represents how 

the standard BoW process is carried out for all the edge images by using the 14 different radii obtaining a 

classification result for each of them. 

First for each of the 14 radii analysed within the compass operator, the edge images (6) of the dataset 

are calculated and then, dense SIFT descriptors are extracted from them. Hence, an edge image !! can be 

expressed as: 

!!" = !!,!! !, !!,!! !,… !!,!! !  ,    (7) 
where !! is the i-th descriptor extracted from an edge image !! at the coordinates of the keypoint !! and k 

stands for the number of descriptors extracted.  
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Once the descriptors of all the images are extracted for a given radius, the dataset can be expressed 

as a set of descriptors !!":                                                         

!!" = !!",!!",… ,!!"  ,     (8) 
where !!" are the descriptors of the edge image IEm computed with the radius !j. 

Let c be the number of visual words (4) that represent the dataset !!". The visual dictionary (4) for 

the dataset created using the descriptors extracted from the edge images with the radius !! is represented 

as: 

!!" = !!,!!,… ,!!" ,     (9) 
where !! represents the i-th visual word for the !! radius. The size of this dictionary is 128 x c.  

Finally, the BoW, which will be used in the classification, is computed: 

!!" = !!!,!!!,… ,!!!  ,     (10) 
 
where !!" is the Bag of Words matrix coded for the !! value whose size is m x c and !!" is the histogram 

of visual words that represents each image !!". 
 

The next table shows accuracy obtained using dense-SIFT descriptors, calculated as explained in the 

diagram of  

Fig. 4(i). 

 

  Soccer Birds Flowers COIL- 
RWTH-1 

COIL- 
RWTH-2 

ImageNet 
Birds 

ImageNet 
Dogs 

Caltech101 

Accuracy 48.00% 67.47% 62.24% 96.48% 50.60% 68.91% 43.70% 58,54% 

 

Table 4. Accuracy obtained in the seven datasets using only dense SIFT descriptors. 

 
Fig. 5 shows the results of the classification using the BoW built upon the Edge-SIFT and upon the 

fusion of dense and edge-SIFT descriptors, which allow us to visualise the radius influence for each 

dataset. It can also be observed how the fusion of dense SIFT plus Edge-SIFT improves the accuracy, as 

Xie indicated on his work, but here we want to remark that we are evaluating different sigma values. 
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Fig. 5. (i): Image Classification results using (left) Edge-SIFT and (right) dense SIFT+Edge-SIFT descriptors for different 
radius values.  
 

Fig. 5 (i) shows how much the classification accuracy depends on the radius value used in the 

compass operator. In Fig. 5 (ii), this fact is validated also when using a fusion of dense SIFT and Edge-

SIFT. Although Xie et al. [17] set ! = ! in their experiments, it is clear that this value does not guarantee 

the best accuracy due to the different information that the edges present for different radii. It is especially 

remarkable how the accuracy in the COIL-RWTH-1 dataset drops as the radius increases when describing 

only with Edge-SIFT but it drops much less when fusion is used.  

 
 

Fig. 6.  Some samples from COIL-RWTH-1 (1st row). Since there is no background all the features extracted belongs to the 
object. Edge Images after applying r=0.75 (2nd row) and r=30 (3rd row) show the influence in the details depending on radius. 
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Fig. 6 depicts an example of how the higher the value of the radius of the compass operator, the 

more blurred the edges will be. As a result, more noise will be added to the edge descriptors extracted and, 

thus, the classification accuracy will be lower. On the other hand, when values of r are small, the 

information contained in the edges is clearer and, therefore, the information extracted by the descriptors is 

more suitable for the classification process. The accuracy for the COIL-RWTH-1 dataset in Fig. 5 clearly 

decreases from ! = !.!" to ! = !.!!.  

This tendency is similar with Soccer and COIL-RWTH-2 datasets due the same reason. In these 

cases, however, the images have background, so the accuracy is lower and the evolution is not as clear as 

in COIL-RWTH-1 dataset. In contrast, regarding Flowers and Birds datasets, the worst results are 

achieved when r is lower than 3.00.  

Different situations can lead to a poor edge definition. The background in the image can generate 

confusing information in the edge image like it is shown in the first column of Fig. 7. In some cases, the 

edge images do not contain enough information to describe the object as depicted in the second column of 

Fig. 7. The values that are higher than 15.00 will cause blurred objects, as it is shown in the 3rd to 6th 

columns of Fig. 7.    

  
 

 
 
Fig. 7.  Birds and Flowers Original (1st row) and edge images (2nd row). 1st column shows for a Birds image the Edge Image 
after applying the compass operator with r=0.75. It can be observed that there are more edges from the background than from 
the bird. 2nd column shows for a Flower dataset image the resulting image after apply r=0.75 too. There are not enough edges 
to describe the object. Columns 3 to 6 show samples from both datasets with r=15 applied. The edge objects are blurred. 
 

Note that in Fig. 5 radii 15 and 30 are not analysed. They were discarded because in the first 5 

datasets studied it was possible to observe that these radii do not contain discriminative information, as 

shown in Fig. 3, Fig. 6 and Fig. 7, since they are very time consuming. 
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3.3 Ideal radius selection and theoretical classification 
 

In the previous subsection, we have pointed out how much the classification accuracy is affected by 

the value chosen for the radius parameter. Using the results shown in Fig. 5 (i), in this section we present 

the idea that the image classification accuracy is improved when the appropriate radius value is selected 

for each image of the dataset. 

Table 5 depicts a small sample of the SVM classification results for the experiment 1 in Soccer 

dataset with the 14 different r values. The last row of Table 5 presents the global accuracy for each radius 

calculated as the number of hits for the values in its column divided by the number of images. 

  0.75 1.50 2.25 3.00 4.00 4.50 5.25 6.00 6.75 7.50 8.25 9.00 
Image_1 1 0 1 0 0 0 0 0 1 0 0 0 
Image_2 0 0 0 0 0 0 0 0 0 1 0 0 
Image_3 0 0 0 0 0 0 0 0 0 0 0 0 
Image_4 1 1 1 1 1 1 1 1 1 1 1 1 
Image_5 0 0 0 0 0 0 0 1 1 1 1 1 

… … … … … … … … … … … … … 
Image_105 0 1 1 0 1 0 0 0 0 0 0 1 
Accuracy 33.9 32.29 36 33.62 32.86 35.24 29.62 29.71 29.24 30.95 31.14 31.33 

Table 5. Soccer Test set 1 classification results per image for each radius parameter analysed. For each one of the 105 test 
images, values 1 or 0 stands for a right or wrong classification of the image when the specified radius was used. 

 

Let us now imagine that it was possible to choose, for each image, one of the radii that produced a 

hit, if any, e.g., for Image_1, radius 0.75, 2.25 or 6.75. The question that arises is: What would be the hit 

rate obtained for the whole dataset? 

We have called this approach the “ideal radius selection”. We have calculated this accuracy for the 

five different experiments defined in Section 2.3. The results obtained, presented as the average accuracy 

for those five runs, are shown in Table 6. 

DS / Exp 1 2 3 4 5 MEAN 
Soccer 76,2 82,9 83,8 85,7 84,8 82,68% 

Flowers 87,1 95,9 94,1 92,6 91,2 92,18% 
Birds 95,3 98 96,7 98 97,3 97,06% 

COIL-RTWH-2 88,4 88,4 88,9 89,6 89,1 88,90% 
ImageNet_Birds 86,86 83,71 87,43 84,00 85,43 85,49% 
ImageNet_Dogs 66,50 68,50 68,25 69,75 65,50 67,70% 

Caltech101 92,92 92,26 93,17 92,74 93,39 92,90% 
 

Table 6. Estimated accuracy using Edge-SIFT with ”ideal radius selection”. Each row indicates the best results obtained per 
experiment on each dataset. COIL-RWTH-1 is not used since it does not contain background information that penalizes the 
accuracy. 
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(a) Soccer  (b) Birds 

 

 

 
(c) Flowers  (d) COIL-RWTH-2 

 

 

 
(e) ImageNet_Birds  (f) ImageNet_Dogs 

 
Fig. 8.  Theoretical maximum improvement in the accuracy for (a) Soccer, (b) Birds, (c) Flowers, (d) COIL-RWTH-2, (e) 
ImageNet_Birds (f) ImageNet_Dogs. For Edge-SIFT classification, the use of the same “r” parameter for all the dataset images 
(rhomboids in blue) versus the best “r” parameter selection for each image of the dataset (squares in red).  
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Fig. 9.  Theoretical maximum improvement in the accuracy for Caltech101 Dataset. 
 

Fig. 8 and Fig. 9 show the maximum theoretical improvement that would be possible to achieve 

when applying, for each image, one of the radii that retain enough information to classify the mentioned 

image correctly.  

It is important to highlight that the results shown in Fig. 8 and Fig. 9 might not be strictly 

representative of a real situation. Table 6 was constructed based on a dictionary for BoWs created using 

the same radius for all the images. When r is selected for each image, a different set of descriptors is 

extracted and a different BoW process is carried out. 

But, at the same time, it is also important to observe that, paying attention to the comparison 

between COIL-RWTH-1 and COIL-RWTH-2 performances, these results could be close to a plausible 

scenario if we were able to filter out all the descriptors that come from the background of the image. We 

would like to remind that all the background in COIL-RWTH-1 has been set to black and it contains 

exactly the same 20 objects than COIL-RWTH-2. Accuracy for COIL-RWTH-1 is 88.90% when 

! = !.!", where all the information from the image was stored in the main object edges. For COIL-

RWTH-2, the average accuracy is 88.90%, almost the same value obtained in COIL-RWTH-1 

classification from Fig. 5  (i): 89.25% with ! = !.!". Since the results in both datasets are very close, 

both share the same 20 objects and one of them has no background, it makes us think that this ideal 

selection of the radius makes certain sense. 

Sadly, in the next section, we do not present a method to choose the best radius for each image. 

Instead, we introduce a method to estimate one of the best possible radii for the whole dataset, what it is 

also an improvement in relation with the current state-of-the-art situation. 
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4. Radius method estimation. 

Based on the observations pointed out in the previous section, we propose a method to estimate, for 

each dataset, a radius that guarantees that the classification accuracy obtained using the fusion of Edge-

SIFT and dense SIFT is better than the one achieved with the radius value proposed in the literature. 

Firstly, the proposed method selects, using a minimum dispersion criterion, a small subset taken 

from a training set (Table 1). Later, with this subset, the complete BoW pipeline for the 14 radii is 

followed and the accuracy for each of them is computed. We also present two strategies to obtain the best 

radius. One strategy uses one-random sub-sampling validation that is the fastest but exhibits Monte Carlo 

variation. The other strategy uses 3-random sub-sampling validation that is the most robust but slower than 

the previous one. 

 

4.1 Minimum dispersion criterion of edges density for subset selection 
 

Fig. 10 presents some examples of images from the Birds dataset after applying a compass operator 

with the smallest radius value ! = !.!". We have chosen this radius because it is the one that yields the 

smallest number of contours in the edge image. In this way, when the background is uniform, as it is 

shown in 1st to 3rd columns of Fig. 10, most of the borders will come from the foreground objects. When 

several objects with high contrast are present in the background, as for example in the 4th to 6th columns of 

Fig. 10, a lot of short contours appear distributed along a great portion of the image. Our intention is to 

select those edge images with a high number of homogeneous (i.e., black or nearly black) areas, and a 

small number of areas with few borders. At the same time, we want to get rid of those images with a high 

number of edges distributed along most of the image. To do that, we study how the borders are scattered 

along an edge image and we keep the images that have the smallest dispersion using the following method. 

 
Fig. 10.  Birds dataset. Images to be accepted (Columns 1 to 3) and to be discarded (Columns 4 to 6) by the proposed method. 
The 2nd row depicts the edge images obtained after applying a compass operator with r1=0.75 to the original images (1st row). 
The reason to accept or discard is based on the information provided by the edge images. Images selected (1st, 2nd and 3rd 
column) have a more homogeneous background what yields less scatter and short contours. 
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First of all, given a dataset divided into training and test set, all the edge images of the training set 

are obtained using only the above-mentioned radius !! = !.!". Later, every edge image IE, is divided in a 

squared grid of np x np patches !!" where s and t denotes the row and column, respectively. This process 

results in the following matrix: 

!!  =  
!!,! ⋯ !!,!"
⋮ ⋱ ⋮

!!",! ⋯ !!",!"
            (11) 

Afterwards, a measure of the density of the edges in each path is obtained based on the number of 

contours that emerge after applying the compass operator. The average number of local peaks, !"!", of 

each patch  !!" is calculated as the mean of the number of local maxima present in every row of that patch. 

Consequently, for each edge image !!, an Average Peaks Edge Image matrix,  !"!!, of size !" × !", is 

computed and represented in the following way:  

 !"!!  =
!"!,! ⋯ !"!,!"
⋮ ⋱ ⋮

!"!",! ⋯ !"!",!"
            (12) 

Later, the standard deviation ∇ of  !"!! is obtained by means of equation (13) and each image, IE, 

is represented by its !!" value: 

!!"  = ( !
!"!! !"!" − !"!!

!
!
!!

!!!
!
!!!  ,   (13) 

where IE is any of the edge images, from the training set using the radius given by r1. 

After that, the edge images in the dataset represented by its !!", are sorted in ascending order. As it 

was expected, it has been empirically observed that images with most of its representative information in 

the edges of the objects, instead on those of the background, have the lowest average peak standard 

deviation, !!" value. 

!!! = { !!"! ,!!"! ,… ,!!"! }     (14) 
The subset in (14), that will be used to estimate the best radius for the whole dataset, is created 

selecting the 30% of the images with lower values of !!". 

!!"_!"# = !!!": !! < !!"  ,     (15) 
where !!" is the 30th percentile of the !!" distribution and !!"_!"# stands for the selected subset. This 

percentage has been chosen empirically: it guarantees good results, which are presented in the next 

sections, and computational efficiency. The proposed algorithm is summarized in Fig. 11. 
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Fig. 11.  Proposed algorithm to select images for subset creation. In the example the grid is of size 10 x 10, with a total number 
of patches equals to 100. When the image has a low standard deviation of the average peak, it will be included in the selected 
subset. 
 

4.2 Radius estimation from the selected training subset using one-random sub-sampling validation 
 

Once the training subset is obtained, the same process explained in  

Fig. 4, but only for Edge-SIFT descriptors, is followed with the selected images. Therefore, a BoW 

matrix is computed for each one of the 14 radii previously mentioned. To do that, Edge-SIFT descriptors 

are computed and a dictionary is coded for each of the 14 radii. Thereafter, a classification using SVM is 

carried out. Finally, the r value that yields the best accuracy among the 14 computed is chosen and used to 

describe the whole dataset.  

Therefore, we can say that the predicted radius, !, is obtained in the following way: 

! =!"#!∈{!,…,!} !( !!) ,      (16) 

where n= 14, and f(ri) is the accuracy for the selected training subset with the corresponding value of 

radius. 

  

Fig. 12 illustrates the complete process of radius prediction for a single experiment, that is to say, for 

one random sub-sample using one of the training set configurations indicated in Table 1. 
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Fig. 12.  Diagram for one-test radius prediction method. If the above method is applied to three different training sets of images, 
the predicted radius will be the result of a voting between them. 
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4.3 Radius estimation using 3-random sub-sampling validation 
 

The estimation of the radius using one random sub-sample, as explained in previous section, is the 

fastest but not the most robust way of implementing the proposed method.  

Number of  
Training 
set used 

Soccer Birds Flowers COIL-RTWH-
2 

ImageNet 
Birds 

ImageNet 
Dogs Caltech101 

1 80,50% 77,40% 72,10% 81,80% 72,40% 73,20% 73,90% 
3 41,40% 32,30% 16,40% 45,30% 17,20% 19,60% 21,70% 

Table 7. Time saved, expressed in percentage, when using the radius parameter prediction on the different datasets. First row 
present the savings when one-random sub-sampling validation is used and second row savings with 3-random sub-samplings 
with voting. 

 

Table 7 depicts that with a single sub-sample it is possible to estimate a good radius with time 

savings of around 70% or 80%. 
The savings are the difference between calculating the accuracy of dense SIFT+Edge-SIFT with the radius estimated with our 
method, and for all the 14 indicated radii values using the complete training set as  

Fig. 4. The drawback of using one-random sub-sample is that it exhibits Monte Carlo variation, and 

the results vary when the analysis is repeated with different random splits. Despite this variation, and 

based on the experiments carried out, our method always performs better than when using the default 

radius in Soccer and COIL-RWTH-2 datasets, using one-random sub-sampling validation. However, in the 

experiments carried out with Birds and Flowers datasets, our method does not guarantee that the estimated 

radius yields better accuracy than the default one using only one-random sub-sample. 

Using a 3-random sub-sampling validation our proposal estimates a radius that outperforms the 

results obtained with radius 4.00 as proposed in the literature. In the next section, results for each dataset 

using both sub-sampling validation strategies are compared. The effect of the kernel used in the SVM is 

discussed too. 

5. Results and discussion  

To test our proposal we present the experiments carried out using the first five training sets from 

each dataset. Training sets from Table 1 were used for radius prediction and test sets from Table 2 were 

used to evaluate the accuracy with different radius parameters, including the predicted one. Using this 

setup, we noticed that only using 3-random sub-samples it is possible to always estimate a radius that 

yields better image classification accuracy than the one obtained when using ! = !.!!. 

5.1 Soccer Dataset 
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As it is shown in  

Fig. 1, most of the images in this challenging dataset include several objects and noisy background. 

Table 8 shows an example about how the radius estimation method has been validated using one-

random sub-sampling validation. Table 9 shows the same results as Table 8 but when the radius is 

estimated by voting with 3-random sub-sampling validation. 

  
Table 8. Summary of the accuracy, in %, obtained with the 5 experiments carried out in Soccer Dataset using SVM with an 
intersection kernel. The radii have been estimated using one-random sub-sampling validation. Values have been highlighted as 
follows: Bold + Shadowed: Accuracy obtained when the radius proposed in the literature, r = 4.00, was used for computing 
Edge-SIFT descriptors.  Bold: Maximum accuracy obtained with Edge-SIFT descriptors on training sets with one-random sub-
sampling validation. The r value that yields this result is chosen as the estimated one and used later for the whole dataset. 
Bolded + underlined: Accuracy obtained using the previously estimated r in the whole dataset when dense SIFT and Edge-SIFT 
are fused.  

 

Despite it is bold, in Table 8 the maximum accuracy for a single train set, and therefore its 

associated r value, is identified using a dotted - and blue - ellipsoid as an example. In the rest of the tables 

they will be only highlighted by a bold number as the caption of Table 8 explains. For instance, in Test #3, 

the maximum accuracy obtained is 34.29%, with !! = !.!!. Using that !!  in the whole dataset –second 

part of Table 8- the accuracy obtained was 45.71%. Comparing it with the accuracy (41.90%) yielded by 

!!, the radius proposed in the literature, we confirm that there is an improvement. It is possible to check 

out that this is the same behaviour for the rest of the experiments. The increase in accuracy using the 

proposed method goes from 0.95 in Test#4 to 10.47 in Test#2 – both with !! = 0.75. In every single 
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experiment, the radius estimation method outperforms the baseline. It is worth highlighting that the 

improvement of 10.47 points obtained in Test#2, between 42.86% and 53.33%, represents an accuracy 

24.4% higher. 

 

Table 9. Summary of the accuracy, in %, obtained with the 5 experiments carried out in Soccer Dataset using SVM with an 
intersection kernel. The radii have been estimated by voting with 3-random sub-sampling validation. 

 

Table 9 shows the radius estimation and the accuracy obtained in the whole dataset using a voting 

schema with 3-random sub-sampling validation. As it was done in the previous table, an example has been 

highlighted with dotted - and blue – ellipsoids. Among the 5 experiments carried out, 3 of them are chosen 

to predict the radius with the same process followed in the one-round case. For the Table 9 example we 

selected the first three experiments, but it is possible to observe that any combination of 3 experiments 

would yield the same result. The maximum accuracy for tests 1, 2 and 3 points out three radius values, 

!! = !.!", !! = !.!" and !! = !.!!. Using a voting system, !! receives 2 out of 3 votes, so this is the 

predicted radius. In Table 9 it can be observed that if the dense SIFT + Edge-SIFT descriptors were 

calculated with !! = !.!" with three test-sets, an averaged accuracy of 50.16% would be obtained. This 

accuracy is 7.94 points higher than the average accuracy obtained if the literature radius !! = !.!! was 

used for these three tests (42.22%). The maximum improvement is 9.20 points if we use the !! = !.!" 
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estimated by the voting of Tests#2, #3 and #5 predictions, being 40% to 49.20% the mean accuracies if 

!! = !.!" and !! = !.!! is used respectively.  

As we will explain in more detail when we analyse the Flowers dataset, in case of a draw after the 

voting, our proposal is to choose the radius which is closer to the literature proposal. 

To evaluate the radius estimation method both linear and intersection [31][32] kernels for SVM 

were used. Based on the experiments carried out, our proposal uses a linear Kernel in all datasets except 

for Soccer one. The presence of several objects of interest in the same image, i.e. more than one football 

player belonging to the same or different class, the presence of the referee and the noisy background make 

the intersection kernel more appropriate for the radius estimation method. 

 

5.2 Birds Dataset 
 

This is another complex dataset because the birds are sometimes surrounded by different types of 

environments, which may add noise to the descriptors, as it is shown in Fig. 10. There are other cases 

where the bird share some colours with the background and make the classification task difficult, as it is 

depicted in the 6th column of Fig. 10.   

Radius estimation. Accuracy results for Edge-SIFT  
descriptors with the sampled subset. Linear Kernel 

Training # 
r5 = 4.00 r6 = 4.50 r7 = 5.25 r8 = 6.00 r9 = 6.75 r10 = 7.50 

1 63,60 62,47 59,40 61,40 62,47 64,00 
2 62,13 61,33 61,27 63,67 62,67 64,00 
3 60,13 62,20 62,00 62,93 62,13 63,20 
4 61,07 59,20 60,80 62,20 63,40 63,47 
5 60,20 60,00 61,93 62,60 61,93 63,07 
              

    

Accuracy results for dense SIFT + Edge-
SIFT descriptors with the sampled subset.  

Linear Kernel 
  

	    Test # r5 = 4.00 r10 = 7.50     
    1 66,00 67,33     
    2 63,33 65,33     
    3 61,33 60,67     
    4 64,67 70,00     
    5 56,67 56,67     

Table 10. Summary of the 5 experiments carried out in Birds Dataset. 
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Based on the explanations of Soccer dataset, we perform the analysis of the 3-random sub-sampling 

validation through the voting system. The maximum increase in accuracy using the proposed method is 

2.89 points if we select the radius !!" = !.!" after the voting between Tests #1, #2 and #4 in Table 10. 

The improvement obtained will vary depending on the tests selected but the robustness of the method can 

be validated with different combinations of tests from Table 10. Those 2.89 points represents an 

improvement of 4.46%. 

When the radius was estimated by using the one-random sub-sampling validation, it achieved an 

improvement of 5.33 points with !!" = !.!"  on Test#4. However, we observed that Test#3 predicted a 

radius that does not guarantee a better accuracy than when we use the literature one. Despite the rest of the 

sub-samples predicted a good radius parameter standalone, because Test#3 failed it is not 100% 

guaranteed that one-random sub-sampling validation provides a suitable radius to be used. Based on these 

results we suggest one-random prediction only for large time saving in the process and three-random sub-

sampling validation for less time saving but a radius prediction that guarantees the accuracy improvement. 

 

5.3 Flowers Dataset 
 

This complex dataset, widely used in previous works [42][43][44], comprises 17 classes of flowers. 

Radius estimation. Accuracy results for Edge-SIFT  
descriptors with the sampled subset. Linear Kernel 

Training # 
r5 = 4.00 r6 = 4.50 r7 = 5.25 r8 = 6.00 r9 = 6.75 r10 = 7.50 

1 59,47 60,32 61,41 60,91 60,00 60,29 
2 59,85 61,59 61,26 61,09 60,06 59,50 
3 59,65 61,35 61,00 61,21 54,12 54,12 
4 60,12 62,18 61,18 61,15 60,76 60,09 
5 59,82 60,74 60,68 61,09 60,71 60,38 
              

  
Accuracy results for dense SIFT + Edge-SIFT  

descriptors with the sampled subset. Linear Kernel 
	  Test # r5 = 4.00 r6 = 4.50 r7 = 5.25 r8 = 6.00   

  1 61,18 60,29 60,00 62,06   
  2 63,24 64,71 57,94 61,76   
  3 65,00 65,59 64,71 65,00   
  4 61,76 63,53 61,76 63,82   
  5 61,76 60,59 62,35 61,47   

Table 11. Summary of the 5 experiments carried out in Flowers Dataset. 
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First, we perform the analysis of the 3-random sub-sampling validation through the voting system. 

The maximum increase in accuracy using the proposed method is 1.28 points if we select the radius 

!! = !.!" after the voting between Tests #2, #3 and #4 in Table 11.  

We will get different improvements according to the tests selected but the robustness of the method 

can be validated with different combinations of tests from Table 11. In this dataset, depending on which 

three tests are chosen for prediction it might be possible to have a draw in the voting system. If this is the 

case, the predicted radius will be the value closer to 4 (the radius used in the literature) among these three. 

In Table 11, the voting between Tests #1, #4 and #5 is a draw between !! , !! and !!, but !! is chosen since 

it is the one closer to !!. This conclusion is made under the consideration that most of the 5 tests 

performed predict !!.  

The 1.28 points early discussed represents a 2.02% of improvement if we use the estimated radius !! 

instead the !! proposed in literature. 

Furthermore, if the radius is estimate with only one random sub-sample, it will achieve an 

improvement of 1.77 points. But, as it was the case in the Birds dataset, it can be observed how there is a 

test in Table 11, that predicts a radius which does not guarantee a better accuracy than the one with the 

literature radius - Tests#1 and #5 predict !! = 5.25 and !! = 6.00 respectively. Despite the rest of the tests 

predict a good radius parameter it is not guaranteed that one random sub-sampling will always provide a 

suitable value. Like Birds, this approach can be used only for large time saving, but to guarantee an 

accurate radius prediction we will use the 3-random sub-sampling validation. 

 

5.4 COILRWTH-1 Dataset 
 

The application of radius estimation method is not needed in this dataset since only contains objects 

with no background.  
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5.5 COIL-RWTH2 Dataset 
 
This dataset comprises 20 classes of objects placed over non-homogeneous backgrounds. Some examples are shown in  

Fig. 1. 

Radius estimation. Accuracy results for Edge-SIFT  
descriptors with the sampled subset. Linear Kernel 

Training # 
r1 = 0.75 r2 = 1.50 r3 = 2.25 r4 = 3.00 

1 38,58 39,76 38,42 36,70 
2 38,74 38,64 39,49 37,69 
3 38,33 38,38 39,07 37,86 
4 38,53 39,59 38,35 37,36 
5 38,64 38,75 39,11 37,36 
          

Accuracy results for dense SIFT + Edge-SIFT  
descriptors with the sampled subset. Linear Kernel 

	Test # r2 = 1.50 r3 = 2.25 r5 = 4.00   
1 44,01 42,91 42,56   
2 44,50 45,61 43,67   
3 45,61 44,43 43,88   
4 45,74 45,19 42,84   
5 44,22 45,54 45,19   

Table 12. Summary of the 5 experiments carried out in COIL-RWTH-2 Dataset. 

 

As in the case of Soccer dataset, COIL-RWTH-2 dataset can use both one and three-random sub-

sampling validation methods.  

The increase in accuracy using one-random sub-sample goes from 0.35 in Test#5 to 2.90 in Test#4– 

both with !! = 2.25 and !! = 1.50 respectively. In every single experiment, the radius estimation method 

outperforms the baseline. 

The 2.90 points of improvement represents a 6.77% of improvement if we use the estimated 

!! = 1.50 instead the literature one, !! = 4.00. 

The maximum increase in accuracy using 3-random sub-sampling is 2.03 points if we select the 

radius !! = 1.50 after the voting between Tests #1, #3 and #4 in Table 12.  

The improvement obtained varies depending on the tests selected but the robustness of both one or 

three-random sub-sampling validations checked with different combinations of tests from Table 12.  

 

 



28 
 

5.6 ImageNet_Birds Dataset 
 

The next table shows the predictions obtained in ImageNet_Birds ImageNet subset. 

Radius estimation. Accuracy results for Edge-SIFT  
descriptors with the sampled subset. Intersection Kernel 

Training # r2 = 1.50 r3 = 2.25 r5 = 4.00 r6 = 4.50 

1 71,14 69,71 68,86 66,00 
2 69,71 71,71 67,43 67,43 
3 69,71 69,43 69,43 71,43 
4 71,14 69,43 67,14 68,00 
5 69,71 66,57 68,57 66,86 
          

Accuracy results for dense SIFT + Edge-SIFT  
descriptors with the sampled subset. Intersection Kernel 

Test # r2 = 1.50 r3 = 2.25 r5 = 4.00 r6 = 4.50 
1 78,86 75,43 77,71 76,57 
2 77,14 75,43 75,14 75,14 
3 77,14 74,86 75,71 75,43 
4 80,29 74,86 76,29 76,57 
5 75,43 75,43 74,29 77,43 

Table 13. Summary of the 5 experiments carried out in ImageNet_Birds Dataset. 

 

As it was explained in Section 5.1, we perform the analysis of the 3-random sub-sampling validation 

through the voting system. 2.10 points is the maximum accuracy obtained when radius !! = 1.50 after the 

voting between Tests #1, #4 and #5 in Table 13. The robustness of the method can be validated with 

different combinations of tests from Table 13. Those 2.10 points represents an improvement of 2.75%. 

If we estimate the radius with the one-random sub-sampling validation, we will obtain an 

improvement of 4.00 points with !! = 1.50 on Test#4. Nevertheless, Test#3 predicted a radius that does 

not guarantee a better accuracy than when we use the literature one. Although the rest of the sub-samples 

predicted a good radius parameter standalone, as the Test#3 prediction it is not 100% precise, just one-

random sub-sampling validation grants a suitable radius to be used. Therefore, we suggest one-random 

prediction only for large time saving in the process and three-random sub-sampling validation to get a 

radius prediction that guarantees the accuracy improvement. 

 

5.7 ImageNet_Dogs Dataset 
 

The next table shows the predictions obtained in ImageNet_Dogs ImageNet subset. 
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Radius estimation. Accuracy results for Edge-SIFT  
descriptors with the sampled subset. Intersection Kernel 

Training # r3 = 2.25 r4 = 3.00 r5 = 4.00 r6 = 4.50 

1 47,00 42,50 41,75 39,75 
2 44,50 43,75 45,25 41,25 
3 45,75 44,25 45,75 45,25 
4 46,50 45,50 46,25 47,00 
5 43,50 45,25 43,00 42,50 
          

Accuracy results for dense SIFT + Edge-SIFT  
descriptors with the sampled subset. Intersection Kernel 

Test # r3 = 2.25 r4 = 3.00 r5 = 4.00 r6 = 4.50 
1 54,00 54,75 53,25 54,50 
2 56,25 56,00 59,00 56,00 
3 59,75 55,75 55,00 55,00 
4 55,75 55,25 55,00 57,75 
5 54,00 52,00 51,50 53,75 

Table 14. Summary of the 5 experiments carried out in ImageNet_Dogs Dataset. 

 

We carry out our 3-random sub-sampling validation method in this ImageNet subset. A 2.08 points 

higher accuracy is obtained if we select the radius !! = 2.25 after the voting between Tests #1, #3 and #4 

in Table 14. Those 2.08 points represents an improvement of 3.82%. 

The accuracy is increased up to 4.75 points when the radius is estimated by using the one-random 

sub-sampling validation, with !! = 2.25 on Test#3. It is remarkable that after 7 datasets analysed and 5 

predictions per dataset this is the unique time that the predicted radio match with the one indicated by Xie 

et al. [17], !! = 4.00 predicted by Test#2. 

On one hand, in this dataset we suggest using one-random prediction for a large time saving and for 

achieving accuracy equal or greater than the one obtained by literature.  

On the other hand, the three-random sub-sampling validation will get a radius prediction that 

guarantees the accuracy improvement. 

 

5.8 Caltech101 Dataset 
 

Once we have demonstrated the effectiveness of the CREIC method with small datasets, i.e, datasets 

with few classes, we tested it on Caltech101 obtaining the following results. 
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Radius estimation. Accuracy results for Edge-SIFT  
descriptors with the sampled subset. Intersection Kernel 

  Training # r8 = 6.00 r9 = 6.75 r10 = 7.50 r11=8.25 r12=9.00 

  1 69,85 70,33 70,37 70,37 69,72 
  2 70,59 70,55 70,03 70,46 70,20 
  3 71,11 71,42 71,03 71,11 70,85 
  4 70,07 70,20 69,94 70,37 69,85 
  5 71,03 70,63 70,76 70,98 71,37 
              

Accuracy results for dense SIFT + Edge-SIFT  
descriptors with the sampled subset. Intersection Kernel 

Test # r4 = 4.00 r8 = 6.00 r9 = 6.75 r10 = 7.50 r11=8.25 r12=9.00 
1 71,68 72,98 73,11 72,94 73,28 73,15 
2 72,20 73,15 73,63 73,28 73,15 73,24 
3 72,42 73,37 73,07 73,81 73,46 73,76 
4 72,11 72,55 72,63 72,89 73,24 73,28 
5 72,11 72,72 73,11 73,33 73,20 73,28 

Table 15. Summary of the 5 experiments carried out in Caltech101 Dataset. 

 

Finally, an analysis of the 3-random sub-sampling validation through the voting system is performed 

on Caltech101. We obtained an accuracy 1.26 points higher with !!" = 7.50 estimated after the voting 

between Tests #1, #4 and #5 in Table 15. Again, the effectiveness of the method is demonstrated through 

different combinations of tests from Table 15. The 1.26 points represent an improvement of 1.75%. 

In this dataset, the use of one-random sub-sampling validation results in an improvement of 1.26 

points too, with !!" = 7.50 on Test#1. This maximum improvement matches the best one obtained with 

the 3-random sub-sampling validation but with a 73.90% of time saving as it was described in Table 7.. 

To sum up, in Caltech101 dataset we suggest to use one-random prediction for large time saving and a 

radius prediction that guarantees the accuracy improvement. 

 

6. Conclusions and future work  

The Edge-SIFT descriptors are extracted from an edge image obtained after applying the compass 

operator with a certain radius. Their early fusion with dense SIFT was demonstrated by Xie et al. [17] to 

be capable of improving the image classification.  

Edge images are strongly dependent on the radius of the compass operator. Working into the BoW 

framework, the influence of this radius parameter in the classification is shown using six different datasets. 
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Once this influence is confirmed, the performance obtained if the best radius could be selected for 

each image has been empirically assessed. In that case, the accuracy from all datasets improved from 

26.19% to 83.50% in the best case – Soccer dataset. 

The former demonstration emphasizes the importance of extracting suitable descriptors from edge 

images for dictionary construction. Based on these findings, an algorithm to estimate a suitable radius for 

any specific dataset is proposed. This estimation is carried out on the basis of a minimum dispersion 

criterion on the image edges. It is demonstrated that a low standard deviation on the local maxima patches 

are related to the presence of relevant edges and, thus, the chances of extracting more information from the 

object of interest. The estimated radius guarantees a better accuracy than taking the default one proposed 

in the bibliography when Edge-SIFT are fused with dense SIFT descriptors. All these findings are 

validated on four challenging datasets. The mentioned prediction method ensures a saving in time that can 

be quite significative if only one-random sub-sample is performed. The three-random sub-sampling 

validation will guarantee the radius prediction but the time saving would not be as good as when one sub-

sample is used. 

The results obtained show that, depending on the dataset, the improvement varies from 1.75% in 

Caltech101 to 24.4% in Soccer dataset. 

The next step will be to improve the radius selection method using, for example, saliency maps. 

Another future research line could be the selection of the best radius per image, since we have 

demonstrated that it would yield even better results. 
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