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Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are 

highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite 

of morphological and architectural changes induced by high ambient temperature (up to ~29°C) is collectively called 

thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is 

particularly relevant in the context of climate change, as this knowledge will be key to breed for thermo-tolerant crop 

varieties in a rational fashion. Until quite recently the fundamental mechanisms of temperature perception and 

signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting 

the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has 

emerged as a major player to regulate phytohormone levels and their activity. To control thermomorphogenesis, 

multiple regulatory circuits are in place to modulate PIF4 levels, activity, and its downstream mechanisms. 

Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic 

mechanisms and chromatin-level regulation. In this review we summarize recent progress in the field and discuss 

how the emerging knowledge in A. thaliana may be transferred to relevant crop systems.  

 

2014 was the warmest year since systematic temperature measurements began in 18801. In fact, the ten warmest 

years on record all occurred after 1998. The 5th report of the United Nations Intergovernmental Panel on Climate 

Change2 projects an increase of 0.8-4.8°C in global mean surface temperature within the 21st century. Such figures 

are alarming as it is expected that this will strongly affect plant distribution and survival and therefore threaten 
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biodiversity3–11. Some studies already indicate that plant species unable to adjust flowering time in response to 

temperature are disappearing from certain environments5 and species tend to shift to higher altitudes and latitudes12. 

 

Likewise, crop productivity will probably greatly suffer from global warming, while food production is required to 

increase drastically to sustain a growing and more demanding world population9,13–15. A meta-analysis summarizing 

more than 1700 studies on the effects of climate change and adaptations on crop yields revealed consensus that in 

the second half of this century climate warming will likely have a negative effect on yields of important staple crops13.  

 

Breeding for crop-level adaptations to cope with high temperatures could potentially reverse this negative trend9,13–

15. In several plant species mechanisms evolved to adapt growth and morphology to stimulate mitigation of warmth 

through enhanced evaporative cooling, increased convection and direct avoidance of heat flux from the sun16–20. If 

understood, the underlying molecular processes of these so-called thermomorphogenesis responses could be 

attractive breeding targets for improving crops to withstand climate warming. 

 

Although abundant literature is available on how plants tolerate extreme heat stress (reviewed in9,21), we are only 

beginning to understand the molecular mechanisms underlying thermomorphogenesis in response to moderately 

increased temperatures. A key breakthrough was the identification of the bHLH transcription factor PHYTOCHTOME 

INTERACTING FACTOR 4 (PIF4) as a central regulator of ambient temperature signalling in Arabidopsis thaliana22. 

Recent findings implicated important roles for light signalling pathways, the circadian clock23–28, auxin22,29–31 and other 

phytohormones31–34 in PIF4-mediated temperature-induced growth. Furthermore, epigenetic mechanisms appear at 

the nexus of induction35 and attenuation36 of growth acclimation in response to high ambient temperatures.  

 

In this review, we discuss and integrate recent findings on the molecular networks driving thermomorphogenic 

adaptations. We will furthermore highlight missing links and suggest how the knowledge on A. thaliana could be 

transferred to relevant crop systems. In addition to thermomorphogenesis, adaptation to high ambient temperature 

also involves physiological processes such as photosynthetic acclimation, respiration and changes in carbon balance. 

For discussions of these topics as well as on phenological changes including premature flowering, we refer the reader 

to reviews elsewhere20,37–39. 

 

Thermomorphogenesis; growth and developmental processes affected by high temperature  

 

To the best of our knowledge, the term thermomorphogenesis was coined by Erwin and colleagues16, in analogy to 

photomorphogenesis (light-mediated growth), to describe the effects of temperature on plant morphology. In the 

context of this review, it is defined as the suite of morphological changes that together likely contribute to adaptive 

growth acclimation to otherwise detrimental high ambient temperature conditions.  

 

Elongation of the hypocotyl is one of the earliest thermomorphogenic effects seen in seedlings across A. thaliana 

accessions in response to high ambient temperature22–36,40–50 (Fig. 1a, Table 1). It has been suggested that hypocotyl 

elongation moves the sensitive meristematic and photosynthetically active tissues away from heat-absorbing soil and 

may promote cooling by allowing better access to moving air31.  

 

Rosette leaves and cotyledons exhibit marked petiole elongation upon sensing of high ambient temperatures17–

20,22,23,28,30,35,36,41,45,50 and move upward; a process called hyponastic growth18–20,22,36,45,51–54 (Fig. 1a,b, Table 1). It was 
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argued that hyponasty reduces direct heat flux from the sun and, again, allows a cooling breeze to reach the leaves17–

20. Together with petiole elongation, hyponasty results in an open rosette structure. High ambient temperature-grown 

plants exhibiting these phenotypes showed greater transpiration rates and had cooler leaves than their cool-grown 

counterparts, when both groups were subjected to high temperature conditions17. These data suggest that 

thermomorphogenic adaptations may contribute to high temperature mitigation by enhancing leaf evaporative 

cooling17,18. This idea was supported by mathematical models, which predicted that a combination of petiole 

elongation and hyponastic growth may operate in concert to sufficiently separate leaves from both the soil and each 

other to assure optimal transpiration and leaf cooling under well-watered conditions17,18. In addition, high 

temperature-grown plants have fewer stomata and develop smaller and thinner leaves17,28,45,53,54 (Table 1). These 

phenotypes may further facilitate cooling by reducing boundary layer thickness, which stimulates heat dissipation by 

evaporation and convection17–20.  

 

PIF4 is a hub in ambient temperature signalling 

 

Changes in plant morphology initiated by high ambient temperature and by vegetation shade are very similar55, 

indicating the possibility of shared signalling elements. This idea led to the identification of the bHLH transcription 

factor PIF4 as a key regulator of thermomorphogenic phenotypes including hyponasty, hypocotyl and petiole 

elongation22,29,30,32,56,57. As discussed below, PIF4, and to a lesser extent PIF5, performs its pivotal function in high 

temperature signalling by orchestrating transcriptional changes which subsequently trigger primarily phytohormone-

induced elongation responses.  

 

Quickly after shifting plants to high ambient temperature, a notable increase in PIF4 transcript has been observed, 

triggering thermomorphogenesis22,30,32. However, thermomorphogenesis needs to be precisely timed and restrained 

to, for example, balance elongation growth versus biomass production58. A complex circuitry of PIF4 regulation is 

therefore at play that includes gene expression, epigenetic regulation, protein stability, protein sequestration, 

promoter access and promoter competition (Fig. 2). This tight control of PIF4 activity and other coordinating factors 

is indispensable for the integration of various environmental signals into plant morphogenesis and growth control.  

 

Transcriptional regulation of PIF4 

 

Expression of PIF4 itself is rhythmic and tightly regulated by the circadian clock (Fig. 2a)59–62. The clock regulates the 

rhythmic expression of PIF4 and PIF5 through repression by the so called evening complex (EC), consisting of the 

proteins EARLY FLOWERING 3 (ELF3), ELF4 and LUX ARRYTHMO (LUX)59,62. Expression of core clock genes shows 

temperature-induced alterations in transcription profiles in extended dark periods25. However, in diurnal conditions, 

clock gene expression is largely robust over a wide range of ambient temperatures. This temperature compensation 

seems to be primarily maintained via the clock components LATE ELONGATED HYPOCOTYL (LHY) and GIGANTEA (GI)63. 

It is possible that clock and temperature information are transmitted to PIF4 directly via ELF3, since the ability of ELF3 

to bind target genes is attenuated at 27°C26. Interestingly, two recent studies indicated that genetic variation in ELF3 

explains a large part of natural variation in temperature-induced PIF4 expression and elongation growth among A. 

thaliana accessions26,28. When the EC peaks in the early night, PIF4 expression is suppressed64,65. Reduction of EC 

during the progression of the night then leads to a rise in PIF4 levels. However, post-dawn decrease of PIF4 levels 

suggests the involvement of other transcriptional repressors. As an additional level of regulatory control, ELF3 can 

also directly bind to PIF4 protein66. 
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In the light, PIF4 restriction likely involves a similar repression mechanism facilitated at least partially by the bZIP 

transcription factor LONG HYPOCOTYL 5 (HY567–69; Fig. 2a). hy5 mutants grown at standard growth temperatures 

(20°C) show increased PIF4 expression at mid-day and a transiently increased expression in response to elevated 

temperature41. Genome-wide ChIP analyses have identified PIF4 promoters as HY5 targets70 and a temperature-

insensitive quadruple pif mutant suppressed temperature-hypersensitivity of hy5 mutants41. Interestingly, HY5 

protein is less abundant at higher temperatures69, which presumably dampens HY5 control of PIF4 in warm 

conditions. Thus, temperature-dependent transcriptional release of PIF4 by reducing HY5 levels, likely via the DE-

ETIOLATED 1 (DET1) - CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) regulatory cascade41, may represent a 

mechanism to control PIF4 transcript levels in a light- and temperature-dependent manner. 

 

Post-translational regulation of PIF4 protein levels 

 

In addition to control at the transcriptional level, PIF4 is also subjected to post-translational control. PIF4 interacts 

with several proteins, which can affect its activity or stability. The name-giving interaction with phytochrome B (phyB) 

in the light, for example, results in phosphorylation and subsequent ubiquitination followed by proteasomal 

degradation of PIFs71 (Fig. 2b). The kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) has also been shown to 

phosphorylate PIF4 preferentially in the light, restricting the daytime impact of PIF4 by depleting protein levels72. 

However, as high temperature triggers accumulation of phosphorylated PIF4 in red and blue light, light-mediated 

phosphorylation does not necessarily result in degradation of the protein58. Possibly, differential phosphorylation 

patterns by independent kinases may occur in response to distinct stimuli, resulting in different fates of the protein.  

 

Recently, interaction of PIFs with DET1, a repressor of photomorphogenesis, has been shown to stabilize PIFs and 

counteract their degradation73,74 (Fig. 2b). Whether or not this process directly contributes to the regulation of PIF 

activity in response to elevated temperatures remains to be elucidated. However, det1 mutants are impaired in 

temperature-induced hypocotyl elongation41, which could very well indicate a dual role of DET1 in temperature-

dependent PIF regulation via direct interaction/stabilization, and also DET1-COP1-mediated HY5 degradation. 

 

Interaction with other proteins can also sequester free PIF4 protein, preventing its DNA-binding and downstream 

transcriptional regulation48,58,75. Among these, LONG HYPOCOTYL IN FAR-RED 1 (HFR1), which accumulates in a 

CRYPTOCHROME 1 (CRY1)-dependent manner, acts as a negative regulator in temperature responses under 

monochromatic blue light58. This process may also contribute to PIF4 regulation in blue light-rich white light 

conditions (Fig. 2b).  

 

In addition, PIF4 access to target promoters seems to be under tight control as well. Here, competition for mutual 

regulatory DNA-binding sites can occur among PIF4 and HY5, which differentially affects the transcriptional activity 

of target genes69. As increasing temperatures result in decreased HY5 and increased PIF4 protein levels22,32,69, the 

alteration in protein ratios can quantitatively affect target gene expression levels.  

 

Thermomorphogenesis depends on PIF4-mediated regulation of phytohormone levels and activity 

 

Phytohormone biosynthesis and signalling genes represent prominent PIF4 targets32, thereby connecting PIF4 activity 
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with the long-known essential role of phytohormones in thermomorphogenesis31 (Figure 2C).  

 

Auxin and auxin signalling are required and sufficient for PIF4-mediated high temperature-induced hypocotyl 

elongation and other thermomorphogenic responses29–32. At high ambient temperatures, free IAA levels in aerial 

tissues are increased29–31. This is likely caused by temperature-mediated binding of PIF4 to promoters, and subsequent 

activation of auxin biosynthesis genes like YUCCA 8 (YUC8), cytochrome P450 CYP79B, and TRYPTOPHAN 

AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1)29,30 (Fig. 2c). In support of this, IAA levels do not increase at high 

ambient temperatures in pif4 mutants29–31. 

 

Increased intracellular auxin levels initiate gene expression changes via the TRANSPORT INHIBITOR 1/AUXIN 

SIGNALING F-BOX proteins (TIR1/AFBs) signalling pathway77. Auxin binding by a co-receptor complex formed by 

TIR1/AFBs and members of the AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) protein family results in the subsequent 

degradation of AUX/IAAs and the initiation of transcriptional auxin responses78. Accordingly, mutants defective in one 

or more of the partially redundant TIR1/AFBs show reduced temperature-induced hypocotyl elongation31,41.  

Among the temperature-inducible auxin response genes are the SMALL AUXIN UP RNA 19-24 (SAUR19-24) and 

SAUR61-68 subfamilies29,32. Several members of this gene family have been shown to regulate elongation growth, 

likely by increasing H+-ATPase activity at the plasma membrane79–81. Accordingly, the overexpression of stabilized GFP-

SAUR19 rescues the thermomorphogenic hypocotyl elongation defect of the pif4 mutant29. Besides SAURs, EXPANSIN 

cell wall loosening enzymes directly affect cell elongation and interestingly, temperature-induced expression of an 

EXPANSIN gene was positively correlated with heat tolerance in the grass Agrostis scabra82. Furthermore, EXPANSIN 

expression in response to light and GA has been shown to depend on PIF475, which makes it likely that temperature 

control of EXPANSIN also requires PIF444.  

 

In addition to auxin, brassinosteroids (BR) and gibberellins (GA) play crucial roles in high temperature-induced 

hypocotyl elongation22,31–34,48,83,84 (Fig. 2c). The transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), for instance, 

is involved in the regulation of temperature-induced hypocotyl elongation in a PIF-dependent manner and directly 

interacts with PIF433. Furthermore, the det2-1 BR biosynthesis mutant displays defects in thermomorphogenic 

responses31, and pharmacological inhibition of BR signalling inhibits temperature-induced growth32. Consistent with 

the currently understood molecular mechanism for synergistic interaction of auxin and BRs, a highly active BR 

pathway might sensitize seedlings for the temperature-induced increase in auxin levels32. This might be mediated via 

the regulation of transcription factor activity. PIF4 and BZR1 directly interact with AUXIN RESPONSE FACTOR 6 (ARF6) 

and enhance its binding to promoters. Accordingly, the BZR1/ARF6/PIF4 (BAP) module synergistically regulates many 

shared target genes that may ultimately trigger elongation growth34,84 (Fig. 2c). However, it remains unclear whether 

ARF6 has a role in thermomorphogenesis and also the exact role of BR requires further investigation.  

 

Gibberellin (GA) presence leads to degradation of growth-repressive DELLA proteins that inhibit PIF action in light 

signalling75,85. Moreover, Stavang and colleagues32 demonstrated a rapid up-regulation of the major GA biosynthesis 

genes AtGA20ox1 and AtGA3ox1 in A. thaliana seedlings subjected to elevated temperatures, whereas the prominent 

catabolism gene AtGA2ox1 was down-regulated. Consistent with these observations, detailed mutant analyses 

showed that both GA biosynthesis and signalling are required for the promotion of thermomorphogenesis32. This 

suggests that the GA pathway is more active at high ambient temperatures, putatively as a result of increased GA 

levels and release of DELLA-dependent PIF4 sequestering. However, in contrast to auxin, the GA pathway appears not 

sufficient to induce thermomorphogenesis, since quintuple della mutant seedlings still show a partial hypocotyl 
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elongation response22,32. Interestingly, GA-mediated cell elongation requires BRs, auxin, BZR1 and PIF4, and it was 

shown that DELLA growth repressors directly interact with BZR1 and ARF634,83. GA presence releases DELLA-mediated 

repression of BZR1 and ARF6 to allow BAP-module function and subsequent induction of hypocotyl elongation34,83 

(Fig. 2c). Hence, GA seems permissive, rather than regulatory, by modulation of PIF4 activity.  

 

Multiple signalling pathways converge at PIF4 to balance auxin-mediated thermomorphogenesis 

 

Tight regulation of PIF4 and its downstream auxin biosynthesis and signalling targets is required to assure that cooling 

capacity is achieved, while physiological imbalance and exaggerated elongation growth is prevented. Therefore, 

several signal transduction pathways converge on PIF4 in addition to the (post-)transcriptional regulatory mechanisms 

discussed above.  

 

One such pathway involves feedback regulation by AUX/IAA auxin signalling genes (Fig. 2c). Various AUX/IAAs (e.g. 

IAA4 and IAA29) are induced under high ambient temperatures in a PIF4-dependent manner22,31. Auxin-mediated 

degradation of AUX/IAAs and subsequent release of ARF transcription factors is essential for thermomorphogenesis. 

Yet, the TIR1/AFB-independent direct and rapid induction of the genes encoding AUX/IAA transcriptional repressors 

by PIF4 also provides the possibility of a fast and timely attenuation of the auxin stimulus when auxin levels decrease. 

Consistent with this idea, gain-of-function mutations in several AUX/IAAs (e.g. SHY2/IAA3 and IAA19/MSG2) can 

suppress PIF4-mediated hypocotyl elongation at high temperatures30,47. 

 

A recent study described the involvement of epigenetic silencing of the auxin biosynthesis gene YUC8 to attenuate 

thermomorphogenesis36. Mutants in the RNA-binding protein FLOWERING TIME CONTROL PROTEIN A (FCA) exhibited 

increased PIF4 binding to the YUC8 promoter (Fig. 2c). Accordingly, fca mutants displayed increased auxin levels and 

exhibited enhanced hypocotyl and petiole elongation as well as hyponasty under both control and elevated 

temperatures36. Furthermore, enhanced levels of the activating epigenetic histone mark H3K4me2 on chromatin of 

the YUC8 promoter were observed at high temperatures, which was further stimulated in the fca mutant 

background36. Taken together, the results suggest that PIF4 binds to the YUC8 promoter and stimulates auxin 

biosynthesis driving thermomorphogenesis shortly after high temperature sensing, followed by PIF4-mediated 

recruitment of FCA. This leads to removal of activating H3K4me2 marks and subsequent dissociation of PIF4 from the 

YUC8 locus, resulting in attenuation of thermomorphogenesis36. 

 

Additional regulation of PIF4 may be conferred via HLH factors (Fig. 2c). The non DNA-binding HLH factor 

PHYTOCHROME RAPIDLY REGULATED 1 (PAR1) attenuates high temperature-mediated elongation responses through 

direct inactivation of PIF448, resulting in decreased high temperature-induced hypocotyl elongation48. Furthermore, 

the BAP module stimulates the expression of another non-DNA-binding HLH factor PACLOBUTRAZOL RESISTANCE 1 

(PRE1)34,83. PRE1 acts as a positive regulator of thermomorphogenesis as part of a module of three HLH/bHLH factors, 

together with ILI1 BINDING BHLH1 (IBH1) and HOMOLOG OF BEE2 INTERACTING WITH IBH1 (HBI1)34,44,83
. 

Sequestration of IBH1 by PRE1 facilitates the binding of HBI1 to the promoters of EXPANSIN genes 44, promoting cell 

wall loosening and hypocotyl elongation (Fig. 2c). Consistent with this model, high temperature-induced hypocotyl 

elongation is severely reduced in transgenic lines displaying reduced PRE1/HBI1 or enhanced IBH1 levels34,44,83. 

 

Modelling-based integration of light, circadian and temperature signals in the control of thermomorphogenesis 
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The studies outlined above illustrate that PIF4 associates with a number of proteins, that collectively integrate 

multiple environmental and endogenous stimuli to control thermomorphogenesis. While we already have detailed 

knowledge of some molecular events, we are still some way from understanding how the network operates at a whole 

system level. When striving to do this, lab-to-lab variation in experimental regimes, and limited access to quantitative 

data, can provide additional obstacles.  Thus, linking new and published data to gain a comprehensive understanding 

of thermo-regulation is not a trivial process. Despite these constraints, mathematical modelling has emerged as a 

valuable approach to learn how complex biological systems work. Modelling provides a formal means to consolidate 

knowledge, challenge our current understanding and derive new and experimentally testable hypotheses. Recently, 

a combination of modelling and experimental approaches was successfully applied to address the complex regulatory 

circuitry underlying morphogenesis by connecting the circadian clock, light and temperature to identify new 

regulators and interconnections and to explain regulatory switches in response to multiple conflicting stimuli27,43,86. 

 

Initial groundwork in this area was laid by Rausenberger and colleagues87, who constructed the first kinetic model for 

light signalling. This model captured key aspects of phyB photochemistry including photoreceptor protein dynamics 

to hypocotyl length87,88. The model also highlighted the combined network features that were required to deliver 

fluence rate dependency of phyB. A more recent study extended the Rausenberger87 model to incorporate PIF control 

of hypocotyl elongation43. This revised model provided a framework to understand how changes in the light and 

temperature environment alter signalling through the phyB-PIF circuit. The study revealed that temperature has a 

strong impact on how light regulates hypocotyl elongation by showing that fluence rate-dependent hypocotyl 

elongation is attenuated at 22°C compared to 17°C. Furthermore, at 27°C increasing fluence rates do not inhibit, but 

instead, promotes, elongation above a low irradiance threshold. This infers that temperature can completely switch 

the mode of light action, possibly by increased photoconversion between active Pfr and inactive Pr forms at higher 

fluence rates, resulting in less efficient phyB signalling. This scenario predicts that phyB would be less effective at 

degrading PIF proteins at increased fluence rates at 27°C. However, this is not the case, as a strong fluence rate-

dependent depletion of PIF4 (and PIF3) protein levels was observed at both 22°C and 27°C43. Model analysis provided 

an alternative hypothesis; that fluence rate-dependent factors are required to modulate PIF activity. At moderate 

temperatures these factors suppress PIF action, but at higher temperatures they activate PIFs. This hypothesis was 

partially validated, as HY5 was shown to be a strong PIF suppressor at cooler temperatures, particularly as fluence 

rates increase43,69. Nevertheless, the molecular or biochemical entity that mediates light activation of PIFs at higher 

temperatures has yet to be determined. 

 

Although such steady-state hypocotyl models provide useful formats to conduct network structure-function analyses, 

rhythmicity of PIF-mediated hypocotyl elongation requires integration of the circadian clock and natural 

photoperiods59,62,60,61. A study by Seaton and colleagues27 constructed the first external coincidence model for 

hypocotyl growth. This was accomplished by integrating the evening complex (EC) and light regulation of PIF4, PIF5 

and their direct targets, ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2) and IAA2959,76,61. This model configuration 

matched observed photoperiod responses of ATHB2 and IAA29 in wild type and simulated clock mutants. As 

temperature modulates PIF4 expression through the EC25,26, the authors27 tested whether this response could be 

captured by the model. By introducing temperature modulation of EC affinity for the PIF4 promoter, the model was 

able to match the temperature-induced early rise of PIF4 expression, and the associated changes in ATHB2 and IAA29, 

substantiating the proposed mode of thermal PIF4 regulation through the EC. 

 

Based on the described examples, it is evident that combining modelling and experimental approaches has proved to 
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be important in deciphering biological complexity. The highlighted studies27,43,68 provide conceptual frameworks to 

understand how the mode of PIF4 control by light is switched by temperature; and the temperature-dependent 

nocturnal rise in PIF4 transcription in a diurnal cycle. The latter study27 also provides a systems level understanding 

of how temperature and photoperiodic signals integrate to control growth.  

 

Chromatin level regulation at the nexus of thermomorphogenesis 

 

Temperature influences virtually every biological process and a key feature of investigating the impact of temperature 

on any given organism is that passive, thermodynamic effects of temperature on biomolecules needs to be separated 

from active thermal perception and signalling89. Among the processes that are tightly controlled by temperature are 

gene transcription and mRNA degradation. Sidaway-Lee and colleagues noted that both transcription and mRNA 

decay rates passively increased in response to higher ambient temperatures in A. thaliana90. In an effort to dissect 

active and passive thermal regulation, they found that active temperature-directed changes in mRNA abundances 

could be assigned to temperature-mediated regulation of transcription, rather than mRNA decay90. The authors next 

determined which epigenetic modifications were related to temperature-mediated transcriptional regulation and 

found that H3K27me3 was associated with genes exhibiting both high and low temperature-dependent 

transcriptional regulation. This epigenetic mark was depleted from genes showing passive temperature-mediated 

regulation only90. Global changes in several other epigenetic marks, including H3K4me3, H3K9Ac and DNA 

methylation, were however not inferred in active thermo-regulation of gene expression90, but contribution of these 

marks on specific thermomorphogenesis-regulating genes cannot be excluded. The prominent role for epigenetic 

modifications in thermomorphogenesis control was recently supported by the above-described example of FCA-

mediated H3K4me2 removal from the YUC8 promoter, which likely restricts PIF4 binding and thereby attenuates 

thermomorphogenesis36. 

 

In addition to epigenetic modifications, chromatin remodelling has a prominent role in thermomorphogenesis. ACTIN 

RELATED PROTEIN 6 (ARP6) controls H2A.Z-nucleosome incorporation into chromatin91 and plants carrying mutations 

in ARP6 display several aspects consistent with a constitutive thermomorphogenic response such as longer hypocotyls 

and petioles and a transcriptome profile typical for high ambient temperatures, even at lower growth temperatures35 

(Fig. 2c). This implies a role for H2A.Z-containing nucleosomes in thermal regulation of transcription. H2A.Z-

nucleosomes are highly enriched at the beginning of genes at the +1 position, adjacent to the transcription start site. 

For some genes, such as HEAT SHOCK PROTEIN 70 (HSP70), it has been shown that the occupancy of the +1 H2A.Z-

nucleosome is rate-limiting for expression. Consequently, HSP70 was more highly expressed in the arp6 background 

compared to wild type at low ambient temperatures. Based on these observations, it was hypothesized that the 

observed high temperature-induced H2A.Z eviction may provide thermal information to the cell by allowing better 

accessibility for transcriptional regulators that ultimately orchestrate thermomorphogenesis35. H2A.Z eviction 

therefore appears to enable temperature-dependent expression at least for some - and possibly many - genes. A key 

question is whether H2A.Z-nucleosome eviction is a direct response to temperature (suggesting it is thermosensory) 

or whether it is mediated indirectly, for example via a temperature-responsive chromatin remodelling factor. Notably, 

however, arp6 mutants still show an increase in hypocotyl elongation at warmer temperatures, suggesting that H2A.Z-

nucleosomes themselves do not transmit all temperature information.  

 

 Future challenges, knowledge transfer and conclusions 
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Numerous open questions about temperature signalling and response networks remain to be resolved before 

comprehensive understanding of how thermomorphogenesis regulation is achieved. Likely, many relevant 

thermomorphogenesis regulators remain to be identified and their signalling hierarchies need to be investigated to 

understand how multiple conflicting signals are integrated in coordinated plant growth and development. 

Importantly, the thermomorphogenesis mechanisms described here are probably operating across a broad range of 

non-damaging temperatures, beyond the somewhat rigid temperature range of ~20 to ~29°C normally used in 

thermomorphogenesis research in A. thaliana (Table 1). To fully understand plant acclimation to warmer 

temperatures, a broader temperature range needs to be taken into account. Above all, however, the exact 

mechanisms by which small changes in ambient temperature are sensed remain enigmatic. H2A.Z eviction and 

subsequent changes in chromatin suggest a possible temperature sensing mechanism, but this needs to be 

confirmed. The data are consistent with a model whereby H2A.Z-nucleosomes at the transcriptional start site35 and/or 

the gene body90 may be rate-limiting for the expression of other key genes in the thermomorphogenesis pathway, 

such as PIF4 or PIF4 targets. Alternatively, the enhanced elongation phenotype of arp6 may arise from a parallel 

pathway. 

 

Our currently rather limited understanding of ambient temperature perception is in contrast to many other signal 

transduction pathways. This may be due in part to the involvement of numerous processes, prohibiting the 

elucidation of a 'temperature receptor'. Among these, temperature effects on transcriptional rates, protein-protein 

interaction, protein turn-over, changes in subcellular localization and changes in rates of metabolism might intricately 

contribute to altered physiological read-outs of known and unknown signalling processes. The recent identification 

of natural CRYPTOCHROME 2 alleles and their role in thermomorphogenesis50 emphasizes that the identification of 

additional, yet unknown rate-limiting and crucial signalling hubs within this network of sensors and response 

elements constitutes a major challenge, as does experimental design and interpretation. In this respect, the role of 

metabolism in thermomorphogenesis deserves more attention. Carbon starvation occurs in plants shifted to high 

ambient temperatures and this correlates with thermomorphogenesis phenotypes54. Moreover, PIFs including PIF4, 

are required for sucrose-induced hypocotyl elongation and PIF5 has been shown to be stabilized by sucrose92,93. 

Sugars induce auxin biosynthesis by stimulating auxin biosynthesis genes94, an effect that might potentially be 

counteracted or enhanced by PIFs depending on specific growth conditions. Such data underscore that temperature, 

light, sugars, PIFs and auxin are part of a complex, not yet well understood circuitry integrating environmental and 

metabolic cues into a coordinated growth response. Genetic analysis can be used to provide novel insight into the 

complex molecular networks underlying thermomorphogenesis, but major advances will require the combination of 

wet lab genetic, physiological and biochemical approaches together with in silico modelling of dynamic structural 

plant phenotypes and the underlying genetic circuitries. 

 

One important aspect that needs particular consideration is the interaction of thermomorphogenesis with other 

environmental stresses. The relationship with drought deserves more attention, since thermomorphogenesis 

facilitates cooling by enhanced transpiration, which is only favourable under well-irrigated conditions17. Water is 

already growth-limiting in many parts of the world95 and high temperatures and drought often occur simultaneously, 

suggesting that thermomorphogenic acclimation is not beneficial, and can be even detrimental in these conditions. 

Accordingly, when combined, high temperatures and drought result in a more severe inhibition of growth in plants 

than observed if only one individual stress is experienced53. Both stresses have impact on growth via partly separate 

and partly parallel mechanisms that become additive when experienced together. Therefore, it is important to assess 
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the contribution of thermomorphogenesis-regulatory networks on plant acclimation to other stresses and their 

combinations. 

 

Climate change already has caused large-scale changes in distribution and behaviour of wild species, and 

unseasonably hot weather led to global disruptions in crop productivity, for example in 2003 and 2012. Further 

temperature increases during this century are forecast to exacerbate these problems3–9,13–15. 

 

Crop-level adaptations have the potential to reverse projected detrimental effects of climate change on agricultural 

yield13–15. Such adaptations could include the use of alternate varieties or even species, planting times, irrigation and 

fertilization regimes. Of all possibilities, cultivar adaptations are predicted to have the greatest positive impact on 

yields under the projected climate change13. If understood, one promising and socially accepted way to improve 

thermomorphogenic acclimation would be allele-mining combined with marker-assisted breeding approaches. In this 

respect, the general conservation of thermomorphogenesis responses in crop species is certainly promising (Fig. 3). 

However, in a study on genetic variability in developmental rates in 18 species, including the 14 most cultivated crops 

world-wide, it was found that temperature dose-response curves of developmental processes are strikingly similar 

between cultivars/lines even if these originated from very different climates96. It is therefore likely that current crop-

breeding approaches will need to be complemented with more directed genetic engineering approaches that enable 

genes from a wider range of backgrounds, as well as potentially synthetically designed genes with optimized 

temperature response properties, to be introduced into key crops. A considerable advance making this approach 

feasible is the advent of CRISPR/Cas9 technology enabling genome-wide targeting of genetic alterations. Additionally, 

it may be necessary to combine multiple genes or entire pathways to obtain desired crop protection, something which 

may not be feasible with conventional breeding approaches alone. 

 

Potential targets for mining of favourable natural alleles could include the receptor-like kinase ERECTA, which was 

recently shown to play a critical role in high temperature stress tolerance97. ERECTA likely acts by protecting against 

temperature-induced cellular damage, since overexpression of ERECTA conferred high temperature tolerance to A. 

thaliana, tomato and rice in greenhouse and field conditions, without compromising growth and yield. Also, major 

thermomorphogenesis regulators such as PIF4 and elements of the EC are good candidates. Allelic variation in ELF3, 

ELF4, LUX and other clock components, for example, has contributed to the domestication of several crop species in 

terms of flowering time adaptation98. Based on the experimental work in A. thaliana, allelic variation of EC 

components can significantly impact on thermomorphogenesis under controlled environmental conditions26,28. It 

remains to be investigated whether these alleles also cause differential temperature responses under natural 

environmental conditions and if similar differences can be observed in different crop species. On the bright side, the 

observation that H2A.Z-nucleosome-mediated temperature responses in the monocot model species Brachypodium 

distachyon99 are similar to those observed in the dicot A. thaliana, suggests that at least some of the major molecular 

circuitries underlying thermomorphogenesis are functionally conserved. 

 

Meeting future challenges to plant productivity imposed by globally increasing temperatures will require basic 

research in model plant species as well as applied approaches in crops. Integration of these ends of the spectrum will 

require directed efforts of the academic plant research community and private companies. Further development of 

thermomorphogenesis as a research area could ultimately provide efficient and timely leads for the initiation of 

appropriate breeding efforts to generate much required thermo-tolerant crops. 
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Table 1: Thermomorphogenesis in Arabidopsis thaliana. Typical phenotypes associated with thermomorphogenesis, 

the effect direction: increase (˄), decrease (˅), or equal (=), the temperature treatment that was commenced in the 

experiments and the accessions used in the respective studies.  

 

Trait Effect Range (oC) Ref. Arabidopsis accessions used 

Hypocotyl elongation ˄ 17 - 27 43 Col-0 

 ˄ 16 - 24 45 Col-0, Bay-0, C24, CVi-0, Got-7, Rrs-7, Sha, Ws-2 

 ˄ 20 - 28 28,29,33,41 Col-0, Ws-2, Ler, Rrs-7, Bay-0, Sha, Sf-2, Zu-0 

 ˄ 20 - 29 31,32,42,44 Col-0, Ler, a 

 ˄ 22 - 27 26,35 b, Col-0 

 ˄ 22 - 28 22–25,46 Col-0 

 ˄ 22 - 29 30,47,48 Col-0, Ws-2, Ler 

 ˄ / = / ˅ 23 - 27 49,50 Col-0 (˄), Sij-4 (=),c 

 ˄ 23 - 28 36 Col-0 

 ˄ Various d 40 Estland 

Petiole elongation ˄ 16 - 24 45 Col-0, Bay-0, C24, CVi-0, Sha, Ws-2 

 ˄ 20 - 28 28,41 Col-0, Rrs-7, Bay-0, Sha 

 ˄ 22 - 27 35 Col-0 

 ˄ 22 - 28 17,22,23 Col-0 

 ˄ 23 - 28 37 Col-0 

 ˄ 22 - 29 30 Col-0 

Hyponastic growth ˄ 16 - 24 45 Col-0, Bay-0, C24, CVi-0, Got-7, Rrs-7, Sha, Ws-2 

 ˄ Various e 52 Col-0, Ws-2, Ler 

 ˄ 22 - 28 22 Col-0 

 ˄ 23 - 28 36 Col-0 

 ˄ 20 - 30 51,53,54 f, Col-0, Ler, An-1, Cvi-0 

Stomatal density ˅ 22 - 28 17 Col-0 

 ˅ 20 - 30 53,54 f 

Leaf area ˄ 20 - 28 28 Bay-0, Sha 

 ˅ 22 - 28 17 Col-0 

Leaf thickness ˅ 22 - 28 17 Col-0 

 ˅ / = 20 - 30 53,54 f, Col-0, Ler, An-1, Cvi-0 

Specific leaf area (cm2 g-1)  ˄ / = 20 - 30 53,54 f, Col-0, Ler, An-1, Cvi-0 

Blade length/total leaf length ˅ / = 20 - 30 53,54 f, Col-0, Ler, An-1, Cvi-0 

Root elongation  ˄ 16 - 24 45, Col-0, Bay-0, C24, Cvi-0, Got-7, Rrs-7, Sha, Ws-2 

 ˄ 23 - 29 100 Col-0 
 

Footnotes 

a Delker et al., 201042 used 20 accessions, that all elongated 

b Box et al., 201526 used 19 accessions, that all elongated 

c  Sanchez-Bermejo50 used 139 accessions with the majority of accessions displaying elongation  
d  Orbovic & Poff (2007)40 shifted plants between various temperatures  
e  Van Zanten et al. 200952 used a range between 20 and 42°C 
f Effects derived from Vile et al. (2012)53 are based on averages of 10 accessions, each accessions showed the same 

trend 
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Figure legends 

 

Figure 1: Typical thermomorphogenesis phenotypes of Arabidopsis thaliana plants. Artist impression of 

thermomorphogenic phenotypes at the (a) young seedling stage and (b) vegetative stage. Note the occurrence of 

temperature-induced hypocotyl and petiole elongation and hyponasty in both seedlings and vegetative plants, 

resulting in an open rosette structure favouring leaf cooling capacity.  

 

Figure 2: Simplified model of the central role of PIF4 in the molecular genetic circuitries underlying 

thermomorphogenesis (center). (a) In darkness, transcriptional regulation of PIF4 involves gating via the evening 

complex (EC) of the circadian clock. In the light, transcriptional repression via HY5 is relieved by the COP1-SPA E3 

ubiquitin ligase and the COP10-DDB1-DET1 (CDD) complex. (b) PIF4 post-translational regulation contributing to 

temperature signalling involves phosphorylation by yet unidentified kinase activity and sequestering of free PIF4. 

Whether or not other PIF4-interactors/modifiers known from the light signalling context contribute to temperature 

signalling, remains to be established. (c) PIF4 mediates transcriptional regulation of its target genes via binding to G-

box promoter elements. This regulation is counteracted by HY5, which competes for the same binding sites. In 

addition, FCA can attenuate PIF4-G-box binding by removing H3K4Me2 chromatin marks. Further chromatin 

modifications such as eviction of H2A.Z-containing nucleosomes have been shown to contribute to 

thermomorphogenesis. However, whether this process directly affects PIF4-target genes remains to be established. 

Elongation growth is subsequently triggered via PIF4-mediated induction of the auxin biosynthesis and auxin 

signalling pathway resulting in SAUR-mediated elongation growth and by a cascade involving PAR1, PRE1, IBH1 and 

HBI1, ultimately resulting in the induction of EXPANSIN genes. Both downstream pathways involve feedback 

regulations and, at least partially, the transcription factors BZR1 and ARF6 (BAP module) are involved. Other 

phytohormones are involved in thermomorphogenesis with brassinosteroids (BR) and gibberellic acid (GA) having an 

essential or permissive signalling function, respectively, involving the DELLA repressor proteins. (A-C) Mechanisms 

with demonstrated relevance in temperature signalling are depicted by solid black lines while connections known 

from other biological processes which may potentially contribute to temperature signalling are shown as dashed grey 

lines. 

 

Figure 3: Thermomorphogenesis in crop species. Compared to the situation in the model plant Arabidopsis thaliana 

(Figure 1a), temperature-induced hypocotyl elongation seems widely conserved among crop species. Shown here are 

cabbage (Brassica oleracea) and tomato (Solanum lycopersicum). Both have been grown for 7 days at 20°C vs. 7 days 

at 28°C under long day conditions with 90 µmol m-2 s-1 white light. 

 


