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Abstract 

DNA methylation (DNAm) has been linked to changes in chromatin structure, gene expression and 

disease. DNAm level can be affected by genetic variation; although, how this differs by CpG 

dinucleotide density and genic location of the DNAm site is not well understood. Moreover, the effect 

of disease causing variants on DNAm level in a tissue relevant to disease has yet to be fully 

elucidated. To this end, we investigated the phenotypic profiles, genetic effects and regional genomic 

heritability for 196080 DNAm sites in healthy colorectum tissue from 132 unrelated Colombian 

individuals. DNAm sites in regions of low CpG density were more variable, on average more 

methylated and were more likely to be significantly heritable when compared to DNAm sites in 

regions of high CpG density. DNAm sites located in intergenic regions had a higher mean DNAm 

level and were more likely to be heritable when compared to DNAm sites in the transcription start site 

(TSS) of a gene expressed in colon tissue. Within CpG dense regions, the propensity of DNAm level 

to be heritable was lower in the TSS of genes expressed in colon tissue than in the TSS of genes not 

expressed in colon tissue. In addition, regional genetic variation was associated with variation in local 

DNAm level no more frequently for DNAm sites within colorectal cancer (CRC) risk regions than it 

was for DNAm sites outside such regions. Overall, DNAm sites located in different genomic contexts 

exhibited distinguishable profiles and may have a different biological function. 
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Introduction 

Cytosine DNA methylation (DNAm) is a covalent modification of DNA brought about by the 

addition of a methyl group to the 5th position of the pyrimidine ring of cytosine. In differentiated 

mammalian cells DNAm occurs almost exclusively at cytosine bases directly upstream of guanine 

bases (CpG dinucleotide) (1). Importantly, DNAm can be mitotically stable. During embryogenesis 

the epigenome is erased and reprogrammed, initially prior to blastocyst formation and subsequently in 

the germ cells (Reviewed in (2-4)).  In the somatic cells of the developed organism Dnmt1 is the main 

methyltransferase which targets hemi-methylated DNAm during replication (5). Dnmt1 interacts with 

a host of proteins at the replication foci including histone deacetylases (6)  and histone 

methyltransferases (7, 8) signifying the complex relationship between modification and organization 

of the chromatin and maintenance of DNAm level throughout cell division.   

 

Studies have shown that DNAm level is linked to gene expression level (9, 10). At promoter regions, 

within a population of individuals average DNAm level and average gene expression level of an 

associated gene were negatively correlated across genes (9). However, at any given DNAm site, even 

at a DNAm site within a promoter region, there may be a positive or a negative association between 

that DNAm site and expression levels of an associated gene across the population of individuals (9). 

Additionally, DNAm level has been found to associate with sex and age (10-12) and several 

environmental factors including early life socioeconomic status and stress (10). Differences in DNAm 

levels have been observed for DNAm sites in different functional genomic contexts. For instance, 

DNAm levels tend to decrease towards the TSS of a gene and are relatively high throughout the gene 

body (1, 13, 14). Moreover, changes in DNAm levels have been found between DNAm sites located 

in CpG dense regions of the genome (CpG Islands) and those DNAm sites located outside CpG 

Islands, whether they are close to (CpG Island Shores and CpG Island Shelves) or distant from such 

islands (13). Furthermore, results from genome-wide association studies, twin studies and studies 

utilizing mixed linear models indicate that the genotype can affect level of DNAm (15-22) and that cis 

acting genetic variation can explain a substantial proportion of the phenotypic variation for some 
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DNAm sites (16, 17, 19, 21, 22). These studies have been conducted on a limited number of easy to 

access tissues and report a wide range of heritability estimates for site-specific DNAm level across the 

genome.    

 

The average heritability estimate of site-specific DNAm level varies across tissues and it is likely to 

be influenced by the method used for estimation and the estimates should be interpreted accordingly. 

For example, monozygotic (MZ) and dizygotic (DZ) twin studies of cells from buccal epithelia and 

white blood cells estimated the average heritability ( ) of all assayed site-specific DNAm levels to 

be 0.30 and 0.01, respectively(15) Extended families provided an estimate of average   for 

DNAm levels in peripheral blood lymphocytes of 0.20 (20) . These studies capture the full extent of 

the additive genetic heritability. However, sources of shared environmental variance among family 

members could bias estimates of the additive genetic variance when the environmental variance is un-

modelled or difficult to disentangle. The extent of the common environmental effect was tested for 

peripheral blood lymphocytes (20). The genomic heritability ( ), the proportion of the phenotypic 

variation that can be explained by genetic variation measured by tagging single nucleotide 

polymorphism (SNP) on a genotyping array can be estimated using mixed linear models and 

nominally unrelated individuals (23). However, insufficient linkage disequilibrium between a SNP 

and the causal variation can mean that not all causal variation, particularly rare causal variation, may 

be captured by this method. Therefore,  may be biased downwards in relation to the true additive 

heritability. When using this method it is straightforward to partition the genetic variation into 

genomic regions (regional heritability, ) by simultaneously modelling the effects of SNP within a 

region of interest (24).  Advantages of this method over independently testing the association of each 

SNP in the genome with a trait (SNP by SNP genome-wide association study) are that small effects 

within a region maybe compounded into a measureable estimate and effects of rare variants present on 

a particular haplotype may be captured more effectively (24). Indeed, simulations have shown that in 

some instances the estimator  is more accurate than estimates of heritability obtained from a SNP 
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by SNP genome-wide association study (25). A recent study investigated the effect of the size of the 

genomic region surrounding a DNAm site on the estimator   for DNAm levels measured in the 

cerebellum, frontal cortex, pons and the temporal cortex for 150 unrelated individuals (22). The 

authors tested seven region sizes: 10kb, 50kb, 100kb, 500kb, 1MB, the local chromosome and the 

whole genome, and found that using a region size of 50kb centered around the DNAm site produced 

the greatest number of significant  (22). For instance, depending on the tissue, using the local 

chromosome or the whole genome reduced the number of significant results to 100 or less whereas 

using a region of 50kb produced between 600 and 812 significant results (22). The increase in power 

that accompanies the optimal region size comes from the smaller number of SNPs modelled within 

the target region compared to the whole genome. Regions too small will not capture the causative 

variation. However, because a substantial proportion of the causative genetic variation for DNAm 

level is thought to act in cis, regions too large will include extraneous SNPs that add noise to the 

estimator,   (22). The average site-specific   for regions of +/- 50KB around the DNAm site 

and for DNAm sites with a significant  is 0.30 for DNAm levels measured in the cerebellum, 

frontal cortex, pons and the temporal cortex (22).  

 

The extent to which genetic variation affects variation in DNAm level may also differ within tissue 

depending on the functional genomic context of the DNAm sites. For instance, the differences in 

DNAm levels that have been observed for DNAm sites in different genomic contexts could relate to a 

difference in the control of DNAm level. A recent study assessed  of site-specific DNAm for 

DNAm sites located in high and low CpG density regions of the genome in peripheral blood 

lymphocytes (20). This study revealed that estimates in regions of high CpG density were 0.127 or 

0.158, whereas in regions of low CpG density estimates were greater, 0.235 or 0.223, depending on 

which probe type (Infinium I or Infinium II) was used to assay the DNAm level. In human brain 

tissue, the estimator, ĥr,g
2 showed an increased proportion of heritable DNAm  sites in regions of the 

genome with low CpG density compared to high CpG density (22). In addition, this same study found 

a decreased proportion of heritable DNAm sites local to genes upregulated in a tissue specific manner 
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compared to genes expressed ubiquitously across tissues(22). While these studies have begun to 

explore the extent of heritability for DNAm sites located in different genomic contexts they have been 

conducted in a minority of tissues and have considered a limited selection of functional subgroups for 

DNAm sites. 

 

To build on the work of others who have investigated the phenotypic differences and control of 

DNAm in different genomic contexts, we assayed 196080 DNAm sites with the Infinium 

HumanMethylation450K BeadChip (HM450K) in healthy colorectum tissue collected from 132 

unrelated Colombian subjects who attended Colonoscopy examination and with diagnosis of 

hyperplasic polyp, adenoma, in situ carcinoma or carcinoma of the rectum or colon. A whole cell 

biopsy was taken from the healthy colonic tissue from one of the following locations: ascending, 

transverse, descending, or sigmoid colon, cecum, rectum or region where the sigmoid colon joins the 

rectum. We grouped the DNAm sites based on location in relation to CpG density, expression status 

and functional regions of genes. We refer to these groups collectively as contextual groups. Within 

each contextual group we assessed the profile of mean site-specific DNAm level where mean site-

specific DNAm level refers to the average DNAm level for a given DNAm site calculated across all 

the 132 samples. Subsequently we estimated the effect of local genetic variation on site-specific 

DNAm level, using a region size of +/- 1MB surrounding the DNAm site following earlier work of 

others (16, 21). We used a regional heritability approach (24) and estimated the proportion of 

variability in site-specific DNAm levels that is due to local genetic variation, ĥr,g
2 .  We also 

contrasted the distribution of  for DNAm sites within and outwith known susceptibility loci for 

Colorectal Cancer (CRC, OMIM #114500). In addition, CRC can manifest in colorectal epithelial 

cells (26), which are significantly more costly and challenging to extract from the colon than whole 

cell biopsies. To establish the extent of the difference in the regulation of DNAm levels in colon 

epithelial tissue and whole cell biopsy, we studied the phenotypic profiles and ĥr,g
2 for DNAm level of 

genes expressed in epithelial cells obtained from laser capture microdissection (LCM) and whole 

colon biopsy (WCB).  
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Results  

Average DNAm Level and relationship to CpG Density, Genic Location and Gene Expression 

In the manifest file for the HM450K array each DNAm site is annotated as being located either within 

a CpG Island (island), within 2kb upstream or downstream of a island (north shore and south shore 

respectively), within 2-4kb upstream or downstream of an island  (north shelf and south shelf 

respectively) or none of the aforementioned categories which we term sea. An island was defined as 

being composed of one or more adjacent sections of the genome each 500bp in length with a C and G 

density greater than 50% and an observed to expected ratio of CpG dinucleotides greater than 0.60 

(27). We grouped our 196080 DNAm sites based on aforementioned HM450K array annotation 

(Table 1). Using DNAm level values adjusted for gender, age, batch, diagnosis, localization, and two 

genotype principal components we found a substantial difference in the distribution of average site-

specific DNAm level across contextual groups of varying CpG density (Figure 1). The average site-

specific DNAm level of DNAm sites in islands tended to be much lower than that of DNAm sites 

located in the sea (mean and median M-value was -2.67 and -3.51, and 1.50 and 1.89 for islands and 

sea, respectively). Additionally, our results showed that the distribution of average DNAm level for 

DNAm sites in the north and south shores were similar to one another and more similar to the 

distribution of average DNAm level for DNAm sites in islands rather than DNAm sites in the sea 

(Figure 1). Conversely, the distribution of average DNAm level for DNAm sites located in the north 

and south shelves were similar to one another and were more similar to the distribution observed for 

DNAm sites located within the sea rather than within islands (Figure 1). Additionally, we found that 

within shores the mean site-specific DNAm level is a function of the distance from the edge of the 

island. Mean site-specific DNAm level increased with distance from the edge of the island in a non-

linear fashion (Figure 2). However, this relationship is not observed for DNAm sites located within 

shelves (Figure 2).  
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Unless otherwise specified, the following analyses were based on the two most extreme cases of CpG 

density: high CpG density regions (islands) and low CpG density regions (sea). We tested if the 

DNAm level of DNAm sites located in the transcription start site (TSS) of genes expressed in WCB 

was different to those located in the TSS of genes expressed in cells from the colon epithelium 

collected using LCM. The genes that were expressed in the LCM and the WCB were excluded from 

the WCB group for this analysis. We found that DNAm sites in the TSS of genes expressed in WCB 

had an M-value that was on average 0.15 greater than DNAm sites located in the TSS of genes 

expressed in LCM (mean WCB = -3.32, mean LCM = -3.47, T-test P= 2.41*10-7).  

 

 Subsequently, we grouped DNAm sites located within the sea or an island into four mutually 

exclusive sets based on location a) in a transcription start site (TSS) of a gene expressed in WCB b) in 

a TSS of a gene that is not expressed in WCB c) in intragenic DNA, where we do not distinguish 

between genes expressed or not expressed in colon because the methylation level of intragenic DNAm 

sites has not been correlated with the expression of the surrounding gene or d) intergenic DNA (
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Table 2). Additionally, we choose to use the full set of genes expressed and not expressed in WCB 

rather than exclusively in colonic epithelial cells because DNAm level was assayed from WCB. We 

refer to each of the eight contextual groups individually as: island TSS expressed (within an island 

and a TSS of a gene expressed in colon), island TSS not expressed (within an island and in a TSS of a 

gene not expressed in colon), island intragenic (within an island and intragenic), island intergenic 

(within an island and intergenic), sea TSS expressed (within the sea and the TSS of a gene expressed 

in colon), sea TSS not expressed (within the sea and the TSS of a gene not expressed in colon), sea 

intragenic (within the sea and intragenic) and sea intergenic (within the sea and intergenic). Within 

each of the eight contextual groups we investigated the distribution of mean site-specific DNAm 

level.   

 

We found a significant difference in the distribution of mean site-specific DNAm level between island 

TSS expressed and island TSS not expressed (Kolmogorov-Smirnov test; P<2.16*10-16) and between 

sea TSS expressed and sea TSS not expressed (Kolmogorov-Smirnov test; P<2.16*10-16) (Figure 3). 

We compared the mean of the sea TSS expressed to that of the sea TSS not expressed and we 

compared the mean of the island TSS expressed to that of island TSS not expressed. These two 

comparisons were both statistically significant (T-test, P<2.16*10-16, P<2.16*10-16) and in both cases 

being located in the TSS of genes not expressed in colon led to an overall greater mean site-specific 

DNAm level. Additionally, we found that the mean of the distribution of mean site-specific DNAm 

level for DNAm sites located in intragenic and intergenic regions was greater than for DNAm sites 

located in a TSS of a gene (Figure 4).  

 

We explored the variation in DNAm level by investigating the extent to which residual site-specific 

DNAm level varied across the 132 samples for the full set of 196080 DNAm sites that passed quality 

control procedure. The variance of residual DNAm level ranged between 3.00x10-3 and 4.91. We 

observed that on average over all sites the variance of DNAm level was significantly higher for 

DNAm sites located within the sea than for DNAm sites located within an island (Mean for sea and 

island respectively: 0.198 and 0.152, P < 2.2*10-6 Figure 5). Moreover, we found the following 
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pattern for the magnitude of mean residual variance both within islands and sea: TSS Expressed < 

TSS Not Expressed < Intragenic < Intergenic. Within the islands the difference in mean residual 

variance was highly significant (P < 1.00*10-8) for all pairwise comparisons of these categories. 

Within the sea the difference in mean residual variance was at least moderately significant (P < 0.001) 

for all pairwise comparisons made except for the comparison of intragenic and intergenic. In this case, 

the mean residual variance for the sea intragenic and sea intergenic was not significantly different 

(P=0.240).  

 

Heritabilities of Site-specific DNAm Level  

We found that at 20239 DNAm sites, 10.32% of the 196080 tested, SNPs within 1MB explained a 

significant proportion of the variation in methylation level (nominal P < 0.05). The percentage of 

heritable DNAm sites exceeds that expected from a false positive rate of 0.05 under the null 

hypothesis that DNAm level is not associated with local genetic variation. For significantly heritable 

loci, the proportion of the variance in DNAm under local genetic control ranged between 0.06 and 

0.99 with a mean of 0.29 and median of 0.26 (Figure 6). We found that the numbers of SNPs in the 

local region (Figure 7) explain a minute but significant proportion of the variance in heritability 

estimates for the DNAm sites with a significant heritability (Univariate Linear Regression: R2 = 

0.005, slope = 2.372*10-5, P < 2.2*10-16). For instance, considering the range of the number of SNPs 

within a region, at the first decile (304 SNPs) and ninth decile (2733 SNPs) we expect a respective 

7.2*10-3 and 6.5*10-2 increase in the heritability for the DNAm sites found to be significantly 

associated with local genetic variation. In addition, we found that the variance of residual DNAm 

level at each DNAm site explained a proportion of 1.93*10-2 of the variance in the heritability 

estimate (Univariate Linear Regression: P < 2.2*10-16). An ANOVA indicated that genomic context 

explained a significant proportion (P < 2.2*10-16) of the variability in the heritability estimate after 

accounting for residual variance. 

 

Heritability of DNAm in genes expressed in Whole Colorectal Biopsies and Colorectal Epithelial 
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We investigated the heritability of site-specific DNAm level for genes expressed in LCM and in WCB 

excluding those expressed in LCM (Figure 8). The difference between the average mean site-specific 

DNAm level for the significantly heritable DNAm sites within the two groups was not significant 

(mean LCM = 0.272, mean WCB = 0.283, T-test P =P=0.151). Additionally, the proportion of 

significantly heritable DNAm sites in the LCM and WCB group was 0.0723 and 0.0734 respectively 

and was not significantly different from one another (P = 0.0834).  

 

Heritability of DNAm Sites in Whole Colorectal Biopsies by Genomic Context 

The proportion of sites with a significant heritability was higher in the sea than in islands (P < 

2.20*10-16, Table 3).  This result was driven by the difference between DNAm sites located within the 

TSS of a gene or in intragenic regions. The proportion of heritable sites is 1.54 times higher for 

DNAm located in the TSS of the sea than in the TSS of an island (P < 2.2*10-16); additionally, the 

proportion of heritable DNAm sites is 1.13 times higher for DNAm sites located in the sea intragenic 

than the island intragenic contextual group (P = 1.47*10-6). There was no significant difference in the 

proportion of heritable DNAm sites located in intergenic regions when comparing between the sea 

and island contextual groups (P = 0.125).  

 

The proportion of heritable DNAm sites was lower for sea intragenic than the other three sea 

contextual groups. This difference was highly significant for the comparison of sea intragenic and sea 

intergenic (P = 1.55*10-14) and for the comparison of sea intragenic and sea TSS not expressed (P = 

2.65*10-5). The difference was significant at a nominal threshold (P < 0.05) for the sea intragenic and 

sea TSS expressed comparison (P=1.52*10-2). The proportion of heritable DNAm sites was 

significantly different for all comparisons made within the island contextual groups. This difference 

was highly significant (P < 1.00*10-8) except for the island TSS not expressed and island intragenic 

comparison (P = 4.34*10-2). Within the island contextual groups the proportion of heritable DNAm 

sites was as follows: intergenic > intragenic > TSS Not expressed > TSS Expressed. 
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The proportion of heritable DNAm sites for each contextual group followed a similar pattern to the 

mean local genetic variance for each contextual group (Figure 9). Across each four sea and island 

contextual groups the proportion of heritable DNAm sites was correlated with the mean local genetic 

variance (Pearson’s correlation: r = 0.700 and r = 0.999 for sea and island respectively).  

 

The average  for significantly heritable DNAm sites located within each of the genomic contexts 

was similar (
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Table 3). DNAm sites significantly associated with local genomic variation and located within an 

island were on average 0.9% less heritable than DNAm sites located in the sea.  

 

SNP by SNP GWAS for DNAm level at 196080 DNAm sites 

We conducted a GWAS for each of the 196080 DNAm sites to localize causal variation within each 

of the cis regions and to determine if there was evidence for genetic effects on DNAm level in trans.  

We found enrichment for cis and trans genetic effects on DNAm level beyond what would be 

expected by chance assuming the test for association of each SNP and DNAm site are independent (
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Table 4). DNAm sites with at least one significant cis SNP association were found on average to have 

a minimum of two associated cis SNPs, where the average number depended on the threshold 

specified (
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Table 4). Each DNAm site with a significant RH estimate (P < 0.05, n=20239) was paired with the 

SNP to which it was most significantly associated with in cis. We calculated the proportion of the 

regional heritability estimate explained by variation of the SNP for each pair (Figure 10). In, the 

majority of cases (95.8%) the region explained equal or more variance in the DNAm level than the 

single most significant SNP (Figure 10).  

 

Heritability of DNAm Sites in Whole Colorectal Biopsies with Respect to Loci Associated with 

Colorectal Cancer 

An extensive number of genetic variants have been found to associate with complex disease including 

CRC (28). However, in the majority of cases how the identified genetic risk variants act to increase 

disease susceptibility is unknown. Genetic variation could increase risk to disease by mediating 

changes in DNAm level in healthy tissue. If an association between a susceptibility SNP and DNAm 

level in healthy tissue is obtained, one possibility is that the variation in DNAm level interacts with 

additional variables, such as environmental factors, to subsequently lead to disease. Therefore, we 

sought to determine if variation in DNAm level in healthy colon tissue was associated with genetic 

variation that incurs susceptibility to CRC. To this end a total of 83 unique autosomal SNPs identified 

as associating with CRC were downloaded from the NHGRI GWAS catalogue (28). We defined a 

region of +/- 1MB surrounding each SNP associated with CRC as a risk region. A total of 10469 

DNAm sites were located within a defined risk region and due to our definition of a risk region the 

calculation of  included the effects at the position of the risk SNP. Indeed, we found that an equal 

proportion (0.103) of DNAm sites were heritable within and outwith risk regions. The average 

heritability was also similar for DNAm sites located within and outwith risk regions (within = 0.290, 

outwith = 0.292). 

 

In conjunction, a recent study (29) found that DNAm levels of two DNAm sites measured in healthy 

colorectal tissue, cg15193198 and cg24112000, were associated (FDR < 0.05) with the local CRC risk 

variant rs4925386 located on chromosome 20 at 60921044 base pairs. In our study, both cg15193198 
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and cg24112000 were significantly heritable both when including rs4925386 in the calculation of the 

genetic relationships and when excluding rs4925386 (
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Table 5). We determined that rs4925386 explained 92% and 55% of the  estimate for cg15193198 

and cg24112000 respectively and was still significant for cg24112000 when fitting rs4925386 as 

a fixed effect (
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Table 5)  

 

Discussion  

DNAm sites located in different genomic contexts with respect to CpG density and genic location 

exhibit unique profiles in the human colorectum. We have shown that average DNAm level is related 

to CpG density and genic location. The relationship of DNAm level with CpG density has been 

observed for DNAm level measured at promoters in peripheral blood mononuclear cells and 

fibroblasts (10, 30) and concurs with that found by a recent study profiling DNAm level in 17 somatic 

tissues (13). In addition, we find that specifically within shores that there is a shift in average DNAm 

level from predominantly unmethylated to methylated as distance increases from the edge of the CpG 

dense islands. This change in DNAm level is suggestive of a transitional zone at the edge of islands 

captured by the definition of shore. Overall, the lower and less variable average site-specific DNAm 

level of DNAm sites located in islands compared to sea is consistent with the traditional view that 

CpG dense regions of the genome persist due to low methylation and a reduced rate of spontaneous 

deamination and transition that is typically higher for methylated CpG dinucleotides (31). Our finding 

that irrespective of CpG density, DNAm level was lower in the TSS than within intergenic or 

intragenic regions concurs with what has been observed in H1 embyronic cells where DNAm level 

has been shown to decrease between the promoter and 5’UTR region before increasing through the 

gene body and into the 3’UTR (1). The level of DNAm has also been shown to be greater in 

intragenic and intergenic regions compared to promoter regions in human brain frontal cortex grey 

matter (32). Lower variation of DNAm level within TSS compared to with the intragenic and 

intergenic regions and within islands supports the idea that DNAm in CpG dense regions of the 

genome and in TSS target housekeeping genes (30, 33). Housekeeping genes are essential for normal 

cell maintenance and thus expression of these genes may be tightly regulated and this could be 

reflected by the low level and low variation of site-specific DNAm level in these regions. 

Additionally, DNAm sites located in the TSS of a gene not expressed in WCB were on average more 

methylated than DNAm sites located in the TSS of a gene that was expressed in WCB. This result is 
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suggestive of an overall inverse correlation between mean gene expression and mean DNAm level 

which has previously been observed (9).  

 

We have assessed, on a genome-wide scale, the local heritability of site-specific DNAm level in 

normal WCB using unrelated Colombian individuals. A total of 10.32% of DNAm sites in WCB were 

significantly affected by local genetic variation. The mean  for the heritable sites was 0.29 but the 

estimates vary substantially with some DNAm sites exhibiting a low heritability and some DNAm 

sites exhibiting heritability close to one. The implication is that DNA methylation level can be 

inherited through the germ-line. These results are consistent with previous estimates of the number of 

DNAm sites and gene expression probes across the genome affected by local genetic variation and 

with the wide range of heritability estimates reported for levels of DNAm and gene expression (16, 

22, 34-36). Indeed, we found that that there were an increased proportion of significantly heritable 

DNAm sites located in the sea compared to islands. Overall, our finding that heritable DNAm sites 

were enriched for location outside of islands is in accordance with what is observed in human brain 

tissue (22).We hypothesize that the substantial difference in the mean estimates of  for DNAm 

sites located in islands and in sea obtained in peripheral blood lymphocytes (20) and outlined in the 

background section of this paper may have resulted from a) the inclusion of all DNAm sites rather 

than just those with a significant heritability estimate b) the use of the pedigree to estimate the 

contribution of the whole genome to phenotypic variance and/or c) bias due to un-modelled sources of 

environmental variation.  In conjunction, CG content +/- 5KB of a TSS was inversely associated with 

the (genome-wide) heritability of gene expression measured in Peripheral Blood from 1,444 twin 

pairs (36).   

 

The highest proportions of significantly heritable DNAm sites were located in intergenic regions as 

opposed to within the TSS of a gene or intragenic regions. Moreover, for DNAm sites within islands, 

being located in the TSS of a gene expressed in colon tissue led to a significantly lower probability of 

being heritable compared to being located within the TSS of a gene not expressed in colon tissue. 

 at E
dinburgh U

niversity on M
arch 8, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


20 

However, this pattern was not observed within the sea. This is suggestive of forces acting in a 

different manner at TSS within islands compared to at TSS within sea to maintain DNAm levels. 

Overall, the proportion of heritable DNAm sites was correlated with the average estimated genetic 

variance. A similar observation has been made for gene expression in Epstein-Barr virus transformed 

LCLs (37). In this case, the lower proportion of heritable DNAm sites observed for a contextual 

group(s) such as islands compared to other contextual group(s) such as the sea can in part be 

explained by a reduction in the measured genetic variance. Lower genetic variation could result in 

lower power to capture the true causative loci or it could be indicative of lower causal variation due to 

selective constraints.  

 

DNAm level was slightly higher at the TSS of genes expressed in WCB and not LCM compared to 

those expressed in LCM. This result is consistent with the WCB samples being enriched for epithelial 

cells and a negative correlation between gene expression and DNA methylation level. However, the 

overall heritability of DNAm level at the TSS of genes expressed in WCB and not LCM compared to 

those expressed in LCM was similar. One possible explanation for these results is that in healthy 

colonic tissue the genes expressed in the colon epithelium are regulated by DNAm level in a similar 

fashion to the genes expressed in the WCB. 

 

Finally, we have shown that genetic variants in genomic risk regions for CRC can affect DNAm level 

in healthy colon tissue and that overall DNAm sites within a risk region have similar overall 

heritability to DNAm sites outwith an identified risk region. In conjunction, we have replicated the 

previous finding that the CRC risk SNP rs4925386 effects DNAm level at cg15193198 and 

cg24112000.  

 

We showed that when rs4925386 is excluded the regional genetic variation sufficiently captures the 

causal variation in DNAm level tagged by rs4925386. Moreover, rs4925386 alone does not capture all 

the genetic variance contributing to variation of cg24112000 and cg15193198 that is captured by the 
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regional heritability approach. This final result highlights the advantage of the regional heritability 

approach to capture the genetic effects on the phenotype, in this case DNAm level.  

 

We have identified individual SNPs outwith  +/- 1MB  a  DNAm site which affect DNAm level. 

However, studies of larger sample size are required to estimate the combined long-range effects 

(polygenic effect) of genetic variants on DNAm level with nominally unrelated individuals using the 

regional heritability method. This is because variance in the extent of identify by descent between 

nominally unrelated individuals is lower across the genome as a whole than it is within a small 

genomic region. However, in accordance with (22) we have shown that a small sample of nominally 

unrelated individuals can be used to estimate the genetic contribution of a genomic region to variation 

in DNAm level.  

 

We have identified a subset of DNAm sites genome-wide and measured in healthy colon tissue that 

are influenced by the local genetic variation. Therefore, we have contributed to understanding healthy 

genetically influenced variation in DNAm level in colon tissue. A number of the DNAm sites which 

we report as heritable are located within CRC risk loci and thus have the potential to mediate genetic 

susceptibility to CRC. We expect further studies will focus on exploring a role for these DNAm sites 

in disease aetiology.  
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Materials and Methods 

Samples 

A total of 144 samples from normal colorectal tissue were obtained from Colombian patients 

diagnosed with either adenocarcinoma or adenomas of the colorectum.  The study had ethical 

approval from the Ethics Board of The National Cancer Institute of Colombia, and participants gave 

informed written consent. 

Similarly, 12 people undergoing colonoscopic examination at General University Hospital of Elche 

(Spain) but without adenocarcinoma or adenomas of the colorectum provided tissue samples from the 

colon. Written informed consent for inclusion in the study was obtained from every participating 

individual. The study was approved by the ethics committees of the General University Hospital of 

Elche. 

 

Phenotype QC 

We assayed 144 samples for DNAm level at 485512 DNAm sites using the HM450K array. 

Within each colorectal tissue sample the two intensity values that correspond to the number of 

methylated and unmethylated copies of a DNAm were corrected for any variation that arose from 

non-specific binding. This background correction was applied by subtracting the median fluorescence 

measured by the control probes from the intensity values treating intensities measured in the two 

colour channels separately and using the Bioconductor package, ‘lumi’ (38). Subsequently, 9 samples 

for which the assaying process failed were identified. These samples had a low average intensity 

value (below 2500) measured in either or both of the colour channels and were removed. We 

examined the percentage of probes that were not detected above background levels of variation (P = 

0.01) for each sample and found that no samples exceeded our threshold of 5% for exclusion. Two 

samples where the recorded sex of the individual did not match the sex estimated from the levels of 

DNAm measured on the X chromosome were removed. A total of 280,469 DNAm probes were 

removed because they contained a SNP within the target sequence or at the site of single base 

extension or they were deemed cross-reactive based on the work of (39) and the information provided 
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in the HM450K manifest file. Additionally, 354 probes were removed because they were not detected 

above background levels of variation for greater than 5% of samples (P<0.01). This resulted in 133 

samples and 196080 autosomal DNAm probes left for downstream analysis. Colour bias was taken 

into account by comparing for all samples the within sample distribution of total intensities measured 

by the type I probes in the green channel to those measured in the red channel. A quantile 

normalization adjustment was applied within the Bioconductor package, ‘lumi’ (38), so that the 

intensity values measured in the two colour channels followed a similar distribution across and within 

individuals. We also applied a correction to account for technical variation due to the probe design 

type using the BMIQ algorithm (40).  

 

We conducted analyses and reported levels of DNAm using the M-value scale. This scale reduces the 

dependence between the variance and mean of site-specific DNAm level that is observed on the beta 

scale (41). M-values are a logit transformation of the beta values and an M-value of 0 equates to a 

50% level of methylation whereas a positive and a negative M-value relates to a greater and less than 

50% methylation level respectively. 

 

Genotype QC 

We genotyped 468 samples at 958178 SNPs genome-wide using the Illumina HumanOmniExpress 

Exome Chip. We followed a standard quality control procedure (reviewed in (42)) using Plink (43). 

Four samples for which greater than 5% of SNPs did not genotype were excluded.  Based on the 

application of four successive filters, SNPs were removed if 1) they failed to type in greater than 5% 

of samples or 2) if they were out of Hardy Weinberg Equilibrium (P<0.0001) or 3) if they had a MAF 

less than 0.01 or 4) if the rate of genotype failure was significantly different in cases and controls 

(P<0.00001). This procedure left a total of 682945 autosomal SNPs for analysis. Additionally, the 

inbreeding coefficient for each sample was calculated from SNPs along the X chromosome.  This 

analysis revealed 3 samples recorded as female that were more inbred than expected (F > 0.98) and 10 

samples recorded as male that were less inbred than expected (F <0.2).  These samples were removed 

from subsequent analysis due to an assumed discrepancy between the recorded and observed identity. 
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This left 132 samples with quality genotype information that overlapped with the samples assayed for 

DNAm level and which passed the DNAm level quality control procedures.  

 

Identification of Genes Expressed in Colon Tissue 

Genes expressed in general colon tissue and specifically in colon epithelial cells were identified based 

on the analysis of normal tissue from biopsies of 12 people undergoing colonoscopic examination at 

General University Hospital of Elche (Spain). In order to separate epithelial specific expression, tissue 

samples were sliced with alternate slices assigned to the whole tissue and epithelial conditions. In the 

whole tissue condition combined slices for each individual were assayed for gene expression. In the 

epithelial condition we pooled epithelial cells, isolated using Laser Capture Microdisection (MMI 

CellCutPlus), from each slice for each individual and mRNA from the slices was amplified prior to 

being assayed for gene expression. The gene expression assay on the 24 samples was performed using 

the HumanHT-12 Expression BeadChip. Quality control indicated failure of four samples (one in the 

whole tissue and three in the epithelial condition) which were removed from subsequent analysis. We 

then identified for each condition mRNA probes which were detected above background (P<0.01) in 

more than 80% of samples, i.e., 9 or more of 11 samples and 8 or more of 9 samples for the whole 

tissue and epithelial conditions respectively. This yielded 9223 probes in the whole tissue and 4071 

probes in the epithelial conditions.  Probes were mapped to genes using the Illumina provided 

manifest file for the HumanHT-12 Expression BeadChip platform, yielding a list of 8114 genes 

expressed in general colon tissue and 3754 genes expressed in epithelium. As expected a majority of 

genes identified in the epithelial condition were also detected in the whole tissue which contains both 

the epithelial and other cells, with only 10 specific to the epithelial condition. This supports the view 

that the genes identified form subset of genes enriched for epithelial specific expression.   

 

Location of a DNAm site with Respect to a Gene 

A DNAm site was considered to be located within the TSS of a gene expressed in colon tissue if in 

the manifest file the site was recorded as being located within 200bp upstream of the TSS (TSS200) 

or, within 200-1500bp upstream of the TSS (TSS1500) of a gene in our list of expressed genes.  All 
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other DNAm sites located within the TSS200 or TSS1500 region of a gene were considered as being 

located within a gene not expressed in colon tissue. Intragenic DNAm sites were those documented in 

the manifest file as located within the 5’UTR, 1st exon, gene body or 3’UTR. Intergenic DNAm sites 

were those not documented as residing within a gene. We applied successive filters in the 

aforementioned order so that each DNAm site fit into one of the four mutually exclusive categories.    

 

Statistical Analysis 

A WCB of healthy tissue was obtained from the ascending, transverse, descending, or sigmoid colon, 

cecum, rectum or region where the sigmoid colon joins the rectum from Colombian subjects who 

attended Colonoscopy examination and with diagnosis of hyperplasic polyp, adenoma, insitu 

carcinoma or carcinoma of the rectum or colon. In our analyses we included both diagnosis and 

biopsy location as explanatory variables. Biological differences between the right (proximal) and left 

(distal) colon have been identified and they include the tissue of developmental origin and 

manifestation of CRC (44). Therefore, we used the WCB location to define a new variable that 

indicated the location of the WCB with respect to left and right colon. The right colon included the 

cecum, ascending and transverse colon. The left colon included the descending and sigmoid colon, 

sigmoid-rectum union and the rectum. This variable was used as the explanatory variable to adjust for 

the effects of WCB location. We also accounted for sex, age and batch (plate) in our analyses 

following the work of others who have shown that these variables can affect DNAm level (Gibbs, 

Lam, Boks, Tapp). In addition, we fitted two genotype principal components to account for any 

stratification within our population sample. Results were practically identical when the analyses were 

done adjusting for sex and age. 

 

The components of variance were estimated by fitting a mixed linear model using restricted maximum 

likelihood and the publically available software: REACTA (45). Consider y a vector of measurements 

of DNAm level across all samples (n) for a single DNAm site, 



 a vector measuring the effects sex 

and age and



  a design matrix mapping the appropriate explanatory variable to each sample. Then 
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with  a matrix of standardized SNP genotypes from each sample and assuming a vector of SNP 

effects, 



u~N(0,Iu
2)with 



I  a diagonal matrix and the random error 



  N(0,I

2) the model is 

defined as: 



y  XWu  

The heritability attributable to SNPs local to the DNAm site can be estimated from the following 

equation: 

 

h
2



g

2

g
2


2  

Where s g

2 = Ns u

2
 and  is the number of SNPs, and 



A WW ' /N  is a matrix of genetically derived 

relationships calculated from 



N  SNPs for n samples. The formula used for calculating the pairwise 

relationships from the SNP information can be found in VanRaden (46). Using a 1MB window either 

side of the DNAm we find that a total of between 1 and 3037 SNPs are included in the analysis 

(Figure 9). The null hypothesis that the heritability estimate was not significantly different from zero 

was tested with a Likelihood Ratio Test distributed as 50:50 mixture of Chi-squared  distributions 

with 0 and 1 degrees of freedom (47). If P < 0.05 we rejected the null hypothesis and concluded that 

the DNAm site was heritable. 

 

The SNP by SNP GWAS was conducted on residual DNAm level for each of 196080 DNAm sites 

using PLINK version 1.90 (43) and the --assoc command.  

 

Significance Testing of Proportions 

To test if two proportions are significantly different from one another we use the prop.test function in 

R (48). In brief, this function assumes that the two sample sizes are sufficiently large so that the 

distribution of the first proportion minus the second proportion is Gaussian. We apply a two-tailed test 

because we do not have prior expectation of the relative magnitudes of the two proportions being 

tested.  
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Legends to Figures 

Figure 1: Distribution of Mean Site-specific DNAm level with respect to CpG density 

Methylation levels were measured on the M-value scale where a DNAm level of 0 can be interpreted 

as a 50% methylation level, a DNAm level < 0 and a DNAm level greater than > 0 indicate lower and 

greater than 50% methylation respectively.  The majority of DNAm sites in islands exhibited a low 

average methylation level, which was in contrast to the majority of DNAm sites in low density CG 

regions  (sea) being on average highly methylated.  

 

Figure 2: Mean Site-specific DNAm level as a function of distance from the edge of the island  

The 4000 BP region upstream (North) and downstream (South) of Islands was divided into bins of 

100 BP. The average of the mean site-specific DNAm levels for DNAm sites residing within each bin 

is shown as a white circle enclosed by a line indicating +/- 2 standard error of the mean estimate. A 

shore is up to 2000 BP from an Island and a shelf is between 2000 and 4000BP from an Island. 

 

Figure 3: Distribution of mean site-specific DNAm level for eight contextual groups 

 

Figure 4: Moments of the distributions of mean site-specific DNAm level for eight contextual 

groups  

 

Figure 5: Distribution of the variance of each DNAm site used in analysis (n=196080) 

 

Figure 6: Distribution of the Estimated heritability for DNAm sites significantly associated with 

local genetic variation.  

Each bar represents a range of 0.05. 

 

Figure 7: Number of SNPs +/- 1MB surrounding a DNAm site 
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Figure 8: Distribution of mean-site specific heritability for genes expressed in whole colorectal 

biopsies and colon epithelial cells  

DNAm sites have a significant heritability if P<0.05. Genes expressed in both the epithelial and whole 

colorectal biopsy (WCB) were removed from the WCB group for this analysis. 

 

Figure 9: The mean genetic variance and the proportion of heritable DNAm sites for the eight 

contextual groups.  

The x-axis value represents the proportion of heritable DNAm sites within each contextual group and 

the average genetic variance for each contextual group. 

 

Figure 10: Proportion of the regional heritability that can be explained by the top SNP 

association 

The variance explained by a SNP (R2) divided by the regional heritability estimate for DNAm sites 

with a regional heritability estimate significant at P < 0.05. Only the most significant SNP within the 

local region was considered. In 4.2% of cases the SNP explained more variance in DNAm level than 

the region. 
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Tables 

Table 1: Number of DNAm sites within six regions defined by physical distance from islands 

As described in the body of the manuscript, north and south shores encompass up to 2KB upstream 

and downstream of islands respectively. Regions 2-4KB upstream and downstream of islands were 

defined respectively as north and south shelves (27). Sea is any DNAm site not annotated as being 

located within an island, shelf or shore in the 450K manifest file.  

Genomic Context with 

Relation to CpG Density 

Island North 

Shore 

South 

Shore 

North 

Shelf 

South 

Shelf 

Sea Total 

Number of DNAm Sites 74274 27405 21158 8323 7503 57417 196080 

 

 at E
dinburgh U

niversity on M
arch 8, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


36 

Table 2: Number of DNAm sites within each of the eight contextual groups 

Genomic Context Island Sea 

TSS Expressed 13838 2074 

TSS Not Expressed 19052 7603 

Intragenic 31356 30106 

Intergenic 10028 17634 

Total 74274 57417 
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Table 3: Proportion of heritable DNAm sites and the corresponding mean heritability 

 Overall there was a higher proportion of heritable DNAm sites located in the sea compared to islands. 

Additionally, there was a higher proportion of heritable DNAm sites located in intergenic regions 

compared to regions containing a TSS and intragenic regions. The average heritability estimates were 

similar across the contextual groups. 

 Island Sea 

 Proportion 

Heritable 

Mean h2 Proportion 

Heritable 

Mean h2 

TSS Expressed 0.066 0.275 0.117 0.288 

TSS Not Expressed 0.084 0.281 0.117 0.293 

Intragenic 0.089 0.283 0.100 0.290 

Intergenic 0.129 0.308 0.123 0.303 

Total 0.089 0.286 0.110 0.295 
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Table 4: Significant Associations from SNP by SNP GWAS for 196080 DNAm sites 

The total number of significant associations (Count) and number of expected significant associations 

based on the specified threshold and the total number of SNPs tested (Count Expected) is reported. 

The number of DNAm sites with at least one significant association is given (Count DNAm Sites). 

SNPs were binned with respect to distance from the DNAm site (cis +/- 1MB and trans > +/- 1MB) 

  Cis   Trans  

Threshold Count Count 

Expected 

Count DNAm 

Sites 

Count Count 

Expected 

Count DNAm 

Sites 

5*10-2 6,027,276  5,572,851  195,792     

5*10-4 184,978  55,729  55,532     

5*10-8 17,712 5.57  4,050  1,519,534  6,690  72544 

5*10-12 9,495 5.57*10-4 1,412  236,577 6.69*10-1 16474 

5*10-20 1,037 5.57*10-12 343 23,072  6.69*10-9 1786 

5*10-40 18  5.57*10-32 8 706  6.69*10-29 47 

Max R2 0.884   0.8717   

Min P-value 1.40*10-62   1.96*10-58   

Total SNPs 

Tested 

111558037 

 

  1.34*1011   
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Table 5: Effects of rs4925386 and local genetic variation on cg15193198 and cg24112000 

The regional heritability estimate (  for cg15193198 and cg24112000 including rs4925386. The 

estimate for the full model (  Full) and reduced model (  Reduced) were calculated from all 

SNPs +/-1MB of the DNAm site excluding rs4925386. The full model included fitting the genotypes 

at rs4925386 as a fixed effect. The effect of rs4925386 on DNAm level is reported as the addition of a 

single copy of the minor allele, Adenine.  

 
 

  

P-value 

 Full  Full  

P-value 

 

Reduced 

 

Reduced  

P-value 

SNP 

Effect 

SNP 

Effect  

SE 

cg15193198 0.307 1.66 *10-3 0.025 0.411 0.301 2.19*10-3 -0.438 0.079 

cg24112000 0.625 5.51*10-12 0.281 

 

1.44*10-2 0.629 8.47*10-12 -0.576 0.090 

 

 

Abbreviations 

DNAm, DNA methylation 

LCM, Laser capture microdissection 

WCB, whole colon biopsy 

CRC, colorectal cancer 

TSS, transcription start site 

island TSS expressed, within an island and a TSS of a gene expressed in colon 

island TSS not expressed, within an island and in a TSS of a gene not expressed in colon 

island intragenic, within an island and intragenic 

island intergenic, within an island and intergenic, 

sea TSS expressed,within the sea and the TSS of a gene expressed in colon 

sea TSS not expressed, within the sea and the TSS of a gene not expressed in colon 

sea intragenic, within the sea and intragenic 

sea intergenic, within the sea and intergenic 
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