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Abstract— Significance: Optical endomicroscopy (OEM) is a 

novel real-time imaging technology that provides endoscopic 

images at a microscopic level. The nature of OEM data, as 

acquired in clinical use, gives rise to the presence of 

uninformative frames (i.e. pure-noise and motion-artefacts). 

Uninformative frames can comprise a considerable proportion 

(up to >25%) of a dataset, increasing the resources required for 

analysing the data (both manually and automatically), as well as 

diluting the results of any automated quantification analysis. 

Objective: There is therefore a need to automatically detect and 

remove as many of these uninformative frames as possible while 

keeping frames with structural information intact. Methods: This 

paper employs Gray Level Co-occurrence Matrix texture 

measures and detection theory to identify and remove such 

frames. The detection of pure-noise frames and motion artefacts 

is treated as two independent problems. Results: Pulmonary 

OEM frame sequences of the distal lung are employed for the 

development and assessment of the approach. The proposed 

approach identifies and removes uninformative frames with a 

sensitivity of 93% and a specificity of 92.6%. Conclusion: The 

detection algorithm is accurate and robust in pulmonary OEM 

frame sequences. Conditional to appropriate model refinement, 

the algorithms can become applicable in other organs.   

 
Index Terms— Optical Endomicroscopy (OEM), Fibered 

Confocal Fluorescent Microscopy (FCFM), distal lung imaging, 

image analysis, texture analysis, frames detection 

I. INTRODUCTION 

ptical endomicroscopy (OEM) is an emerging imaging 

tool used both clinically and pre-clinically [1]. Fibered 

Confocal Fluorescent Microscopy (FCFM), also referred to as 

probe-based confocal laser endomicroscopy (pCLE), is the 
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most widely used platform and the only fiber-based endo-

microscopic methodology approved for clinical use. The 

technology employs a proximal laser scanning unit linked to 

an interface with a flexible multi-core fibre. This fibre is 

passed through the working channel of endoscopes enabling 

microscopic imaging at the distal end of the fibre. In 

pulmonary OEM, the abundance of elastin and collagen 

enables structural imaging through the generation of auto-

fluorescence with a 488nm laser excitation. The lateral 

diameter of the fibre used in lung applications is 1.4 mm. This 

miniaturization enables the exploration of the distal pulmonary 

tract [2] as well as the assessment of the respiratory 

bronchioles and alveolar gas exchanging units of the distal 

lung [3]. OEM has been used clinically in the lung for the 

detection of lung cancer [4, 5] and has been used to assess the 

distal lung [6, 7] including the imaging of parenchymal lung 

diseases [8]. Furthermore, OEM has been used in other organs 

such as the urological tract [9].  The largest OEM application 

remains in imaging of possible cancerous lesions in the gastro-

intestinal tract [10, 11]. The commercially available FCFM 

platform images at 12 frames per second and clinical and 

preclinical OEM procedures often last minutes, generating 

thousands of frames, hence making their manual (post-vivo) 

analysis a very labour intensive process. 

 The nature of OEM data acquisition results in image 

sequences that form a long continuous scene. Within these 

sequences there are frames that contain only pure-noise (Fig. 

1.a), mostly due to the lack of contact of the fibre with a 

fluorescent target or due to bio fouling of the tip of the fibre. 

Similarly, there are frame sequences where the spatial 

movement is very large when compared to the temporal rate of 

acquisition. This results in motion artefacts, expressed as 

either deformed anatomical structures (Fig. 2.a-c), or spatial 

discontinuity for temporally adjacent frames (Fig. 2.d-f). Such 

frames contain little information of value and are therefore 

referred to as “uninformative frames”. Indeed, uninformative 

frames comprise a substantial proportion of the dataset, 

depending on the motion of the imaging target as well as also 

the operator manipulating the fibre.  In pulmonary OEM, 

significant movement artefacts occur due to the movement of 

the fibre in the distal lung from both the respiratory effort of 

the patient and also of the fibre traversing bronchopulmonary 

segments of the lung. In our experience with lung OEM data, 

uninformative frames may comprise in excess of 25% of the 

acquired frames. The presence of uninformative frames: (i) 
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prolongs the off-line manual assessment of the data, (ii) 

increases computational resources, and (iii) dilutes the results 

of any post-processing algorithm intended to analyse and 

quantify the images. There is therefore a need for an 

automated approach to accurately and robustly detect and 

remove such uninformative frames as the first line of any 

automated or manual image analysis step. 

There has been considerable research in the suppression of 

noise [12] as well as for the detection of motion artefacts for a 

range of imaging modalities, including, but not limited to, 

aerial images [13], microscopy [14], medical images [15], as 

well as other digital photography images [16-18]. However, 

most such studies focus on the detection of motion-blurred 

regions within a frame with the intention to compensate for it 

through some image enhancement algorithm. Such techniques, 

while potentially very effective for their specific application, 

cannot be easily employed to detect uninformative frames in 

OEM data. Analysing the spatio-temporal characteristics of 

the sequences is required. A large number of studies 

performing such analysis of the spatio-temporal characteristics 

of video sequences concentrate on detecting shot transitions 

and grouping frames into scenes [19-22]. Once again, this is 

not applicable in OEM data due to the continuous acquisition 

resulting in a continuous imaging sequence with 

uninformative frames embedded within it. Other endoscopic 

imaging techniques can generate analogous frame sequences 

to OEM when navigating along the bronchus, or the 

gastrointestinal tract. There is therefore considerable interest 

in the spatio-temporal analysis of endoscopic data, including, 

but not limited to, laparoscopy [23], colonoscopy [24], 

wireless capsule endoscopy [25-28] and larynx endoscopy 

[29]. The main focus of all these studies was the identification 

of one or more key frames within the main frame sequence to 

aid the diagnostic process or some further post processing 

technique. A recent study [30] has developed a fully 

automated approach for the selection of a representative frame 

from a short endo-microscopy frame sequence, enabling a real 

time quantitative image analysis at the point-of-care. The 

approach generated very promising results for short oral and 

esophageal image sequences. However, none of the 

aforementioned studies address the problem of identifying and 

uninformative frames from OEM frame sequences.  

This paper presents a novel approach for detecting and 

“removing” uninformative frames from OEM frames 

sequences. The algorithm was developed and assessed on 

frame sequences from the distal lung of patients with 

suspected lung cancer. However, with the appropriate 

adjustments, the algorithm can potentially be effective in 

removing uninformative frames from sequences acquired on 

(i) other organ systems, such as the gastrointestinal tract and 

the urinary tract, as well as (ii) any other fibre based imaging 

platform. The rest of the paper is organized as follows: Section 

II describes the material (data) utilised in the study. Section III 

describes the detection algorithms for pure-noise and motion-

artefacts independently. Section IV describes the data analysis 

used to train and test the detection algorithm and Section V 

displays the relevant results. Finally, the proposed methods 

and corresponding results are discussed in Section VI. 

II. DATA 

83 OEM image sequences of the distal lung were used 

during the development and testing of the proposed algorithm. 

All data were obtained as part of a database (of 126 subjects) 

during the routine care of patients undergoing investigation for 

an indeterminate pulmonary nodule (< 30𝑚𝑚) at the 

Columbus Lung Institute, Indiana, USA.  The study was 

approved by the Western Institutional Review Board. All 

procedures were undertaken by a single expert operator using 

standard bronchoscopy, with the aid of superDimension
TM

 

 

Fig. 1. Representative examples of frames containing (a) pure noise, (b) low contrast and mostly linear bronchus strands, (c-d) normal elastin strands, pathological  

and healthy respectively, (e) larger elastin strands, and (f) blood vessels. 
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Navigation System (Covidien Inc., MN, USA) and imaging 

with 488nm Cellvizio
TM

 using a 1.4mm lateral diameter 

Alveoflex 
TM

 fibre (Mauna Kea Technologies, Paris, France). 

All image sequences were stored in the proprietary .mkt 

format and read as 16-bit binary files for processing in 

Matlab
TM

 (MathWorks Inc., MA, USA). Some subjects 

(𝑛 = 43) were rejected due to (i) short duration of sequences 

(i.e. video<10 frames), (ii) corrupted data (i.e. file not 

readable, misaligned fibre or out of focus images), or (iii) lack 

of distal lung images (i.e. solely imaging the bronchus). No 

other subjective criteria (such as image quality) that could 

potentially bias the proposed algorithm were used during the 

video selection process.  

III. METHODOLOGY 

This section describes the methodology used to detect pure-

noise frames and motion artefacts. These were handled as two 

independent problems, both utilising image-derived texture 

metrics.  

Let I(x, y, t) be a greyscale image sequence, with x ∈ [1, N], 
y ∈ [1, M] and t ∈ [1, K] indicating the pixel location (x - 

column and y - row) and the frame number respectively. The 

Gray-Level Co-occurrence Matrix (GLCM) [31]  Gt for frame 

It = I(x, y, t)(x,y)∈[1,N]×[1,N] was defined as an L × L matrix 

Gt
Δx,Δy(i, j)  = 

∑ ∑ {
1, if I(p, q, t) = i and I(p + Δx, q + Δy, t) = j

0, otherwise                                                              

M

q=1

N

p=1

 
(1) 

 

Fig. 2. Representative examples of frames sequences containing (a-c) motion artefacts (deformed structures), (d-f) motion artefacts (spatial discontinuity in 

temporally adjacent frames), (g-i) large movements, and (j-l) normal/modest movements. The circular regions highlight structures that demonstrate the scale of 

the movement. 
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where, L was the number of grey-levels within the image (16 

bit),  i and j were intensity levels, p and q were the spatial 

positions in the image It, and Δx and Δy were the spatial 

offsets (in number of pixels) utilised to estimate the GLCM 

Gt. In order to achieve rotational invariance of the relevant 

texture measures, Gt was estimated as the mean GLCM for 

four different offset pairs {(1,0), (1,1), (0,1), (−1,1)}, 

corresponding to a single pixel offset at directions (0°, 45°, 

90° and 135°). Gt was then normalised to denote the 

probability of each pixel-pair being present in frame It, 

Gt
norm =  

1

n
Gt (2) 

where, n was sum of all the elements of the matrix Gt. Related 

texture metrics were derived as [31]: 

Contrast(t) = V1(t) =  ∑ ∑(i − j)2pij

L

j=1

L

i=1

 (3) 

Energy(t) = V2(t) = 1 − ∑ ∑ pij
2

L

j=1

L

i=1

 (4) 

Homogeneity(t) = V3(t) = 1 − ∑ ∑
pij

1 − |i − j|

L

j=1

L

i=1

 (5) 

Entropy(t) = V4(t) =  − ∑ ∑ pij log2(pij)

L

j=1

L

i=1

 (6) 

Maximum Probability(t) = V5(t) = 1 − max
i,j

(pij) (7) 

where, t was the frame number and pij = Gt
norm(i, j). In 

addition to the aforementioned GLCM properties, global 

image characteristics, such as frame intensity mean (V6(t)), 

and standard deviation (V7(t)), were also employed. All 

texture metrics were estimated in a way such that frames 

containing noise (or very faint features) demonstrated low 

(nearly zero) values (Fig. 1.a-b), while more pronounced 

features, such as elastin strands and blood vessels (Fig. 1.c-f) 

within the alveoli space, demonstrated higher (closer to 1) 

values. Since the GLCMs need to be estimated in rectangular 

regions only, the largest square region within the circular field 

of view (FOV) of the OEM frame sequences was used as 

I(x, y, t) throughout this study. The remaining 4 segments 

(each 9% of the overall circular FOV) were not included in 

I(x, y, t) and consequently in the GLCM estimation and the 

subsequent frame detection. This decision was based in the 

assumption that, if the central square region of a frame was 

identified as pure-noise or a motion-artefact, a small structure 

in any of the 4 excluded subsections is not enough to reinstate 

the frame as an informative frame. 

Each texture vector was normalised to the [0, 1] range using 

Vi′(t) =  
Vi(t) − min(Vi)

max(Vi) − min(Vi)
 (8) 

where, i ∈ [1,7] and t ∈ [1, K] represented the frame number. 

Finally, a 7-dimensional feature space was therefore defined 

as 

X = [Vi′]. (9) 

A. Detection of pure noise frames 

1) Reducing dimensionality 

Principal Component Analysis (PCA) was employed to 

reduce the dimensionality of the 7-dimensional feature space. 

The K × 7 matrix Y = (PC1, PC2, … , PC7) was defined as,  

Y = A(X − (λ ∗ mX)) (10) 

incorporating the projection of the 7 feature vectors (X) in the 

relevant principal component space. The vector mX =
1

K
∑ X(t, i)K

t=1 , i ∈ [1,7] contained the mean value of each of 

the 7 parameters and the vector λ was an 1 × K unit vector, 

while the rows of A were the eigenvectors (i.e. the direction of 

the Principal Components) of CX, the 7x7 sample covariance 

matrix of X (normalised to unit length) 

CX =
1

K−1
∑ (X(t) −K

t=1 mX)(X(t) − mX)T . (11) 

Although the whole matrix Y could be used for the detection 

of pure-noise frames, the first principal component (PC1) was 

found to contain sufficient information for the detection of 

pure-noise frames. As a consequence, only PC1 (i.e., a single 

parameter per frame) has been considered for pure-noise 

frame detection. 

2) Gaussian mixture model 

An experienced investigator performed a thorough visual 

inspection on a subset of the available OEM data, aiming to 

identify any image texture sub-groups that can justly represent 

the underlying anatomical information. The inspection of the 

OEM data highlighted four different texture categories (Fig. 

1): (i) pure-noise frames (Fig. 1.a), mostly containing no 

anatomical information, (ii) subtle feature frames (Fig. 1.b), 

mostly containing linear bronchus strands or very low contrast 

elastin strands, (iii) normal frames (Fig. 1.c-d), containing 

both pathological (Fig. 1.c) and healthy (Fig. 1.d) elastin 

strands, and (iv) vibrant frames (Fig. 1.e-f), containing very 

well defined features, such as larger elastin strands and blood 

vessels. The boundaries of these four categories were not 

distinct.  

Fig. 3.a provides a representative histogram example H1 

derived from the PC1 of a lung OEM image sequence. A 

Gaussian Mixture (GM) model was employed to represent the 

underlying texture information contained in PC1. More 

precisely, following the 4 texture categories identified through 

the aforementioned manual visual inspection of the OEM data, 

the following Gaussian Mixture model composed of 4 

Gaussian distributions was considered 

GM = ∑ Pi𝒩i

4

i=1

 (12) 

where, parameters Pi provided the weight (also referred to as 

proportion or probability - ∑ Pi = 14
i=1 ) of the ith Gaussian 

distribution  

𝒩i(x; μi, σi) =
1

√2πσi
2

e
−

(x−μi)2

2σi
2

 (13) 

with mean μi (μ1 < μ2 < μ3 < μ4) and standard deviation σi. 

The Gaussian Mixture model likelihood (Log Likelyhood) was 

optimised using the iterative Expectation-Maximization (EM) 

algorithm [32], as performed by Matlab
TM

’s fitgmdist 
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command. Fig. 3.a overlays the mixture of 4 Gaussian 

distributions to the underlying histogram, with 𝒩1 

corresponding to pure noise and 𝒩2 to 𝒩4 corresponding to 

frames including anatomical features, from subtle to vibrant. 

3) Model simplification using Metropolis-Hastings method 

It is difficult to derive the distribution of classical test 

statistics (and thus predict the detection performance) in the 

general case of mixtures of more than two distributions. This 

section presents a statistical method to split a set of random 

variables, identically distributed according to a known mixture 

of Gaussians (𝒩1 to 𝒩4), into two subsets, each containing 

variables distributed according to a mixture of a subset of the 

original Gaussians (e.g., 𝒩1 and 𝒩2). Such a split reduces the 

detection problem to a classical binary hypothesis test to 

decide between 𝒩1 and 𝒩2 (as will be shown in Section 

III.A.4). The proposed approach can be seen as a Metropolis-

Hastings (MH) algorithm [33], which is a Markov chain 

Monte Carlo method typically used to generate random 

variables according to an arbitrary target distribution, i.e. 

distributions not handled by classical random number 

generators. The MH consists of generating random candidates 

according to a “proposal distribution” and accepting each 

candidate with a particular probability (the rejected candidates 

are either discarded or set apart). In our case, this accept/reject 

process ensured that the accepted samples were distributed 

according to the “target distribution” defined as the following 

mixture of 𝒩1 and 𝒩2  

GM_t = ∑ (Pi (P1 + P2)⁄ )𝒩i
2
i=1 , (14) 

as the intention was to discriminate (𝒩1, 𝒩2) from (𝒩3, 𝒩4). 

Let u ∈ PC1, the projection of an image feature vector (X) 

onto the first principal component, being distributed according 

to (12). By considering (12) as proposal distribution, the 

variables in PC1 as independent candidates and (14) as target 

distribution, the probability of accepting u was estimated by 

the ratio  

R(u) = P[u ∈ PC1sub] =
∑ (Pi (P1+P2)⁄ )𝒩i

2
i=1 (u)

∑ Pi𝒩i
4
i=1 (u)

, (15) 

where 

PC1sub = {u ∈ PC1|u~ ∑ (Pi (P1 + P2)⁄ )𝒩i(u)2
i=1 }. (16) 

Note that if the variables u ∈ PC1 were actually 

independent, identically distributed (i.i.d.) variables following 

(12), the selected variables in PC1sub would be distributed 

according to (14). However, since the Gaussian mixture (12) 

was an approximation of the actual distribution of u ∈ PC1, 

the distribution (14) was therefore also an approximation of 

the distribution of u ∈ PC1sub. Nevertheless, as suggested by 

the results in Section V, in practice this approximation was 

accurate enough, leading to satisfactory results in terms of 

uninformative frame detection. Fig. 3 depicts a representative 

example of histograms of the variables in PC1, before and 

after the model simplification, along with the associated 

mixtures of 4 and 2 Gaussian distributions. 

4) Detection 

The null and alternative hypotheses were defined as 

H0: W~𝒩1(x; μ1, σ1) 
H1: W~𝒩2(x; μ2, σ2) 

(17) 

with 𝒩1 corresponding to the pure noise frames and μ1 < μ2. 

The receiver operating characteristic (ROC) curve of the two-

Gaussian model was estimated as the false positive rate (FPR) 

against the true positive rate (TPR) 

FPR(v) =
∫ 𝒩2(x)dx

v

−∞

∫ 𝒩2(x)dx
∞

−∞

 (18) 

TPR(v) =
∫ 𝒩1(x)dx

v

−∞

∫ 𝒩1(x)dx
∞

−∞

 (19) 

with, v ∈ PC1. A weighted version of Youden’s Index [34, 35] 

J was employed to derive the cut-point on the ROC that 

provides optimal trade-off between TPR and FPR. Youden’s 

index is often used in conjunction with ROC analysis as a 

measure of overall diagnostic effectiveness. Youden’s index 

represents the point along the ROC curve with maximum 

vertical distance from the first bisector [34]. Unlike the Area 

Under the Curve (AUC), Youden’s index can be used as an 

optimal cut-off point (threshold), being the point in the ROC 

curve furthest away from the chance line. In order to avoid 

threshold bias towards the largest population (negative frames 

in this case) a weighted Youden’s index  J was defined as [35]: 

J = max
v

(TPR(v) + (r × TNR(v) − 1) (20) 

with, true negative rate (specificity) TNR = 1 − FPR and 

weighting factor r = (1 − π)/απ. Moreover, α denoted the 

relative loss (cost) of a false negative classification, while π 

represented the proportion of positive (pure-noise) frames 

within the frame sequence. For the proposed application, since 

no critical decision was being made by the proposed detection 

algorithm, relative cost α was set to 1.  

The optimal cut-point vJ was then employed to derive the 

desired (optimal) false positive rate FPRJ = FPR(vJ). Finally, 

the quantile function Φ−1(p) was used to estimate the 

threshold Tf = μ2 − Φ−1(p) σ2 differentiating noise to normal 

frames. More precisely  

Φ−1(p) = √2erf −1(2p − 1) (21) 

where, erf −1 was the inverse error function and p representing  

TNRJ =  1 − FPRJ. Hence, the set of pure noise frames were 

I′
t = {It: t ∈ [1, … , K], PC1(t) < μ2 − Φ−1(p) σ2} . (22) 

B. Detection of motion artefacts 

Instead of the direct texture values, the frame-by-frame 

texture variability X’ = X(t) − X(t − 1), t ∈ [1, K] indicating 

the frame number, was used to detect motion artefacts. PCA, 

as described in (10) was then employed to reduce the 

dimensionality of the feature space. The first two principal 

components, PC1′ and PC2′, were found to contain the 

information relevant for the distinction of motion artefacts. 

Visual inspection of the data highlighted 4 different types of 

frame-by-frame motions (Fig. 2) namely, (i) motion artefact 

frames, where a large movement resulted in tissue deformation 

and spatially discontinuous frame sequences (Fig. 2.a-c and 

2.d-f), (ii) large movement frames, in which while movements 

were large, they still resulted in spatially continuous frame 

sequences (Fig. 2.g-i), (iii) normal frames with moderate 

movement (Fig. 2.j-l), and (iv) nearly static frames, with 

negligible movements. In a fashion similar to that adopted for 

the pure-noise frames, the boundaries of these cases were not 
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well-defined. To represent this underlying texture-difference 

information contained in PC1′ and PC2′, and taking into 

consideration the 4 frame-by-frame motions identified through 

the aforementioned manual visual inspection of the OEM data, 

two 4-Gaussian mixture models (GM′ = ∑ P′i𝒩′i(μ′i , σ′i)
4
i=1 ) 

were employed. In both cases (PC1′ and PC2′), the Gaussian 

distributions demonstrated zero mean and decreasing standard 

deviation (σ1 > σ2 > σ3 > σ4). Fig. 4 provides  

representative histogram examples derived from the PC1′ and 

PC2′ of a lung OEM image sequence along with the 

corresponding 4-Gaussians models, with 𝒩′
1 corresponding 

to motion artefacts and 𝒩′2to 𝒩′4corresponding to frames 

with large to negligible movements. In a similar fashion to the 

noise case, the detection problem was simplified (Fig. 4) by 

removing the two distributions with smallest standard 

deviations (normal and nearly static frames) as described in 

(14) to (16). 

1) Detection 

The null and alternative hypotheses were defined as 

 
Fig. 3. (a) Histogram corresponding to the PC1 from 72 frame sequences concatenated as a single dataset along with the corresponding 4-Gaussian mixture 
model. (b) Refined histogram along with the corresponding 2-Gaussian mixture model. The P-values of the relevant Kolmogorov Smirnov goodness-of-fit tests 

were: 0.88 for 4-Gaussian and 0.83 for 2-Gaussian. 

 

 
Fig. 4. Original and refined histogram along with their corresponding 4 and 2-Gaussian mixture models for (a) PC1′, and (b) PC2′ of the motion artefact data. A 
zoomed-in version of the original histogram is also provided to best illustrate the mixing of the 4-Gaussians and the effect of removing the 2-Gaussians from the 

overall distribution. The P-values of the relevant Kolmogorov Smirnov goodness-of-fit tests were for PC1′: 0.77 for 4-Gaussian, 0.92 for 2-Gaussian, and PC2′: 
1.0 for 4-Gaussian and 1.0 for 2-Gaussian. 
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H′0: W~𝒩′
1(x; μ, σ1) 

H′1: W~𝒩′
2(x; μ, σ2) 

(23) 

with 𝒩1′ corresponding to the motion artefact frames and 

σ1 > σ2. According to the Neyman-Pearson Lemma [36], the 

likelihood ratio test rejecting H′0 in favour of H′1when 

Λ(x) =
P(x|H′1)

P(x|H′0)
≷ k (24) 

where, P(Λ(x) ≥ k|H′0) = α, provides the most powerful test 

at significance level α for a threshold k. By, employing Bayes’ 

theorem and taking the logarithm of the likelihood ration, Λ(x) 

became 
n

2
log (

σ1
2

σ2
2) + (

1

2σ1
2 +

1

2σ2
2) (x − μ)2 ≷ log(k). (25) 

This was further simplified to  

(x − μ)2

σ1
2 ≷ γ (26) 

where, γ = 2 (
σ1

2σ2
2

σ1
2+σ2

2) (log(k) − nlog (
σ1

σ2
)) σ1

2⁄  and 

(x−μ)2

σ1
2 ~χ2, where χ2 denotes the chi-squared distribution with 

1 degree of freedom. As a result, for a given false positive rate 

(FPR),  

γ = F−1(FPR, β) = {γ: F(γ, β) = FPR}  (27) 

where, F was the chi-squared probability density function, and 

β = 1 were the degrees of freedom of the chi-squared 

distribution.  

The upper and lower thresholds denoting motion artefacts 

were therefore estimated by 

θ = μ2 ± √γσ2
2  (28) 

and the set of motion blur frames were 

I′
t = {It: t ∈ [1, K], |PC1′(t)| > θ} . (29) 

Similar to the noise case, the optimal false positive (alarm) 

rate (FPRJ) was estimated using the ROC curve and the 

relevant Youden’s index, as described in (18) to (20). 

IV. DATA ANALYSIS 

Of the available 83 OEM frames sequences, 11 datasets 

were selected as a testing set. Selection criteria included type 

of diagnosis, video duration and quality of acquired images 

(i.e. noise, contrast and artefacts levels). The remaining 

datasets were used as training set. In order to minimise a 

potential selection bias, it was ensured that representative 

frame sequences were included in both training and testing 

sets. Tables I and II summarise the key characteristics of the 

training and testing sets. The training set was employed (i) to 

create a statistical model (i.e GM model) that describes well 

the underlying texture information, and (ii) to extract a 

detection threshold that achieves an optimal trade-off between 

TPR and FPR (employing Youden’s index). The relevant 

noise and motion artefact thresholds were therefore estimated 

using the training set employing no prior knowledge about the 

testing set. The testing set was then projected in the training 

set’s principal component space and the threshold was 

employed on the relevant projection. If the assumptions used 

to make the statistical model were correct and the resulting 

GM model is representative of the underlying data, when the 

threshold is applied on the previously unseen testing set, it will 

produce results (sensitivity and specificity) that match the 

expected theoretical values (TPR and FPR derived from the 

training set).  
TABLE I 

DATASETS AND RELATIVE DIAGNOSIS FOR TRAINING AND TESTING SETS 

 Training Testing 

Benign 40 5 

Granuloma 8 3 
Malignant 24 3 

Total 72 11 

 

TABLE II 

DURATION RANGE (IN NUMBER OF FRAMES) AND TOTAL DURATION FOR 

TRAINING AND TESTING SETS 

Num. of 

frames 
Training Testing 

Mean 676 617 

Min 304 375 

Max 1520 944 

Total 48656 6790 

A. Manual data analysis 

One investigator, with substantial prior experience in OEM 

image sequences of the distal lung, annotated each individual 

frame in the testing set as normal or pure-noise. Furthermore, 

due to the more subjective nature of what is considered as 

motion artefact, two investigators independently annotated 

each individual frame in the testing set as normal or motion-

artefact. The instructions on which the annotation was based 

stated that, a frame was considered a noise frame, if no 

anatomical information was present within the frame. A frame 

was considered a motion artefact if there was (i) spatial 

deformation of the imaged structures due to the high motion 

levels compared to the acquisition speed, and/or (ii) no spatial 

continuity between temporally adjacent frames. Characteristic 

examples of normal, noise and motion-artefact frames are 

provided in Fig. 1 and Fig 2.  
 

TABLE III 

TOTAL NUMBER OF FRAMES ANNOTATED AS MOTION ARTEFACTS BY 

EACH OPERATOR INDEPENDENTLY, THE UNION AND INTERSECTION OF 

THE TWO SETS AS WELL AS THE CORRESPONDING JACCARD INDEX 

(AGREEMENT BETWEEN TWO OPERATORS) 

 Op.1 Op.2 Op. 1 ∪ Op. 2 Op. 1 ∩ Op. 2 Jaccard Index  

Overall 425 415 533 307 0.58 

 

Table III lists the number of frames annotated by each 

operator as motion artefacts, the Union and Intersection of the 

two sets, as well as the corresponding Jaccard Index [37]. 

Jaccard Index provides a statistic for comparing the agreement 

between the two finite sample sets, and is defined as the size 

of the intersection divided by the size of the union of the 

compared sets (
|Op.1∩Op.2|

|Op.1∪Op.2|
). In order to reduce the inter-

observer variability (bias of the manual data annotation), a 

frame was assigned the uninformative label if both 

investigators had annotated it as such. Otherwise, if one of the 

investigators considered that there was valuable information 

within the frame in question and labelled it as normal, the 
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frame was considered normal. The resulting binary 

annotations (summarised in Table IV) were utilised as the gold 

standard for the subsequent evaluation of the proposed 

detection algorithms.  

TABLE IV 

RANGE (IN PERCENTAGE OF FRAMES) OF THE UNINFORMATIVE FRAMES 

IN THE TESTING SET 

 Noise Motion Total Uninformative 

Mean 7.00% 4.53% 10.8% 

Min 0.14% 2.04% 2.67% 
Max 25.4% 15.2% 26.9% 

 

B. Assessing proposed model fit 

A Kolmogorov-Smirnov (KS) test [38, 39] was employed to 

assess the goodness-of-fit of the actual data on the proposed 

Gaussian mixture model. More precisely, the KS statistic was 

estimated 

DK,K′
∗ = maxψ|F1,K(ψ) − F2,K′(ψ)|  (30) 

where, F1,K(ψ) and F2,K′(ψ) were the Empirical Distribution 

Functions (EDFs) of the actual data and mixture model 

respectively (i.e. F1,K(ψ) was the proportion of actual data 

≤ ψ and F2,K′(ψ) was the proportion of the mixture model 

≤ ψ). Furthermore, K and K’ were their respective sizes (in 

number of frames). Under null hypotheses, both the actual 

data and the relevant mixture model came from the same 

distribution. For a given significance level α = 0.05, the null 

hypotheses was rejected if  

DK,K′
∗ > c(α)√

K + K′

KK′
 (31) 

where, c(α) = 1.36 for significance level α = 0.05 as 

provided in the relevant critical value table in [39]. 

C. Training-set size selection 

The overall training set S consisted of 72 datasets and 

>48000 frames containing a representative selection of frames. 

An optimal training set size would provide robust detection 

thresholds for uninformative frames while keeping 

computational requirements (relative to the size) to a 

minimum. A line-plot of set size against 

threshold robustness was employed to identify such a 

sufficient training set size. More precisely, 

set size(δ) = δ × step  (32) 

where δϵ{1,2, … ,8} and step = 6000, testing set sizes of up to 

48000 frames. Furthermore,  

threshold robustness(δ) = (mean(Aδ), rsd(Aδ))  (33) 

where, rsd(Aδ) estimated the Relative Standard Deviation of 

the set Aδ, and Aδ = {Thr1(S(Jδ)), … , Thr10(S(Jδ))} was a set 

of 10 replicated estimates of the required threshold (Thri) for 

a given subset S(Jδ) of the  training set S. Jδ~U[1, L]δ×step 

provided the uniformly distributed random indices of the 

subset of S (length of S =  L). 

D. Assessing the performance of detection 

The effectiveness of the proposed approaches in detecting 

uninformative frames was assessed quantitatively by 

 

Fig. 5. EDF of original and simplified data (4-Gaussians & 2-Gaussians)  along with the proposed model EDF for (a-b) Principal Component (PC) 1 in pure-noise 

detection, (c-d) PC1 in motion artefact detection, and (e-f) PC2 in motion artefact detection. 
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estimating their relevant sensitivity and specificity against the 

manual detection results (gold standard). The sensitivity and 

specificity levels were also compared against the relevant 

model-based ROC curves, assessing how representative the 

employed model and the associated assumptions were in 

detecting pure-noise frames and motion artefacts within 

previously unseen OEM frame sequences. 

V. RESULTS 

A. Assessing proposed model fit 

Numerous mixture models with increasing number of 

Gaussian distributions were fitted to the original EDFs in 

order to verify that the proposed model provided an optimal 

representation of the underlying data. Table V summarises the 

corresponding KS goodness-of-fit results. Table VI also 

compares the KS goodness-of-fit of the selected 4-Gaussian 

model to the corresponding 2-Gaussian model refinement (as 

described in Sections III.A.3 and III.B), while Fig. 5 illustrates 

the closeness of these models to the original EDFs (for both 

pure-noise and motion artefact detection). 
TABLE V 

RESULTS OF KOLMOGOROV-SMIRNOV (KS) TEST ASSESSING THE 

GOODNESS-OF-FIT BETWEEN ORIGINAL AND MODEL EMPIRICAL 

DISTRIBUTION FUNCTIONS 

 Noise PC1 Motion PC1 Motion PC2 

 H0 Reject P-value H0 Reject P-value H0 Reject P-value 

2 Gauss. 1 0.0007 1 0.0000 1 0.0000 

3 Gauss. 0 0.085 1 0.036 0 0.1792 

4 Gauss. 0 0.88 0 0.77 0 1.000 

5 Gauss. 0 0.80 0 1.000 0 1.000 

 

TABLE VI 

EFFECT OF SIMPLIFYING THE MODEL FROM 4 TO 2-GAUSSIANS (BY 

REMOVING CORRESPONDING FRAMES) ON THE KS GOODNESS-OF-FIT 

 Noise PC1 Motion PC1 Motion PC2 

 Original 

4 Gauss. 

Refined 

2 Gauss. 

Original 

4 Gauss. 

Refined 

2 Gauss. 

Original 

4 Gauss. 

Refined 

2 Gauss. 

𝐻0 Reject 0 0 0 0 0 0 

P-value 0.88 0.83 0.77 0.92 1.00 1.00 

B. Training-set size selection 

Line-plots were derived (as described in Section IV.C) 

illustrating the effect of increasing the size of the training set 

on the robustness (expressed as RSD) of the relevant threshold 

estimation. The process was repeated for PC1 in the detection 

of pure-noise frames, as well as PC1 and PC2 in the detection 

of motion artefacts. Fig. 6 contains the relevant plots.  

C. Sensitivity vs Specificity 

ROC curves were derived from the proposed Gaussian 

Mixture models for pure-noise and motion artefact detections. 

Fig. 7 illustrates the relevant plots with their corresponding 

Area Under the Curve (AUC) provided in the title. If the 

models provided an accurate representation of the underlying 

data, the estimated specificity and sensitivity results from the 

previously unseen testing set should match the corresponding 

values at the optimal ROC cut-off point as calculated using the 

Youden’s index (Section III.A.4). Table VII lists the 

sensitivity and specificity in pure-noise detection for each 

individual dataset as well as for the whole testing set as a 

whole. Similarly, Table VIII lists the sensitivity and 

specificity in motion artefact detection using PC1 and PC2 

individually. The model based sensitivity and specificity 

estimates are provided in the relevant table titles. Due to the 

independent modelling and analysis of PC1 and PC2, no 

model based estimates of sensitivity and specificity are 

provided for PC1 ∪ PC2. Finally, Table IX summarises the 

sensitivity and specificity of the detection of uninformative 

frames (both pure-noise and motion artefacts) collectively. To 

emulate the decision process of a manual detection, sporadic 

(1 consecutive) good frames amongst a sequence of 

uninformative frames were removed.  
TABLE VII 

SENSITIVITY AND SPECIFICITY FOR THE AUTOMATIC DETECTION OF 

PURE-NOISE FRAMES. MODEL ESTIMATES: 98.8% SENSITIVITY AND 

97.7% SPECIFICITY. IN BRACKETS: OVERALL RESULTS EXCLUDING 

OUTLYING CASE – BENIGN 1 

 Sensitivity Specificity 

Benign 1 64.4% 99.9% 

Benign 2 100.0% 99.5% 
Benign 3 100.0% 100.0% 

Benign 4 75.0% 99.6% 

Benign 5 100.0% 99.2% 
Granuloma 1 100.0% 99.8% 

Granuloma 2 100.0% 99.2% 

Granuloma 3 90.9% 100.0% 
Malignant 1 95.5% 99.4% 

Malignant 2 94.4% 98.9% 

Malignant 3 100.0% 94.6% 

Overall 93.0% (96.5%) 98.8% (98.6%) 

 
TABLE VIII 

SENSITIVITY & SPECIFICITY OF THE AUTOMATIC DETECTION OF MOTION 

FRAMES FOR ALL OF THE TESTING DATASETS COMBINED TOGETHER. THE 

FIRST TWO PRINCIPAL COMPONENTS ARE TREATED SEPARATELY. MODEL 

ESTIMATES FOR (I) PC1: 75.9% SENSITIVITY AND 96.4% SPECIFICITY, 

(II) PC2: 69.3% SENSITIVITY AND 96.1% SPECIFICITY 

PC1 PC2 PC1 ∪ PC2 

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity 

74.9% 94.3% 65.8% 93.8% 83.2% 91.8% 

 

TABLE IX 

OVERALL RANGE OF SENSITIVITY AND SPECIFICITY OF THE AUTOMATIC 

UNINFORMATIVE FRAME DETECTION, COMBINING PURE-NOISE AND 

MOTION ARTEFACT (PC1 ∪ PC2) FRAMES 

Sensitivity Specificity 

93.0%  92.6% 

VI. DISCUSSION 

Thorough visual inspection of the available OEM data by an 

experienced investigator highlighted four different texture 

categories (Fig. 1, 3) and an equal number of frame-by-frame 

movement types (Fig. 2, 4), to be used for the detection of 

pure-noise and motion artefacts frames respectively. As 

illustrated by Figs. 3, 4 and 5 and verified by the 

corresponding KS goodness-of-fit results in Table V, in both 

cases, the 4-Gaussian mixture models provide an optimal 
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representation to the underlying information. Reducing the 

number of Gaussian distributions in the proposed model has a 

direct and substantial detrimental effect in the corresponding 

goodness-of-fit to the underlying data. On the other hand, 

increasing the number of Gaussians in the model to 5 (or 

more) does not necessarily improve the relevant goodness-of-

fit. Further visual inspection of the available data indicates 

that, in the case of pure-noise frames, the challenge lies in the 

accurate and robust distinction between pure-noise (Fig. 1.a) 

and subtle feature frames (Fig. 1.b). Similarly, in the case of 

motion artefacts, the challenge lies in the distinction between 

them (Fig. 2.d-f) and large (but continuous) movements (Fig. 

2.g-i). The relevant distribution overlaps in Figs. 2 and 4 

verify this observation (largest overlaps between 𝒩1 and 𝒩2). 

By refining the Gaussian Mixture model as described in 

Section III.A.3 the detection problem is reduced to a classical 

binary hypothesis test deciding between 𝒩1 and 𝒩2. The close 

proximity of the refined model to the corresponding 

histograms (Fig. 5 and Table VI) along with the subsequent 

promising detection results suggest that the refined models 

provided a fair approximation of the distribution of the 

relevant PCA coefficients.  

A large and diverse set of OEM images was employed to 

train the proposed algorithms for the detection of 

uninformative frames. As illustrated by Fig. 6, a training-set of 

>30000 frames is sufficiently large for a robust threshold 

estimation (RSD<6% - small drop for larger training sets) in 

both the pure-noise and motion artefact cases. Section III.A.4 

employed a simple approach based on the model-based ROC 

curve and the corresponding weighted Youden’s Index to 

detect pure-noise frames. The ROC curve in Fig. 7.a along 

with the corresponding AUC and predicted detection 

sensitivity of 98.8% and specificity of 97.7% support the 

decision of employing such a simple model. The decision is 

further backed by the encouraging detection results on the 

previously unseen testing set, yielding an overall sensitivity of 

93% and specificity of 98.8%. Not taking into consideration 

the outlying dataset “Benign 1” can further increase the 

overall sensitivity to 96.5% and specificity to 98.6%. The very 

promising detection results, along with their close agreement 

to the results predicted by the proposed Gaussian-Mixture 

model, highlight the reliability of the proposed detection 

approach and the limited scope for a more mathematically 

advanced solution. 

The detection of motion artefacts was a more challenging 

and subjective task, hence the decision to manually annotate 

the relevant frames by two operators. The very modest 

agreement (Jaccard index: 0.58 – Table III) was mostly due to 

inter-observer variation in the start and end frames of an 

uninformative frame sequence. Rarely there was a 

disagreement over a full motion-blur artefact. Nevertheless, 

the limited agreement between the two manual annotations 

confirms the more challenging and subjective nature of the 

problem. The observation is further supported by the 

corresponding ROC curves (Fig. 7.b and 7.c) with the optimal 

cut-off points (Youden’s Indices) yielding sensitivity of less 

than 76%. Due to the more challenging and subjective nature 

of the problem, the Neyman-Pearson Lemma was employed 

for the estimation of the detection threshold providing the 

most powerful test at significance level α for a threshold k. 

PC1 yields better detection results achieving a sensitivity of 

74.9% and specificity of 94.3%, as opposed to PC2’s 

sensitivity of 65.8% and specificity 93.8%.  As illustrated in 

Table VIII, the detection results for both PC1 and PC2 were in 

close agreement with the ones estimated by the proposed 

Gaussian mixture models. Combining the binary masks 

derived from each principal component can substantially 

increase the detection sensitivity to a promising 83.3% (from 

74.9%), with a minimal effect in corresponding detection 

specificity (dropping from 94.3% to 91.8%). When combined 

 
Fig. 6. Line-plots of detection threshold variability (robustness expressed as Relative Standard Deviation) for increasing size of training set for (a) PC1 in pure-
noise detection, (b & c) PC1 and PC2 in motion artefact detection. In all cases a set size of 30000 enables a robust (<6% RSD) threshold estimation. 

 

 

Fig. 7. Model based Receiver Operating Characteristic (ROC) curves for (a) PC1 in pure-noise detection, (b &c) PC1 and PC2 in motion artefact detection. 
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with the pure-noise detection the proposed approaches reliably 

detect uninformative frames with sensitivity of 93.0% and 

specificity of 92.6% (Table IX). Part of the disagreement 

(good frames identified as uninformative) between manual and 

automatic detection can potentially be attributed in the 

restricted region used in the estimation of the GLCMs and the 

assumption that no additional information, enough to effect 

the decision process, is imaged in the excluded regions. 

Having developed a reliable method for detecting and 

removing uninformative frames from OEM imaging 

sequences of the distal lung, the next step is to further classify 

the remaining, useful, frames into sub-categories based on the 

underlying image textures. This further classification would 

differentiate between frames imaging the bronchus and ones 

imaging the alveolar space. Subsequently, alveolar space 

frames can potentially be further classified amongst, healthy 

elastin, pathological elastin and cell-flooded frames. Such 

classification would enable pulmonologists to target analysis 

to regions of interest, reducing the subjectivity and time-

efforts of the analysis. With the advent and development of 

optical molecular imaging and exogenous contrast agents [1, 

3], such frame classification will be an essential requirement 

to expedite quantifiable optical data analysis. 

VII. CONCLUSIONS 

Uninformative frames comprise a considerable proportion 

(up to >25%) of clinical pulmonary OEM frame sequences. 

Texture descriptors derived from the Gray-Level Co-

occurrence Matrices, such as Contrast, Energy, Homogeneity, 

etc., provide valuable information for the detection of frames 

containing either pure-noise or motion artefacts. PCA (as a 

mean of dimensionality reduction) combined with the 

proposed Gaussian Mixture models provide a fair 

representation of the underlying texture information, enabling 

an accurate (sensitivity: 93.0%) and robust (specificity: 

92.6%) detection of uninformative frames in human lung 

OEM frame sequences. A similar approach can be employed 

to further classify any informative frames based on their 

underlying texture assisting any manual and automatic post-

analysis. Finally, conditional to appropriate model refinement, 

the proposed algorithms can become widely applicable in 

OEM frame sequences acquired on (i) other organ systems 

(e.g. the gastrointestinal tract), and (ii) other OEM imaging 

platforms. 
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