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Quorum sensing protects bacterial co-operation from
exploitation by cheats

Richard C Allen1, Luke McNally1, Roman Popat and Sam P Brown
Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh,
Edinburgh, UK

Quorum sensing (QS) is a cell–cell communication system found in many bacterial species,
commonly controlling secreted co-operative traits, including extracellular digestive enzymes. We
show that the canonical QS regulatory architecture allows bacteria to sense the genotypic
composition of high-density populations, and limit co-operative investments to social environments
enriched for co-operators. Using high-density populations of the opportunistic pathogen Pseudo-
monas aeruginosa we map per-capita signal and co-operative enzyme investment in the wild type as a
function of the frequency of non-responder cheats. We demonstrate mathematically and experimen-
tally that the observed response rule of ‘co-operate when surrounded by co-operators’ allows
bacteria to match their investment in co-operation to the composition of the group, therefore allowing
the maintenance of co-operation at lower levels of population structuring (that is, lower relatedness).
Similar behavioural responses have been described in vertebrates under the banner of ‘generalised
reciprocity'. Our results suggest that mechanisms of reciprocity are not confined to taxa with
advanced cognition, and can be implemented at the cellular level via positive feedback circuits.
The ISME Journal advance online publication, 8 January 2016; doi:10.1038/ismej.2015.232

Introduction

The co-operative provision of help to other indivi-
duals is a ubiquitous feature of life, from viruses to
vertebrates (Turner and Chao, 1999; Bshary and
Grutter, 2002; Griffin et al., 2004; Rand et al., 2009;
Melis et al., 2011). Across biological scales,
co-operative individuals face the challenge of com-
petition with non-co-operative ‘cheats’ that reap the
rewards of co-operation without paying the full costs
(Ghoul et al., 2014). If individuals have fixed
strategies (constitutively co-operative or non-
co-operative), then co-operators can only outcompete
cheats if any net costs of co-operation are sufficiently
offset by increased rates of interaction with fellow
co-operators (positive genetic assortment or related-
ness, Hamilton, 1964; Frank, 1998).

Although much theory has been built on the
assumption of constitutive strategies, behavioural
plasticity in social traits is increasingly recognised as
the norm, not only in vertebrates (Rutte and
Taborsky, 2007), but also in microbes (Kuemmerli
and Brown, 2010; Parkinson et al., 2011;
Xavier et al., 2011) and even in viruses interacting

with conspecifics (Leggett et al., 2013). The impor-
tance of behavioural control of co-operative effort
has been emphasised since Trivers’ (1971) pivotal
work on reciprocity highlighted that behavioural
feedbacks can allow individuals to match their
investment in co-operation to the investment of
others (that is, creating phenotypic assortment),
and thus protect co-operative strategies from
exploitation even in well-mixed groups (Trivers,
1971; Nowak and Sigmund, 1998; Pfeiffer et al.,
2005; Fletcher and Zwick, 2006). Mechanisms of
reciprocity are often suggested to be cognitively
complex (Milinski and Wedekind, 1998; Stevens and
Hauser, 2004). However, one form of reciprocity,
which has been suggested to be simple enough to be
achievable by most organisms, is ‘generalised
reciprocity’ (Pfeiffer et al., 2005). This form of
reciprocity works by individuals increasing their
level of co-operation as there are more co-operators
in their group, removing the requirement for the
recognition of individuals or extensive memorisation
of past events (Pfeiffer et al., 2005), and has been
observed in both humans (Stanca, 2009) and rats
(Rutte and Taborsky, 2007).

In bacteria, co-operative interactions are
commonly mediated by secreted factors that indivi-
dual cells produce at a cost to provide shared
benefits for a local neighbourhood of cells, for
example, iron-scavenging siderophores (Griffin et al.,
2004; Kuemmerli and Brown, 2010) or secreted digestive
enzymes (Diggle et al., 2007; Sandoz et al., 2007).
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The cost of secreting proteins is considerable, and
has resulted in selection for cheaper amino-acid
residues in secreted proteins (Nogueira et al., 2009).
It has been suggested that quorum sensing (QS), a
common regulatory architecture governing secreted
protein production, has evolved in part to restrict
secretion investments when they are inefficient
(Redfield, 2002; Hense et al., 2007; Darch et al.,
2012; Cornforth et al., 2014). We argue that the
efficiency gains of QS extend to the context of
genetically mixed groups.

QS is a form of cell–cell communication observed
across diverse bacterial species (Rutherford and
Bassler, 2012). Individuals secrete diffusible signals
into the environment and regulate gene expression
in response to the concentration of signal. Secreted
factors are over-represented in the QS regulon both
in Pseudomonas aeruginosa (Schuster and Peter
Greenberg, 2006; Gilbert et al., 2009; Popat,
Cornforth, et al., 2015) and other bacteria (Antunes
et al., 2007; Barnard et al., 2007), and therefore non-
responsive QS mutants function as social cheats by
not producing shared secreted proteins (Diggle et al.,
2007; Sandoz et al., 2007).

A critical design feature in most QS regulatory
networks is positive autoregulation of signal produc-
tion (Figure 1), a coupling between signal production
and signal detection (Goryachev, 2009). Signal
responsive wild-type (WT) individuals increase both
their rate of signal (Seed et al., 1995) and secreted

enzyme (Pearson et al., 1994) production in response
to higher environmental signal concentrations,
whereas non-responsive mutants (cheats) produce
minimal and invariant quantities of signal and
enzyme secretions (Figure 1). We suggest that the
positive feedback loop governing signal production
in the wild type will cause correlations between
signal concentrations and the frequency of WT co-
operators (genetic composition) in mixed popula-
tions, providing a cue to the genotypic composition
of the population (Figure 1). The wild-type QS
response of increasing enzyme secretions with signal
concentration (Pearson et al., 1994) will then lead
to co-operative investment, increasing with the
frequency of WT co-operators in the population,
the outcome of generalised reciprocity. We therefore
predict that the native QS architecture will limit the
ability of non-responder cheats to socially exploit the
wild type in a high-density environment.

A literature review shows that non-responsive
cheater mutants (ΔlasR mutants) show huge varia-
tion in frequency in P. aeruginosa, both in samples
from infections and experimental evolution studies,
varying from 0 to 100% per population (Table 1). As
these non-responsive mutants produce little to no
signal, this suggests that cheater frequency will be at
least as important as population density in determin-
ing the signal concentration that a WT co-operator
experiences (as at high cheat frequency little signal
will be present). The resulting correlation between

Figure 1 QS network architecture produces the generalised reciprocity rule of ‘co-operate when surrounded by co-operators’. (Top)
When co-operators (blue) are common positive signal autoregulation in co-operators leads to high environmental signal concentrations. In
response to high signal concentration co-operators express more secreted enzyme, increasing population yield. Cheats (red) lack a signal
receptor, they do not respond to signal and so do not express signal or secreted enzyme above basal levels. They are able to exploit
co-operators, increasing in frequency. (Bottom) When co-operators are rare, there are few cells undergoing positive feedback in signal
production (autoregulation) so signal levels remain low. Co-operators invest little in protease production (acting as phenotypic cheats),
keeping costs of co-operation low and reducing exploitation by cheats.
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signal concentration and cheater frequency will
allow signal concentration to act as a reliable cue
of cheater frequency, thus creating the potential for
generalised reciprocity mediated by QS to protect co-
operators from exploitation by cheaters.

Building on existing theory (Taylor and Day, 2004;
Takezawa and Price, 2010; Cavaliere and Poyatos,
2013) we present mathematical models predicting
that generalised reciprocity mediated by QS signals
protects public goods investments from exploitation
by cheats that are unresponsive to signal. We test this
hypothesis by manipulating strain mixing in the
opportunistic pathogen and model QS bacterium
P. aeruginosa. We demonstrate that the wild-type
strategy of co-operative investment conditional on
autoregulated signal concentration increases the
range of conditions (degree of population structure
and co-operator frequency) where the regulated
co-operative trait can be maintained in the face of
non-responsive genetic cheats

Materials and methods

Assessing the co-operative phenotype of populations
WT P. aeruginosa (PAO1) and an isogenic lasR
knockout (ΔlasR) were used as genetic co-operators
and cheats respectively (Diggle et al., 2007). The WT
was marked with a luxCDABE cassette under the
control of the lasB promoter (made using the mini
CTXLux plasmid, Becher and Schweizer, 2000). The
WT and ΔlasR strains were mixed at varying
proportions and used to seed cultures at an optical
density (600 nm) of 0.01. Planktonic cultures were
grown in 96-well plates (200 µl volumes) for 6 h in a
defined QS medium (Popat et al., 2012) requiring
QS-regulated elastase for growth to high density. All
P. aeruginosa cultures were mixed, by shaking at
250 rpm with an orbit of 37mm allowing mixing of
small volumes (Duetz, 2007) to reduce population
structure. After 6 h incubation at 37 °C (cultures
produce most signal and response at this time),
cultures were centrifuged to separate supernatant
and cells. The remaining cell suspension was mixed
with equal parts 1:1 Luria-Bertani broth:glycerol and
frozen at − 80 °C, whereas supernatant was filter
sterilised (0.22 μm pore). Frozen populations were

later defrosted on ice and frequency was assayed by
vortexing, diluting and plating cultures on Luria-
Bertani agar plates, and then manually counting
colonies using luminescence to distinguish WT and
ΔlasR colonies. During the counting process the
experimenter was blind to treatment.

For measurements of protease activity, 50 μl of
sterile supernatant was added to 450 μl of elastin
congo red buffer (100mM Tris, 1 mM CaCl2, pH=7)
containing 20mgml− 1 elastin congo red (Ohman
et al., 1980). Tubes were incubated horizontally with
shaking at 150 rpm and 37 °C for 18 h. After incuba-
tion, supernatant was removed and the absorbance at
495 nm was read. To determine signal concentra-
tions, filtered culture supernatent was diluted 1/100
in Luria-Bertani broth and mixed in equal concen-
trations with exponentially growing bioreporter
strains at OD 0.1 (600 nm) in Luria-Bertani broth.
Synthetic signal at various concentrations was
treated similarly to create a calibration curve. Signal
bioreporters were grown for 3 h at 37 °C taking reads
of optical density and luminescence every 15min.
When luminescence was at a high level (1.75 and 3 h
growth for C12 and C4, respectively) a calibration
curve was fitted and used to calculate signal
concentrations in experimental samples. Bio-
reporters were S17-1 Escherichia coli containing
either the p56536 or pSB1142 plasmids (Winson
et al., 1998), which luminesce in response to short
and long chain AHLs, respectively.

Competition experiments
Mixed populations of WT and ΔlasR were set up as
before, with the following modifications. The WT
was marked with the luxCDABE cassette in a
constitutively active (promoterless) position (Popat
et al., 2012). Mixed cultures were grown for 40 h in
two 96-well plates (plate did not affect competition).
To exclude the effect of drying during extended
incubation treatments samples were randomly
allocated into the central wells of the plates, outer
wells contained growing cultures to minimise effects
of oxygen gradients but were not used for analysis.
Before and after growth, cells were frozen and later
defrosted to ascertain proportions and colony-
forming units (CFU) as before. Relative fitness of
the WT was calculated as: X1(1−X0)/(X0 (1−X1))
where X0 and X1 are the proportions of WT cells at
the start and end of competition, respectively (Ross-
Gillespie et al., 2007). The change in proportion of
WT over competition can be seen in Supplementary
Figure S3.

Statistics
All statistical analyses were performed in R (R Core
Team 2013). Signal and protease phenotype data were
modelled as a function of WT proportion at 6 h (X1):

PhenotypeðX1ÞecþmX1
1þqð Þ ð1Þ

Table 1 lasR-defective mutants show large variation in local
frequency

ΔlasR proportion Environment Reference

40–85% Cystic fibrosis patients (Köhler et al., 2010)
0–100% Cystic fibrosis Patients (Hoffman et al., 2009)
2–35% Mouse models

of infection
(Rumbaugh et al., 2009)

0–40% Experimental
evolution in vitro

(Sandoz et al., 2007)

0–80% Experimental
evolution in vitro

(Dandekar et al., 2012)
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F-tests were used to compare models to assess
whether additional terms increased fit, until a
minimal model was reached. Reported P-values
are taken from the minimal model. There was slight
variation in the optical density of the samples
used to measure phenotypes, but this was
always removed from the model due to lack of
explanatory power based on F-tests. The statistical
model for protease production was used for the
function of co-operative effort with WT frequency
for analysis in Figure 3.

For competition data, growth rate was calculated
based on the CFU of each strain before and after
competition as (final CFU–initial CFU)/intital CFU.
Linear mixed-effects models were used to model the
log of strain growth rates as a function of individual
and average group co-operation (taken from
the curves in Figure 2c), with competition well
included as a random effect. We initially fit a
model with effects of individual co-operation,
individual co-operation squared, average group
co-operation and average group co-operation
squared. Model simplification, combined with Wald
tests, showed that although the quadratic term for
average group co-operation did not significantly
improve model fit (effect of group co-operation
squared: F1,52 = 2.52, P40.05), all other terms were
significant in the reduced model (effect of group
co-operation: F1,53 = 134.33, Po0.0001; effect of
individual co-operation: F1,49 = 210.79, Po0.0001;
effect of individual co-operation squared:
F1,49 = 50.16, Po0.0001). The final fitted form of the
statistical model was

ln growth rateð Þ ¼ 3:57þ 4:43 � y þ 1:81 � x � 4:91 � x2 ð2Þ
where x is individual co-operation (equal to
(WT frequency)1.49 for the WT and zero for the ΔlasR
mutant), and y is group co-operation (equal to
(WT frequency)2.49).

Theoretical framework
We first consider a scenario where co-operators
invest a constant amount in co-operation regardless
of the composition of their group. For this scenario of
constitutive co-operative effort the payoff is

w g;Gð Þ ¼ aþ bG � cg ð3Þ
where g is an individual’s breeding value
(1 = co-operator, 0 = cheat), G is the mean breeding
value of the population, a is the intrinsic payoff, b is
the benefit of co-operation and c is the cost of
co-operation. From this we obtain the covariance
between fitness and breeding value (that is, the
expected change in genotype frequency owing to
selection) as

cov w ; gð Þ ¼ b cov G; gð Þ � c varðgÞ ð4Þ
Dividing through by var(g), the variance in breeding
value, we get the regression of fitness on breeding
value (βw,g), which must be positive for the selection

Figure 2 Per-capita signal and secreted enzyme investment
increases with wild-type co-operator frequency. Mixed popula-
tions of cheats and co-operators were grown for 6 h in quorum-
sensing media. After growth, AHL signal and secreted protease
concentrations were measured for the population. Plate counts
were used to determine co-operator proportion at 6 h. Equations
for fitted models are presented on the graphs. Insets show a
transformation of the fitted models to show the change in per-
capita WT phenotype. (a) Total 3-oxo-C12 N- acyl HSL concentra-
tion (inset, per WT individual). (b) Total C4 N-acyl HSL
concentration (inset, per WT individual). (c) Total protease
(elastase) concentration (inset, per WT individual), the equivalent
constitutive response (constant maximal WT investment) is shown
as dashed lines.
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of co-operation

bw ;g ¼ b bG;g � c ð5Þ
where βG,g is the regression of average group
genotype on individual genotype (that is, related-
ness). We will assume that founders are binomially
distributed into subpopulations with n founders
from a total population, which has proportion p
co-operators. The regression of group genotype on
individual genotype can then be simplified as
follows:

bG;g ¼ E Gjg ¼ 1ð Þ � E Gjg ¼ 0ð Þ ð6aÞ

bG;g ¼
Pn

k¼0
k
n

� �2�n
k

�
pk 1� pð Þn�k

h i
p

�
Pn

k¼0
k
n

� �
1� k

n

� ��
n
k

�
pk 1� pð Þn�k

h i
1� p

ð6bÞ

bG;g ¼
1
n

ð6cÞ
Substituting equation (6c) into equation (5) and
rearranging gives us equation (19) from the results.
We next consider a scenario where co-operators
increase their relative investment linearly from 0
when no co-operators are present to 1 when their
group is entirely co-operators. For these assumptions
the payoff for a plastic co-operator is

w g;Gð Þ ¼ aþ bGG � cGg ð7Þ
giving the following covariance between fitness and
breeding value

cov w ; gð Þ ¼ b cov GG; gð Þ � c cov Gg; gð Þ ð8Þ
Dividing by var(g) and rearranging.

bw ;g ¼ b bGG;g � c bGg;g ð9aÞ

bw ;g ¼ b bGG;g � c E Ggjg ¼ 1ð Þ � E Ggjg ¼ 0ð Þ½ � ð9bÞ

bw ;g ¼ b bGG;g � c E Gjg ¼ 1ð Þ ð9cÞ
Again assuming a binomial distribution of founders
into subpopulations the regression coefficient and
expectation can be simplified as

bGG;g ¼
Pn

k¼0
k
n

� �3�n
k

�
pk 1� pð Þn�k

h i
p

�
Pn

k¼0
k
n

� �2
1� k

n

� ��
n
k

�
pk 1� pð Þn�k

h i
1� p

ð10aÞ

bGG;g ¼
1þ 2p n� 1ð Þ

n2 ð10bÞ
and

E Gjg ¼ 1ð Þ ¼ 1þ p n� 1ð Þ
n

ð11Þ

Substituting equations (10b) and (11) into equation
(9c) gives equation (21) of the results.

Metapopulation framework
Metapopulations are commonly used to manipulate
structure in microbiology to study social behaviours
(Griffin et al., 2004). We used a metapopulation
framework to model the effect of signal-meditated
generalised reciprocity on the evolution of
co-operation. We assume that the metapopulation
is structured into an infinite number of
groups, each of which is founded by n individuals.
Given these assumptions, we can calculate the
proportion of co-operative individuals that find
themselves resident in a group with k co-operative
founders as

Qcoop kð Þ ¼
k
n

�
n
k

�
pk 1� pð Þn�k

p
ð12Þ

and the proportion of cheats that find themselves
resident in a group with k co-operative founders as

Qcheat kð Þ ¼ 1� k
n

� ��
n
k

�
pk 1� pð Þn�k

1� p
ð13Þ

We can then write the difference in fitness between
co-operators and cheats as

wcoop � wcheat ¼
Xn

k¼0
Qcoop kð Þrcoop k

n

� �

�Qcheat kð Þrcheat k
n

� �
ð14Þ

where rcoop(k/n) and rcheat(k/n) give the growth rates
of co-operators and cheats in groups with propor-
tion k/n co-operators. We compare the behaviour of
this fitness difference when rcoop(k/n) and rcheat(k/n)
are calculated first under the natural scenario of QS
control of co-operation, and secondly under the
assumption of constitutive co-operation. In the
scenario of QS-controlled co-operation, the growth
rate of co-operators is given as

rcoop
k
n

� �
¼ e3:57þ1:81� k=nð Þ1:49�4:91� k=nð Þ1:49ð Þ2þ4:43� k=nð Þ2:49

ð15Þ
and for cheaters as

rcheat
k
n

� �
¼ e3:57þ4:43� k=nð Þ2:49 ð16Þ

In the scenario of constitutive co-operation, we
simply replace all instances of k/n with 1, giving

rcoop
k
n

� �
¼ e4:91 ð17Þ

and

rcheat
k
n

� �
¼ e8:01 ð18Þ
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We evaluated the fitness differential for these two
scenarios across varying co-operator frequency (p)
and founder number (n) to assess the consequences
of signal-mediated generalised reciprocity for the
evolution of co-operation.

Results

What are the behavioural rules governing signal
production and signal response?
The established architecture of QS-controlled
secreted enzyme production suggests that increasing
the local frequency of wild type (versus signal non-
responsive cheats at a fixed population size) will
increase the per-capita production rate of both signal
(Seed et al., 1995) and secreted protease (Pearson
et al., 1994) by WT individuals. To test this
prediction and to map the functional forms of the
behavioural response, we manipulated the initial
frequency of WT co-operators and measured the
resulting concentration of the two primary
P. aeruginosa signal molecules 3-oxo-C12-HSL
(N-(3-oxododecanoyl)-L-homoserine lactone) and
C4-HSL (N-(butanoyl)-L-homoserine lactone), plus
secreted protease enzyme (a critical P. aeruginosa
virulence factor and bacterial public good, expressed
under positive QS control). Our results are consistent
with increases in per-capita C4, C12 and secreted
enzyme production by WT individuals when at
higher WT frequency. Specifically, in Figure 2 we
see that phenotypes at the population level increase
as an accelerating function of WT frequency at 6 h,
allowing us to reject the null hypothesis of constant
per-capita production (exponent of 1). For C4, fitted
exponent = 2.63, s.e = 0.758, t21 = 2.148, Po0.05. For
C12, fitted exponent = 3.84, s.e = 0.793, t21 = 3.576,
Po0.001. For secreted enzyme, fitted exponent =
2.49, s.e = 0.492, t21 = 3.024, Po0.01. Inset plots
show the predicted per-capita WT cell phenotype
(signal production or co-operative investment).
Although QS is often considered to regulate genes
in a binary fashion (as a threshold behaviour) our
results (Figure 2c and Supplementary Figure S4c)
support a view that QS responses are continuous
rather than binary, as has also been suggested by a
previous study (Darch et al., 2012).

How does QS control of co-operation shape competition
between co-operator and cheat genotypes?
To ask whether the native functional response
‘co-operate when surrounded by co-operators’
(Figure 2c) protects protease enzyme secretion from
exploitation, we performed 40 h competition experi-
ments between WT co-operators and non-responder
cheats at varying initial frequencies. The growth rate
of both strains increased with the initial WT
frequency (Figure 3a). To relate growth rate to the
underlying costs and benefits of co-operative enzyme
secretion, we use our estimates of individual and
collective co-operative effort as a function of WT

frequency at 6 h (Figure 2c). We fit a linear mixed-
effect model of the log of growth rate (Figure 3a) as a
function of individual (Figure 2c, inset) and collec-
tive (Figure 2c, main) enzyme secretion phenotypes.
The analysis partitions out the effects of mean group
phenotype (Figure 3b) and individual phenotype
(Figure 3c). Although the growth rate of both strains
increases with initial WT frequency (Figure 3a) due
to the benefits of group co-operation (Figure 3b), the
cheat strain benefits more at high initial WT
frequency because secreted enzyme production is
individually costly (Figures 3a and c). Fixing
co-operative effort as constant (using the dashed line
in Figure 2c) allows us to model the growth rate of
the two strains given constitutive WT co-operation
(dashed lines in Figure 3a).

We can use our fitted model of growth rate to
summarise the yield data (measured as CFU) and
relative fitness data for the competition experiments
in Figures 3d and e (data points and solid lines).
These show good agreement with the data capturing
the superlinear increase in yield (but showing a
reduction in yield at very high initial WT frequen-
cies, see MacLean et al., 2010) and increasing
exploitation of the WT when common. When
co-operative effort is constitutive (dashed lines),
our predictions indicate that yield increases more
linearly and the WT is always exploited. Experimen-
tally fixing per-capita WT co-operative effort at a
constant (but increased) level through the addition of
excess signals gives qualitatively similar results
(Supplementary Figure S1).

What are the implications of signal autoregulation for
selection across a metapopulation?
To explore the consequences of QS regulatory
control of co-operation, we next build and analyse
a simple model of bacterial fitness as a function of
their social neighbourhood (Chuang et al., 2009; de
Vargas Roditi et al., 2013), with and without QS
regulatory control of co-operation, assuming linear
costs and benefits of co-operation. Under the
assumption of constitutive co-operation, we find
that a co-operative strain is under positive selection
whenever bbG;g > c, where b and c are the benefits of
co-operation and βG,g is the coefficient of relatedness
(in regression coefficient form), a measure of genetic
assortment between co-operators (with breeding
value g) and their social group (with breeding value
G). When we assume that WT and cheat strains are
allocated at random (binomially) to subpopulations,
the relatedness term reduces to the inverse of the
number of patch founders, n (methods), meaning
co-operation will be favoured whenever

b
n
> c ð19Þ

To introduce plastic co-operative effort, we make
the conservative assumption that individual
co-operative investment increases linearly with the
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proportion of co-operators (in practice, investment
increases even faster with increasing frequency of
co-operators, Figure 2c). This assumption implies
that the costs of co-operation for an individual
increase linearly with the local frequency of
co-operators, whereas the per-capita benefits
of co-operation increase quadratically (more
co-operators and more effort). As a result, the
condition for co-operation to be favoured is now

bbGG;g > cbGg;g ð20Þ
Using the binomial distribution to derive the regres-
sion coefficients (methods), and substituting the
values for βGg,g and βGG,g into equation (20) we see
that the condition for QS-controlled co-operation to
be favoured is:

b
n
> c

1þ p n� 1ð Þ
1þ 2p n� 1ð Þ ð21Þ

where p is the proportion of individuals in the
metapopulation that are co-operators (g=1).

Comparing the right hand sides of inequalities 19
and 21, we can see that co-operation is more easily
favoured by selection under signal-mediated general-
ised reciprocity whenever P40 and n41; that is, so
long as some co-operators are present and groups are
not clonal. Where P=0 and/or n=1 the inequalities
are identical. Thus, signal-mediated generalised
reciprocity is expected to protect co-operative
individuals from exploitation by cheaters.

Although our theoretical model suggests that
signal-mediated generalised reciprocity helps pro-
tect co-operators from exploitation by cheaters in a
metapopulation, it makes simplifying assumptions
regarding the relationships between strain fitness,
and individual and group co-operation. To assess our
theoretical predictions, we used our fitted fitness
functions (Figure 3) to determine the consequences
of signal-mediated generalised reciprocity for the
evolution of co-operation in a metapopulation. Our
results confirm that generalised reciprocity reduces
the level of relatedness necessary for co-operation to

Figure 3 Generalised reciprocity limits social exploitation when WT co-operators are rare. Competition between WT co-operators and
cheats (ΔlasR) over 40 h in media requiring secreted protease enzyme for growth. (a) Log growth rate of the two strains averaged over the
length of competition. (b) The predicted linear effect of group co-operative effort on log growth rate (effect of group co-operation: β=4.43,
s.e. = 0.26, F1,53 = 134.33, Po0.0001). (c) The predicted quadratic effect of individual co-operative effort on log growth rate (effect of
individual co-operation: β=1.81, s.e. = 0.54, F1,49 = 210.79, Po0.0001; effect of individual co-operation squared: β=–4.91, s.e. = 0.69,
F1,49 = 50.16, Po0.0001). (d) How population yield (CFU/100 μl) varies with WT frequency. (e) How WT relative fitness varies with WT
frequency. All solid lines are fits of our model to the data shown in (a) assuming co-operative effort varies with WT frequency according to
the solid fits in Figure 2c. Dashed lines are predictions for constitutive co-operative effort (assuming co-operative effort varies with WT
frequency according to dashed lines in (2c), individual points are direct measures of growth rate, yield and relative fitness measured from
competition experiments.
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be favoured, allowing co-operation to be more
readily maintained in non-clonal groups (Figure 4).
In Figure 4 the final column shows a metapopulation
where subpopulations have an infinite number of
founders, this is equivalent to a well-mixed popula-
tion and thus is identical to the data in Figure 3.

Discussion

QS bacteria commonly place the control of both
secreted signals and proteins under the positive
influence of extracellular signal molecule concentra-
tion (Antunes et al., 2007; Gilbert et al., 2009;
Rutherford and Bassler, 2012). We illustrate that this
well-studied mechanism allows bacteria to assess the
extent of co-operation in their surrounding popula-
tion (Figure 2), and respond with a rule similar to
generalised reciprocity that can limit exploitation by
signal non-responsive cheats (Figures 3 and 4). In
comparison with constitutive co-operation, the rule
of ‘co-operate when surrounded by co-operators’
moderates individual co-operative effort to be closer
to the surrounding population phenotype (that is,
increasing phenotypic assortment, Fletcher and
Zwick, 2006) and reducing exploitation by cheats.
Our results in Figure 4 predict that facultative
co-operation may lead to co-existence of
co-operators and cheats in natural settings.

As can be seen in Figure 2c and Supplementary
Figure S4c, when the WT is rare co-operative
investment is low. Our analysis in Figure 3c shows
that although co-operation at high levels is costly to

the individual, a low level of co-operation benefits
the individual. We experimentally measure the costs
of expression in Supplementary Figures S4b and S4d
showing that the low level of QS induction when the
WT is rare results in low or negligible costs. This
experiment removes the benefits of protease produc-
tion (there is no protein in the environment), but
given the low cost of QS induction at a low level we
would see a WT relative fitness 41 if there is any
individual benefit of low level QS induction.
Individual benefits may be due to preferential access
to the low level of protease in the environment, for
example, owing to association of protease with the
membrane of the producing cell or residual spatial
structure as P. aeruginosa can form planktonic
aggregates (Schleheck et al., 2009). QS controls
many genes so other traits such as stress responses
may be responsible for individual benefits (García-
Contreras et al., 2014; Davenport et al., 2015). Private
benefits are not required for our metapopulation
results, if we alter our metapopulation framework so
that cheats produce the level of protease that is most
individually beneficial (corresponding to the max-
ima of the curve in Figure 3c), we still see a benefit of
QS control of public goods (Supplementary Figure S2).
In addition, we see an area of positive frequency
dependence, producing bistability (Supplementary
Figure S2).

The key to generalised reciprocity in the
P. aeruginosa system (and others sharing the key
signal autoregulation design) is the pleiotropic action
of the LasR signal receptor protein (Foster et al.,
2004; Dandekar et al., 2012). As a transcription factor
it determines both the level of signal production and
the level of QS-regulated-secreted factors. The lasR
gene (and thus signal production) resembles a
greenbeard mechanism, generating a detectable
signal that is mechanistically linked to investment
in co-operation (Dawkins, 1989; Eldar, 2011;
Biernaskie et al., 2013). We do not demonstrate that
the observed response rules are evolutionary stable
strategies (Takezawa and Price, 2010; Cavaliere and
Poyatos, 2013) and it is possible that signal production
could become unlinked from signal response, thus
breaking the pleiotropy and the ability for generalised
reciprocity to protect the WT from exploitation. In
particular, the WT regulatory response appears vulner-
able to a coercive-cheating strategy of high signal, low
response (Brown and Johnstone, 2001; Eldar, 2011).
However, clinical studies commonly isolate low signal,
low-response lasR mutants (Table 1), and recent
experimental evolution suggests that a coercive-
signalling phenotype is not readily available to selection
(Popat, Pollitt, et al., 2015).

A role is proposed for WT QS to sense the genetic
composition of a high-density population; however,
it is unknown to what extent this is adaptive in
natural populations of P. aeruginosa. The functional
role of QS is the subject of significant debate, with
QS implicated as a device to sense variation in
density (Darch et al., 2012), mass transfer (Redfield,

Figure 4 Generalised reciprocity stabilises co-operation over a
larger range of conditions in a metapopulation. Selection
determined using statistical model fits shown in Figure 3 and
the metapopulation framework described in the methods. Dots
represent equilibria for constitutive (black), QS-regulated (white),
and either form of co-operation (grey). Constitutive co-operation is
only favoured when the population has a clonal structure
(1 founder per subpopulation). QS-regulated (facultative)
co-operation is favoured for lower levels of relatedness, including
a well-mixed population (infinite number of founders).
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2002; Boedicker et al., 2009) or the spatial patterning
of a population (Hense et al., 2007). These environ-
mental factors, along with others, will affect the
concentration of signals. Like other hypotheses for
functions of QS the importance of QS in sensing
genotypic composition will depend on how much
variation there is in ΔlasR frequency (or similar
signal blind mutations) in the environment and
clinical setting compared with variation in other
factors. Our review of current literature suggests that
there are high levels of variation in the proportion of
lasR-defective strains in a natural setting (Table 1),
with cheat frequencies varying from 0 to 100%
within local subpopulations. As large groups with
high cheat frequencies will produce very little signal,
this suggests that cheat frequency may be at least as
important as population density in determining
signal concentrations in nature.

The addition of genotype sensing to the list of
potential QS functions should not be seen as
incompatible with the hypotheses mentioned above.
Recent work has argued that using multiple signals
allows P. aeruginosa to improve resolution of both
population density and mass transfer properties
(Cornforth et al., 2014). It is possible that wild-type
populations growing clonally can use QS to draw
sophisticated inferences about the state of their
social and physical environment (Diggle et al.,
2007; Hense et al., 2007; Darch et al., 2012), and in
addition can use the same QS apparatus to reduce
social exploitation when confronted with non-
responder cheat genotypes (Figures 2–4).

An understanding of QS-regulated secretions takes
on an additional importance given the current focus
on QS as a therapeutic target (Rasko and Sperandio,
2010; Rutherford and Bassler, 2012; Schuster et al.,
2013; Allen et al., 2014). Under the action of QS
receptor blocking therapeutics, sensitive strains will
behave like non-responder cheats, whereas resistant
mutants can potentially maintain wild-type behaviour
(Mellbye and Schuster, 2011; Allen et al., 2014),
and risk being counter-selected in well-mixed
populations, owing to their investment in
co-operation. However, our results highlight that
resistant co-operators will invest little in co-operation
when they arise at a low frequency, expressing a
similar phenotype to susceptible strains, leading to
relaxed selection for or against resistance (Gerdt and
Blackwell, 2014). Similarly, if therapeutics targeting
signal supply are used they will reduce the
concentration of active signal (Dong et al., 2001;
Gutierrez et al., 2009). The perceived proportion of
co-operators will then be lower, so genetic
co-operators will co-operate less, again relaxing
selection for or against genetic co-operators,
potentially leading to the maintenance of elevated
virulence (Köhler et al., 2010). Our data highlight the
need to understand drug targets in detail to predict
the evolutionary consequences of treatment with
new therapeutics (Allen et al., 2014; Ross-Gillespie
et al., 2014; Vale et al., 2014).

Plasticity is commonly observed in bacterial
species, and the importance of plasticity in
co-operative phenotypes is increasingly becoming
apparent (Kuemmerli et al., 2009; de Vargas Roditi
et al., 2013). What then can behavioural ecology tell
us about plasticity in microbial co-operation (Inglis
et al., 2014)? Our results show that a behavioural rule
of ‘co-operate if surrounded by co-operators’ is found
in bacteria. This approximates generalised reciprocity:
co-operate based on previous co-operative experiences
regardless of identity of partners (Pfeiffer et al., 2005).
Generalised reciprocity has been reported in humans
(Stanca, 2009) and rats (Rutte and Taborsky, 2007), and
the small cognitive demands of generalised reciprocity
suggest that it will be more universally applicable. We
find that bacteria implement a similar social rule,
suggesting that generalised reciprocity is not confined
to taxa with advanced cognition, and can be imple-
mented at the cellular level via simple positive
feedback regulatory circuits.
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