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Deposition of amyloid β (Aβ) in the walls of cerebral arteries as cerebral amyloid angiopathy (CAA) suggests an
age-related failure of perivascular drainage of soluble Aβ from the brain. As CAA is associated with Alzheimer's
disease and with intracerebral haemorrhage, the present study determines the unique sequence of changes
that occur as Aβ accumulates in artery walls. Paraffin sections of post-mortem human occipital cortex were
immunostained for collagen IV, fibronectin, nidogen 2, Aβ and smooth muscle actin and the immunostaining
was analysed using Image J and confocal microscopy. Results showed that nidogen 2 (entactin) increases with
age and decreases in CAA. Confocal microscopy revealed stages in the progression of CAA: Aβ initially deposits
in basement membranes in the tunica media, replaces first the smooth muscle cells and then the connective
tissue elements to leave artery walls completely or focally replaced by Aβ. The pattern of development of CAA
in the human brain suggests expansion of Aβ from the basement membranes to progressively replace all tissue
elements in the artery wall. Establishing this full picture of the development of CAA is pivotal in understanding
the clinical presentation of CAA and for developing therapies to prevent accumulation of Aβ in artery walls.
This article is part of a Special Issue entitled: Vascular contributions to cognitive impairment and dementia.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Deposition of insoluble amyloid β (Aβ) within the extracellular
spaces of the brain and the accumulation of hyperphosphorylated
tau within neurons as neurofibrillary tangles are major features in
the pathology of Alzheimer's disease (1). Aβ is also deposited in
the brain with age in non-demented individuals in addition to those
with AD, strongly suggesting that there is an age-related failure of
elimination of Aβ from the brain (2–6). In addition to plaques in
the brain, Aβ is deposited in the walls of cerebral capillaries and
arteries as cerebral amyloid angiopathy (CAA) with age and in AD.
In late stages of CAA, the walls of cerebral arteries are completely
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replaced by Aβ and this may be associated with CAA-related intrace-
rebral haemorrhage (7–10).

Due to the close association of CAAwith both Alzheimer's disease and
with CAA-related intracerebral haemorrhage, themain aim of the present
study is to establish the sequence by which Aβ accumulates in artery
walls in the development of CAA. Despite the very infomative studies
on the distribution of CAA (11) and its quantitation (12), relatively
little is known about the sequence of events that leads to increasing
deposition of Aβ in artery walls in CAA in the human brain (13).
Establishing a full picture of the development of CAA is pivotal in
understanding the clinical presentation of CAA, its detection by imaging
techniques and the development of therapies to prevent the accumula-
tion of Aβ in artery walls.

Experimental studies have shown thatwhen tracers of equivalentmo-
lecular size to Aβ, and soluble Aβ itself, are injected into the brain, they
initially diffuse through the narrow extracellular spaces of the brain but
rapidly enter bulk flow pathways within the basement membranes of
capillary and arterywalls that represent the lymphatic drainage pathways
of the brain (14).With age and possession of apolipoprotein E ε4 (apoE4),
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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two of the major risk factors for AD, perivascular lymphatic drainage of
soluble Aβ is significantly reduced (15,16).

Impairment of perivascular lymphatic drainage appears to be related
to age-related stiffening of artery walls and changes in vascular base-
ment membranes (17). The presence of CAA is a reflection of the im-
paired perivascular lymphatic drainage and failure of elimination of
Aβ from the brain with age and AD (6,18–20). Comparing confocal im-
ages of experimental tracer studies with the distribution of Aβ in vessel
walls in human CAA reveals a strong correlation suggesting that CAA
represents a failure of perivascular lymphatic drainage of Aβ from
the ageing and Alzheimer's brain (21). In this study, we use carefully
selected age-matched post-mortem brains from young and aged
non-demented individuals and from patients with Alzheimer's disease
to assess the stages in deposition of Aβ in the walls of cerebral arteries
in the development of CAA. We also quantify the changes that occur in
the immunohistochemical profile of vascular basement membrane
proteins with age and AD.

2. Materials and methods

Sections of 10 μm thickness of postmortem human occipital cortex
from the Newcastle Brain Tissue Resources and MRC Sudden Death
Brain& Tissue Bank (Edinburgh) were used for this study (Tables 1,2).
The cases were diagnosed post-mortem by JA, according to published
criteria including neuritic Braak stages (22), Thal amyloid phases (23),
CERAD scores (24), NIA-AA scores (25) and McKeith criteria (26)
showed varying degrees of Alzheimer's disease pathology. For CAA we
used recently a staging systemwhich assessesmeningeal and parenchy-
mal CAA separately and also scores capillary CAA (see: (27)). None of
the cases was diagnosed with CAA during life. The cases from the MRC
Sudden Death Brain& Tissue Bank (Edinburgh) had no neurological
disease during life and no significant neuropathological changes
post mortem. We have excluded any cases with arteriolosclerosis/
lipohyalinosis from this cohort. All sampleswere collected andprepared
in accordance with the National Research Ethics Service approved pro-
tocols. For this study we used tissue from both young (n = 14 mean
age 43.3 see Table 1) and aged (n = 20 mean age 81.45, Table 1)
controls and from severe CAA cases (n = 20 mean age 82.5, Table 1).
Sections were immunostained for collagen IV (Col IV, AbCam,
Cambridge, UK, 1:400), nidogen 2 (polyclonal antibody produced in-
house, dilution 1:1000), fibronectin (1:400, AbD Serotec, UK). A total
of 1689 images were obtained of the cortical gray matter adjacent to a
sulcus, using the tissue microarray feature of the Olympus Dot Slide
microscope and images were analysed using Image J, for percentage
area stained. Statistical analysis was performed using SPSS statistics
and one-way ANOVA with LSD post hoc.

2.1. Triple immunofluorescence and confocal microscopy

Ten cases of CAA were diagnosed as severe CAA according to pub-
lished criteria (7). Details of the antibodies used are in Table 3. The
paraffin-embedded brain tissue sections were de-waxed at 60 °C for
15 min, rehydrated through graded alcohols and pre-treated with 98%
formic acid at RT, 3 min. Slides were washed with 0.01 M TBS,
microwaved in 400 mL 0.01 M citrate buffer (pH 6), microwaved for
25 min, and incubated with 500 μL of 15% normal goat serum and
blocking medium for 30 min. Slides were incubated overnight at 4 °C
with the primary antibodies (Table 3); anti-Aβ-4G8 (dilution 1:100),
anti-collagen IV (dilution 1:400), and FITC-conjugated anti-SMA
(dilution 1:200). Secondary antibodies used were; goat-anti-mouse
IgG2b 594 (dilution 1:200) and goat-anti-rabbit 633 (dilution 1:200).
To quench autofluorescence, slides were incubated in Sudan Black (1%
in 70% alcohol) in the dark at room temperature, 5 min, washed
with 0.01 M TBS, labelled and cover slipped with 200 μL Mowiol and
Citifluor mounting medium before examination with the confocal
microscope.
Please cite this article as: A. Keable, et al., Deposition of amyloid β in th
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2.1.1. Confocal microscopy imaging
The slides were viewed with a Leica TCS SP5 laser scanning confocal

microscope. Leptomeningeal arteries along sulci were identified and
distinguished from other vessels based on the presence of smoothmus-
cle actin in tunicamedia. From each of the 10 slides, a total of 10 arteries
with a diameter larger than 10 μm were imaged at ×40 objective, with
a total of 100 leptomeningeal arteries imaged. In order to perform a
qualitative analysis of the pattern of Aβ deposition within the
leptomeningeal vessel walls, relative to the presence of SMA and Col
IV single channel fluorescence confocal images were obtained in series,
followed by an overlay image from both fluorescence channels. These
images were viewed and analysed using Leica LAS AF 3.x windows7
software.

Image J version Fiji windows 64 software (http://fiji.sc/Fiji; NIH,
Bethesda, USA) was used for the quantitative analysis of the 100 vessels
to:

1. Calculate the percentage (%) of Aβ, SMA and Col IV within the total
area of leptomeningeal artery wall;

2. Calculate the internal diameter of the 100 leptomeningeal arteries, as
measured at its smallest point;

3. Calculate the percentage (%) of co-localisation of Aβ, SMA and Col IV
within the leptomeningeal arterywall. Leptomeningeal arteries have
a thicker wall, larger internal diameter and are ideal for analysis by
confocal microscopy.

Using the Image J region of interest manager, the perimeter of each
vessel and luminal area for the 100 vessels was traced by hand and
the area of the vessel wall calculated (total vessel area − lumen
area = area of the vessel wall). After calibrating each image to a
known diameter the blood vessel diameter was calculated using the
Image J measurement tool, using the smallest cross sectional diameter
of the blood vessel as the most accurate form of measurement. In
order to ensure the validation of fluorescent intensity so that only gen-
uine fluorescence was detected, fluorescence thresholds were set for
each of the colour channels: red for Aβ, green for SMA and blue for
Col IV. An initial validation analysis was carried out on mock images to
ensure correct judgement on the capture of genuine fluorescence. Co-
localization of each fluorescence colour was calculated using colour
thresholds selected in pairs to calculate the number of pixels with over-
lap of two colour channels; red/blue, red/green and green/blue. The
Image J particle analyser tool was used to quantify the area covered by
each fluorescence colour and each pair of colours. The individual fluo-
rescence values were calculated as a percentage of total vessel wall
area. This data was processed using the commercial software package
MATLAB (MATLAB 6.1, The MathWorks Inc. Natick, MA, 2000) to pres-
ent the percentage of total fluorescently labelled vessel wall comprised
of each protein of interest as a 3D scatter plot. Relationships between
the percentage of each protein within the total vessel wall relative to
blood vessel diameter, correlation between amount of each protein
present and patterns of co-localisation were analysed using Microsoft
Excel (Microsoft Office 2010) and presented as 2D data plots. The
amount of each protein present relative to the blood vessel diameter
and the degree of co-localisation between the different protein pairings
(Col IV/SMA, Col IV/Aβ, Aβ/SMA) were statistically analysed using
Graph Pad Prism 6.0 (Graph Pad Prism inc. USA) in one-way and two-
way analysis of variance (ANOVA). A P-value of b0.05 was considered
to be statistically significant.

3. Results

3.1. Analysis of the pattern of staining of cerebrovascular basement
membrane components within the parenchyma

No significant changes were observed in young, old and CAA brains
in the percentage area stained for the collagen IV and fibronectin in
the gray or white matter (Fig. 1). The percentage area of the vascular
e walls of human leptomeningeal arteries in relation to perivascular
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Table 1
a). Demographics of cases used in this study. Brains from young cases were from the MRC Sudden Death Brain& Tissue Bank (Edinburgh). Brains from old non-demented and CAA cases
were from Newcastle Brain Tissue Resource; b). diagnoses for the cases assessed.

a)

Young Aged non-demented controls CAA

Case ID Age Gender Case ID Age Gender Case ID Age Gender

SD020 12L 56 M 4309L 96 F 2609AM 83 M
SD023 12L 50 M 6709L 74 F 5109L 79 F
SD032 11M 58 M 8108L 79 F 6509L 75 M
SD033 10N 51 M 8210L 72 M 7709L 63 F
SD036 10N 21 M 10,908L 81 M 8809L 88 F
SD039 10N 48 M 32,212L 90 M 9810L 86 F
SD042 12M 29 M 32,412L 50 M 10,009L 80 F
SD045 12M 37 M 34,012L 95 M 10,208L 84 F
UA09 424 50 M 35,310L 74 F 10,409L 79 M
UA09 527 46 M 35,910L 94 F 31,011L 91 F
UA09 588 51 M 47,711L 95 F 32,010L 88 M
UA09 611 56 M 48,612L 92 F 42,610L 84 F
UA09 633 49 M 52,411L 83 F 50,510L 86 F
UA09 634 32 M 57,510L 77 M 55,710L 85 M
UA09 644 44 F 64,811L 89 F 71,511L 83 M
UA10 23 38 M 68,510L 88 F 72,510L 87 F
UA10 210 36 M 72,910L 70 M 98,710L 81 F
UA10 222 27 M 73,611L 81 F 102,610L 93 F
UA10 319 43 M 89,111L 73 M 104,010L 78 M
SD024 12M 44 M 113,511L 76 F 111,510L 77 M
Age range (21–58) = 37 (50–96) = 46 (63–93) = 30
Mean 43.3 81.45 82.5
Standard deviation 10.065 11.115 6.399

b)

Case ID Group AD Braak Diagnosis

4309L Old 2 Clinical dementia — no pathology
6709L Old 1 Cognitively normal control
8108L Old 4 Parkinson's disease with DLB
8210L Old 0 Frontotemporal dementia
10,908L Old 3 Parkinson's disease without dementia
32,212L Old 2 Parkinsons disease without dementia
32,412L Old 0 Corticobasal degeneration (but not cognitively impaired)
34,012L Old 3 Alzheimer's disease
35,310L Old 3 Cognitively normal control
35,910L Old 2 Cognitively normal control
47,711L Old 3 Cognitively normal control
48,612L Old 2 Cognitively normal control
52,411L Old 1 Major depression, no dementia
57,510L Old 3 Dementia with Lewy bodies (DLB)
64,811L Old 3 Cognitively normal control
68,510L Old 3 Cognitively normal control
72,910L Old 0 Cognitively normal control
73,611L Old 3 Progressive supranuclear palsy
89,111L Old 0 Cognitively normal control
113,511L Old 2 Parkinson's disease with non-DLB dementia
2609AM CAA 6 Alzheimer's disease
5109L CAA 4 Frontotemporal dementia
6509L CAA 4 Alzheimer's disease
7709L CAA 6 Mixed type dementia: Alzheimer's disease and DLB
8809L CAA 2 Alzheimer's disease
9810L CAA 6 Alzheimer's disease
10,009L CAA 6 Alzheimer's disease
10,208L CAA 6 Alzheimer's disease
10,409L CAA 3 Stroke without dementia
31,011L CAA 3 Dementia with Lewy bodies
32,010L CAA 6 Alzheimer's disease
42,610L CAA 6 Alzheimer's disease
50,510L CAA 6 Alzheimer's disease
55,710L CAA 6 Alzheimer's disease
71,511L CAA 4 Parkinson's disease with DLB
72,510L CAA 6 Alzheimer's disease
98,710L CAA 6 Alzheimer's disease
102,610L CAA 5 Alzheimer's disease
104,010L CAA 6 Alzheimer's disease in advanced isocortical stage with mild CAA type 2 and DLB
111,510L CAA 6 Alzheimer's disease in advanced isocortical stage with moderate CAA type 2 and DLB
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Table 2
Number of cases and images from each group: a) total number of cases; b) total number of
images from each group examined.

a)

Marker Group

Young Old CAA

Collagen IV 19 19 20
Fibronectin 18 20 19
Nidogen 2 14 20 20

b)

Marker Group

Young Old CAA

Grey White Total Grey White Total Grey White Total

Collagen IV 94 95 189 95 95 190 100 100 200
Fibronectin 90 90 180 100 100 200 95 95 190
Nidogen 2 70 70 140 100 100 200 100 100 200
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profiles stainedwith nidogen 2was significantly higher in old compared
to young brains and significantly lower in CAA brains compared to old
brains in both gray and white matter (Fig. 1).

3.2. Analysis of the main constituents of leptomeningeal artery walls

A fluorescent immunohistochemistry assay was carried out on 10 se-
vere CAA brain tissue sections from Newcastle Brain Tissue Resource and
100 leptomeningeal arteries (10 from each tissue section) were imaged
using a Leica SP5 scanning confocal microscope. The pattern of Aβ depo-
sition relative to SMA and Col IV within the leptomeningeal artery walls
was qualitatively analysed using single fluorescence channel images in
series. This provided a clear image of the pattern of Aβ deposition relative
to the vesselwall area and the relative positions of eachproteinwithin the
vessel morphology. Collagen IV represents the BM and displayed similar
morphology and thickness in the basementmembranes of the endotheli-
um, tunica media and glia limitans. The presence and morphology of Col
IV appeared unchanged between the different severe AD brains, regard-
less of the Aβ accumulation. The presence of SMA between individual
vessels varied, from normal SMA immunostaining within the vessel
wall, to minimal/no SMA immunostaining (Fig. 2).

The pattern of Aβ deposition within the leptomeningeal arteries of
severe CAA varied greatly, with differing patterns of deposition and
degrees of accumulation, from Aβ deposits fully surrounding the
perimeter of the vessel wall shown in Fig. 2C vessel 1, to minimal Aβ
accumulation in Fig. 2C vessel 2.

3.3. Qualitative analysis of co-localization

In order to qualitatively analyse the patterns of co-localization
between Col IV, SMA and Aβ within the human leptomeningeal artery
Table 3
Details of the primary and secondary antibodies used for immunohistochemistry staining.

Antibody type Antigen Name provided by supplier

Primary Collagen IV Rabbit anti-collagen IV

Primary Smooth muscle actin FITC conjugated mouse anti-alpha chain SMA

Primary Aβ Mouse anti-Aβ IgG2b
SIG39220

Secondary Rabbit IgG Alexa fluor
633 goat anti-rabbit

Secondary Mouse IgG2b Alexa fluor
594 IgG2b goat anti-mouse

Please cite this article as: A. Keable, et al., Deposition of amyloid β in th
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walls of severe CAA brain tissue sections, maximal projection overlay
images were obtained using a Leica SP5 scanning CM. These images
comprised of a series of Z-slide images stacked together with all three
colour channels: blue for Col IV, green for SMA and red for Aβ, overlaid
to show their relative positions within the vessel wall morphology.
Qualitative analysis identified regions of red-blue co-localizationwithin
a number of the vessels imaged, indicated by the colour purple.
We identified a few distinct patterns of deposition of Aβ in the
basement membranes: Fig. 3A provides a representation of the visible
co-localization (pink) of Col IV (blue) with Aβ (red) within the
leptomeningeal artery wall. The Aβ (red) was observed in the BM in
tunica media, leaving most of the endothelial and glia limitans BM
free (Fig. 3A,B). The basement membranes around smooth muscle
cells were occupied by Aβ in a uniformmanner for most of their surface
(Fig. 3A). Smoothmuscle cells were preserved or replaced by Aβ in focal
parts of the wall of the artery (Fig. 3B) or entirely (Fig. 3C). Aβ was de-
posited within the basement membranes of tunica media, with the
smooth muscle actin staining intact (Fig. 3A). We observed a distinct
pattern of deposition of Aβ on the abluminal aspect of smooth muscle
staining, with no immunostaining for basement membranes of the
endothelium (Fig. 3D). In the absence of immunostaining for smooth
muscle actin, an artery laden with Aβ was identified based on the
pattern of deposition of Aβ occupying the entire thickness of the wall,
in a lattice pattern. In all images there were 1–3 veins identified based
on the pattern of deposition of Aβ, always on the abluminal side of base-
ment membranes and not occupying the entire thickness of the wall.

Quantitative analysis was performed on 100 leptomeningeal arteries
from severe CAA brain tissue sections using Image J version Fiji
windows 64 software (http://fiji.sc/Fiji; NIH, Bethesda, USA), to analyse:

1. the percentage of the vessel wall occupied by Col IV, SMA and Aβ,
2. the internal diameter of each blood vessel.
3. the degree of co-localization between Col IV, SMA and Aβ in relation

to the blood vessel diameter.

There was a correlation between the amount of Col IV present and
amount of Aβ: an increase in Col IV was matched by an increase in Aβ
(Fig. 4A). The relationship between SMA and Aβ however shows a
general negative correlation: an increase in Aβ was associated with a
decrease in the amount of SMA present shown by the negative gradient
of the trend line (m= −0.2543) in Fig. 4B.

The smaller blood vessels have the least Aβ deposition, correlating to
themost SMA and Col IV, whilst the largest blood vessels have themost
Aβ deposition, least Col IV and significantly reduced percentage area
stained for SMA (p = 0.02) (Fig. 5). The co-localization of collagen IV,
SMA and Aβ was calculated using Image J version Fiji windows 64
software (http://fiji.sc/Fiji; NIH, Bethesda, USA) with a two colour
channel threshold set in pairs; blue/green, blue/red, red/green. Blue
represents Col IV, green represents SMA and red the Aβ. The data
from 100 fluorescently labelled leptomeningeal arteries was analysed
usingMicrosoft Excel (Microsoft Office 2010) to find the average degree
of co-localization between the three pairings from all 100 vessels. The
Supplier details Dilution

Anti-collagen IV primary antibody, polyclonal, produced in Rabbit (ab6586)
AbCam, Cambridge, UK

1:400

Anti-alpha chain SMA primary monoclonal antibody (F3777)
Sigma Aldrich, Dorset, UK

1:200

Anti Aβ 17–24 (4G8) primary monoclonal antibody (SIG39220)
Covance, Cambridge Bioscience, Cambridge, UK

1:100

Alexa fluor 633 goat anti-rabbit IgG, polyclonal, (A-21,071)
Invitrogen, Life Technologies, Paisley, UK

1:200

Alexa fluor 594 goat anti-mouse IgG2b (A-21,145)
Invitrogen, Life Technologies, Paisley, UK

1:200
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Fig. 1.Quantification for collagen IV, fibronectin, nidogen 2 in the gray andwhitematter of young, old and CAA cases. The percentage areas stainedwith nidogen 2 in gray andwhitematter
were significantly higher in old compared to young brains and significantly lower in CAA brains compared to old brains.
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highest degree of co-localization was observed between Col IV and Aβ,
within leptomeningeal arteries of severe CAA brains (Table 4).

4. Discussion

Experimental studies suggest that lymphatic drainage of fluid and
solutes from the brain occurs along basement membranes of capillaries
and arteries and that such drainage is impaired by age and CAA (14,17).
Here we propose a sequence of changeswhereby Aβ is initially deposit-
ed in the basementmembranes surrounding smoothmuscle cells. There
are distinct patterns suggesting progression from Aβ deposition in the
central part of basement membranes, to complete co-localization of
Please cite this article as: A. Keable, et al., Deposition of amyloid β in th
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Aβwith basement membranes in tunica media, leaving the endothelial
basement membranes free. Nidogen (entactin) prevents the aggrega-
tion of Aβ (28). We observed a significant increase in the amount of
nidogen (entactin)with normal ageing, possibly indicating a compensa-
tory mechanism for the prevention of aggregation of Aβ in the vascular
walls.

We have identified a number of stages through which this sequence
passes (Fig. 6) from the initial deposition of Aβ within basement
membranes between smooth muscle cells walls of the artery to com-
plete replacement of the wall by Aβ. Previous ultrastructural studies
have reported the progressive deposition of fibrillar amyloid in the lam-
ina densa of smooth muscle basement membranes in the tunica media
e walls of human leptomeningeal arteries in relation to perivascular
x.doi.org/10.1016/j.bbadis.2015.08.024
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Fig. 2. Single colour channel images in series (A–C) and the overlay (D) showing triple immunofluorescence labelling of two leptomeningeal arteries from a severe CAA brain. A) Smooth
muscle actin (SMA); B) collagen IV; C) Aβ; D) overlay. Vessel 1 diameter = 71.866 μm, vessel 2 diameter = 80.151 μm. (→) marks a key region of interest where initial Aβ deposition
correlates to the only region of reduced SMA in vessel 2. Scale bar: 50 μm.
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of leptomeningeal arteries in the development of CAA (29,30). The
authors at that time suggested that the sole source of Aβ was smooth
muscle cells. It is now clear that basement membranes form the path-
way by which Aβ drains from the brain and that the largest proportion
of Aβ in smooth muscle basement membranes in CAA is derived from
the brain (31,32). As the volume of an Aβ deposit increases in size, it
separates the smooth muscle basement membrane into its two compo-
nent parts as shown here and previously (21). With further growth in
size of Aβ deposits, smooth muscle cells are lost from the tunica
media, possibly associated with destruction of their basement
membranes. As observed by the co-localization of Aβwith thebasement
membrane protein collagen IV, there is some preservation of basement
membrane elements within the artery wall, even after the loss of
Fig. 3. The spectrum of different patterns of deposition of Aβ in CAA. Maximal projection
overlaid confocal images of a human leptomeningeal artery from severe CAA brain:
A) the basement membrane (collagen IV, blue) of the tunica media is interposed between
the smoothmuscle cells (green immunolabelling). Aβ (red, arrows) is observedwithin the
basementmembranes of tunicamedia, with blue immunolabelling for collagen IV on both
sides; the endothelial BM is free of Aβ; B) co-localization (pink) between the red Aβ and
blue Col IV within the BM with the absence of SMA immunolabelling for more of half of
the circumference of the arterial wall; C) complete loss of SMA immunolabelling,
with Aβ co-localizing with collagen IV in tunica media; D) transverse section through an
artery, with Aβ deposited in the adventitia. Blue = Col IV, green = SMA, red = Aβ.
Scale bars: 50 μm.
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smooth muscle cells. Eventually, all basement membrane elements are
lost and the vessel wall is composed solely of Aβ.

There are variations in the sequence of stages described above and
these are also shown in Fig. 6. In some arteries, deposition of Aβ remains
focal, even to the point of complete replacement of smooth muscle and
basement membrane elements by Aβ. The apparent rupture of the
vessel in Fig. 2C,D cannot be ascribed with certainty to an in vivo event
in this case, but it shows a potential site of weakness in the vessel wall
Fig. 4.A)The percentage offluorescently labelled leptomeningeal arterywall comprised of
smooth muscle actin, collagen IV and Aβ. B) the relationship between the percentage of
fluorescently labelled leptomeningeal artery wall comprised of Aβ and SMA. Each data
point corresponds to the values from an individual leptomeningeal artery from the
occipital sulcus of a severe CAA brain, 100 vessels in total.

e walls of human leptomeningeal arteries in relation to perivascular
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Fig. 5. The relationship between blood vessel diameter and expression of SMA, Col IV and Aβwithin human leptomeningeal arteries of severe AD brain tissue sections. The average per-
centage represents the percentage of total fluorescently labelled vesselwall comprised of each protein from an average of ‘n’ vessels. For cohort 50–60 n=8, 60–70 n=62, 70–80 n=21
and N80 n = 9. The error bars shown represent the standard error. Table: Statistical analysis of the relationship between amount of Col IV, SMA and Aβ expressed in a leptomeningeal
artery wall relative to the blood vessel diameter, analysed using Graph Pad Prism 6.0 one-way ANOVA analysis. The percentage area covered by SMA increases with the diameter of
the vessel; the percentage area covered by Aβ also increases with the diameter of the vessel, although this did not reach statistical significance. SE: standard error of the mean.
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that may in some cases be associated with rupture and intracerebral
haemorrhage. The heterogeneity in presentationsmay be due to howdif-
ferent risk factors for CAA affect the process of perivascular clearance. For
example, possession of ApoE4 genotype alters the biochemical
composition of basement membranes, whereas mid-life hypertension al-
ters the biophysical forces acting upon the arterial wall, modifying the
motive force for perivascular clearance. Another feature is depicted in
Fig. 3D, in which the tunica media is completely free of Aβ and there is
preservation of the smooth muscle cells. Instead, Aβ is deposited in the
Table 4
Statistical analysis of the differences in amount of co-localization measured between each
protein pair (Col IV/SMA, Col IV/Aβ and SMA/Aβ) in leptomeningeal arterywalls of severe
CAA brains, analysed using Graph Pad Prism 6.0 two-way ANOVA analysis. There is signif-
icantly more co-localization between collagen IV and Aβ compared to SMA and Aβ.

Co-localization protein
pairing

% of total
variation

P value

Col IV/SMA vs Col IV/Aβ 57.87 0.0262
Col IV/SMA vs Aβ/SMA 67.65 b0.0001
Col IV/Aβ vs Aβ/SMA 54.85 0.0050
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tunica adventitia, which may represent part of the lymphatic drainage
pathway to lymph nodes in the neck, but this exact route still requires
strict verification.

(a) A normal leptomeningeal artery showing the tunica media
composed of smooth muscle cells (green) and connective tissue of the
tunica adventitia (blue). (b) Tunica media showing smooth muscle
cells (green) and intervening basement membrane (blue). Lymphatic
drainage (LD) of interstitial fluid and solutes, including soluble Aβ,
from the brain occurs along basement membranes (BM) in the tunica
media of cerebral arteries. (c)–(g) depict the age-related thickening of
arterial BM (c) with impaired LD, through the stage of amyloid co-
localisation with basement membranes (d) (see Fig. 3A), to replace-
ment of smooth muscle cells by Aβ (e–g), with some preservation of
basementmembranematerial (f) to complete replacement of the artery
wall by Aβ (g). Figures (h–j) (see Fig. 3B–C) show patterns of replace-
ment of artery wall by Aβ. Most of the smoothmuscle cells are replaced
with Aβ co-localized with basement membrane material (h) to com-
plete loss of smooth muscle cells but with some preservation of base-
ment membrane (i). Finally the whole vessel wall is replaced by Aβ
(j) (see vessel 1 in Fig. 2). Variations in the pattern of deposition of Aβ
are seen in figures (k)–(l). Focal complete replacement of vessel wall
e walls of human leptomeningeal arteries in relation to perivascular
x.doi.org/10.1016/j.bbadis.2015.08.024
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Fig. 6. Development of cerebral amyloid angiopathy.
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byAβ is seen in (k) (see vessel 2 in Fig. 2). Deposition of Aβ in the tunica
adventitia in (l) (see Fig. 3d)may represent part of the lymphatic drain-
age pathway of Aβ along the adventitia of leptomeningeal arteries.

4.1. Relationship of perivascular drainage of Aβ to other pathways of Aβ
elimination

A number of pathways for the elimination of Aβ from the brain have
been identified and they include receptor-mediated absorption of Aβ
into the blood (33), degradation of Aβ by enzymes such as neprilysin
(34), drainage of Aβ into the CSF (35) as well as perivascular lymphatic
drainage (14). Impairment of both neprilysin and absorption of Aβ into
the blood appear to result in increased severity of CAA, suggesting that
Aβ is diverted to perivascular drainage pathways (36,37). Although
there is physiological evidence that Aβ introduced into the CSF passes
into the interstitial fluid of the brain and thence returns to the CSF
(38), the data are derived from animal experiments and that there are
no data from human studies to show that Aβ is deposited in these path-
ways in Alzheimer's disease.
Please cite this article as: A. Keable, et al., Deposition of amyloid β in th
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4.2. Consequences of age-related changes in cerebral arteries and CAA

As arteries age, they become stiffer, with loss of innervation and in-
creasing rigidity that is associatedwith impairment of perivascular drain-
age offluid and solutes (39–41). It appears that such impairmentmay not
only result in CAA, but also act as a trigger for loss of homoeostasis in the
brain, a rise in soluble Aβ and seeding of Aβ plaques in brain parenchyma.
Furthermore, age-related changes may initiate the amyloid cascade that
results in neuronal damage and acceleration of tau propagation in the
pathogenesis of Alzheimer's disease (42).

The other major complication of CAA is intracerebral haemor-
rhage, although why such haemorrhages show spatial clustering and
tend to involve the temporal and occipital lobes preferentially is un-
clear (43). The present study shows how amyloid expanding from
the basement membrane drainage pathways may eventually totally
replace all elements of an artery wall. Further factors that result in
rupture of vessels associated with CAA are not clear. The degree of
replacement of the vessel wall by amyloid required before the vessel
ruptures is at the moment unknown. Further study of arteries
e walls of human leptomeningeal arteries in relation to perivascular
x.doi.org/10.1016/j.bbadis.2015.08.024

http://dx.doi.org/10.1016/j.bbadis.2015.08.024


9A. Keable et al. / Biochimica et Biophysica Acta xxx (2015) xxx–xxx
associated with intracerebral haemorrhage may help to answer this
question.

4.3. Conclusion

In CAA, Aβ is deposited within the perivascular drainage pathways
of the brain. The cerebrovascular basement membranes undergo bio-
chemical changes with increasing age and there are specific patterns
of vascular morphology associated with ageing. The morphological pat-
terns of vascular anatomymay become futuremarkers for the efficiency
of perivascular drainage and the risk of CAA.
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