

Edinburgh Research Explorer

Individuation without representation

Citation for published version:
Dewhurst, J 2016, 'Individuation without representation', British Journal for the Philosophy of Science.
https://doi.org/10.1093/bjps/axw018

Digital Object Identifier (DOI):
10.1093/bjps/axw018

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
British Journal for the Philosophy of Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/322478047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/individuation-without-representation(d0a93f3f-fa68-4182-936f-96116fdc947a).html
https://doi.org/10.1093/bjps/axw018
https://doi.org/10.1093/bjps/axw018
https://www.research.ed.ac.uk/portal/en/publications/individuation-without-representation(d0a93f3f-fa68-4182-936f-96116fdc947a).html

 1

Individuation Without Representation
Joe Dewhurst

Abstract
Shagrir (2001) and Sprevak (2010) explore the apparent necessity of
representation for the individuation of digits (and processors)1 in computational
systems. I will first offer a response to Sprevak’s argument that does not mention
Shagrir’s original formulation, which was more complex. I then extend my initial
response to cover Shagrir’s argument, thus demonstrating that it is possible to
individuate digits in non-representational computing mechanisms. I also
consider the implications that the non-representational individuation of digits
would have for the broader theory of computing mechanisms.

1. The Received View: No Computation Without
Representation

A popular position, which Sprevak (2010) calls the “received view”, is that
computation requires representation, either for the individuation of states and
processes, or in order to give a full account of the causal dynamics of a
computational system. I will focus on the former requirement here, as Sprevak
considers it to be more fundamental (2010: 261). I will first outline Sprevak’s
formulation of the requirement, before considering Shagrir’s more complex
argument.
 Sprevak asks that we consider the pair of tables that specify an AND gate
and an OR gate:

“The output of an AND gate is 1 just in case both inputs are 1
otherwise it is 0. The output of an OR gate is 0 just in case both inputs
are 0 otherwise it is 1.” (Sprevak 2010: 268, see tables 1 and 2)

a b a AND b
0 0 0
0 1 0
1 0 0
1 1 1

Table 1. AND gate

a b a OR b
0 0 0
0 1 1
1 0 1
1 1 1

Table 2. OR gate

1 As digits and processors are inter-defined, from now on it will be assumed that any reference to
digits is also a reference to processors, and vice versa, unless otherwise indicated.

 2

 He then asks us to consider a third table that specifies a processor which
takes a pair of inputs of either 5V or 0V and returns an output of 5V if both
inputs equal 5V, or else 0V (see table 3). Is this processor an AND gate or an OR
gate? It seems that without any further information we have no way of
answering this question. Whilst our intuition might be that it is an AND gate,
because of the convention of associating 0 with low values, there is in fact no
reason why it could not be the other way around, with 5V = 0 and 0V = 1 –
making it an OR gate. Sprevak concludes that minimal content (i.e. whether 5V
represents 1 or 0) is required in order to individuate computational processes
(2010: 269).

Input a Input b Output
0 V 0 V 0 V
0 V 5 V 0 V
5 V 0 V 0 V
5 V 5 V 5 V

Table 3. AND gate, or OR gate?

 Shagrir presents a similar case, but this time he asks us to consider a
physical system P that consists of a pair of gates that take inputs from two
channels ranging from 0V to 10V. One gate outputs 5V-10V if both inputs are
over 5V, and 0V-5V otherwise. The other gate outputs 5V-10V if exactly one
input is over 5V, and otherwise outputs 0V-5V. (Shagrir 2001: 372-3, see table
4). If we assign 0 to 0V-5V and 1 to 5V-10V, then the first gate is an AND gate and
the second gate is an XOR gate (see table 5).2 Shagrir also notes that we can
describe this interpretation as computing addition, by simply treating the
outputs of the two gates as binary digits (see table 6). This results in three ways
of describing P: physical (i.e. voltages), syntactic (i.e. 0s and 1s), and semantic
(i.e. numbers).

Input a Input b Gate a
output

Gate b
output

0-5 V 0-5 V 0-5 V 0-5 V
0-5 V 5-10 V 0-5 V 5-10 V

5-10 V 0-5 V 0-5 V 5-10V
5-10 V 5-10 V 5-10 V 0-5 V

Table 4. Shagrir’s voltage gate

Input a Input b AND XOR

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 5. 0-5 V = 0, 5-10 V = 1

2 Alternatively we could flip these assignments, making the first gate an OR gate and the second
gate a XNOR gate, but Shagrir does not seem to consider this possibility.

 3

Input a Input b AND XOR SUM
0 0 0 0 0 + 0 = 00 (0)
0 1 0 1 0 + 1 = 01 (1)
1 0 0 1 1 + 0 = 01 (1)
1 1 1 0 1 + 1 = 10 (2)

Table 6. Interpreted as computing addition for the domain {0,1}

 Here the syntactic description is typically taken to be the genuinely
computational description of the system, as the semantic description is
essentially arbitrary, in the sense that it requires an assignment of content, and
the physical description is too demanding, in the sense that it would not allow
for multiple realisability. However Shagrir goes on to argue that different
syntactic structures may be simultaneously implemented by the same cognitive
system, rendering the syntactic structure alone insufficient for computational
individuation. He proposes a form of minimal mental content as an additional
constraint, in much the same way that Sprevak formulates the representation
requirement.
 In order to demonstrate that syntax is insufficient Shagrir asks us to
image that the gates in our physical system P are in fact “tri-stable”, meaning that
they are able to distinguish inputs in the 0V-2.5V from those in the 2.5V-5V
range. The first kind of gate outputs 5V-10V if it receives 5V-10V from both
inputs, 0V-2.5V if it receives 0V-2.5V from both inputs, and otherwise outputs
2.5V-5V. The second kind of gate outputs 5V-10V if it receives exactly one input
of 5V-10V, 0V-2.5V if it receives 0V-2.5V from both inputs, and otherwise outputs
2.5V-5V. (Shagrir 2001: 374, see table 7). Note that formulating a table that
captures the structure of this system requires an additional ‘kind’ of input – in
effect the system is sensitive to three, rather than two, kinds of digit.

Input a Input b Gate a
output

Gate b
output

0-2.5 V 0-2.5 V 0-2.5 V 0-2.5 V
0-2.5 V 2.5-5 V 2.5-5 V 2.5-5 V
0-2.5 V 5-10 V 2.5-5 V 5-10 V
2.5-5 V 0-2.5 V 2.5-5 V 2.5-5 V
2.5-5V 2.5-5 V 2.5-5 V 2.5-5 V
2.5-5 V 5-10 V 2.5-5 V 5-10 V
5-10V 0-2.5 V 2.5-5 V 5-10 V
5-10 V 2.5-5 V 2.5-5 V 5-10 V
5-10 V 5-10 V 5-10 V 2.5-5 V

Table 7. Shagrir’s tri-stable system

 If we assign the syntactic symbol 0 to the 0V-2.5V range, and the syntactic
symbol 1 to the 2.5V-10V range, then both gates behave as OR gates (see table 8).
However, if we return to our previous assignment (0V-5V = 1 and 5V-10V = 0),

 4

then the gates revert to behaving as an AND gate and a XOR gate respectively
(see table 9). It seems that the physical structure P simultaneously implements
two different syntactical functions (Shagrir 1991: 375). Note that in both cases
our truth table now features some redundancy due to the tri-stable system’s
sensitivities not really being fully captured by our decision to assign only two
digits.

Input a Input b OR OR
0 0 0 0
0 1 1 1
0 1 1 1
1 0 1 1
1 1 1 1
1 1 1 1
1 0 1 1
1 1 1 1
1 1 1 1

Table 8. 0-2.5 V = 0, 2.5-10 V = 1

Input a Input b AND XOR
0 0 0 0
0 0 0 0
0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1
1 0 0 1
1 0 0 1
1 1 1 0

Table 9. 0-5 V = 0, 5-10 V = 1

 Shagrir concludes that in order to properly individuate computational
processes we require knowledge of the task or function that it carries out, from
which we can derive the content of the computation (2001: 382ff). For instance,
in the case of the tri-stable system P, we need to know whether it is being used to
compute addition or some other function (and thus what the semantic content of
its states are) before we can properly determine whether it consists of a pair of
OR (or AND) gates or an AND (or OR) gate and a XOR (or XNOR) gate. Thus,
representation is required for computational individuation.
 Both Shagrir and Sprevak are correct when they point out that the logical
status of a gate is indeterminate prior to the attribution or identification of its
representational content. However, as I will go on to argue, this does not mean
that computational processes cannot be individuated without representation –
rather, it means that computational processes must be individuated in a way that
remains neutral with regard to what logical function they carry out.

 5

2. Computing Mechanisms and Functional Individuation
Piccinini’s mechanistic account of computation provides a viable architecture for
the non-representational individuation of digits and processes. The account
builds on recent work on mechanistic explanation in cognitive science (Piccinini
2007: 501, see e.g. Bechtel 2005; Craver & Bechtel 2006; Craver 2007). As such it
aims to decompose the target phenomenon (computation) in terms of the
structured interaction of physical components (digits and processors). This will
allow for the individuation of digits and processors in purely functional, rather
then representational, terms. I will now briefly rehearse the most relevant
aspects of the mechanistic account before using it in order to respond to Sprevak
and Shagrir’s arguments.
 For our purposes a computing mechanism is defined as a physical system
that carries out systematic transformations on strings of digits. Digits are
understood as discrete physical units that can interact with other physical units
called processors in order to produce, in a systematic fashion, further discrete
physical units (i.e. further strings of digits). For instance, a digit type θ is a
component that, when coupled with another digit type θ to produce a string θ-θ,
interacts with a processor of type α to produce another digit of type θ. Digit
types will be further individuated by a description of how they interact with
other processor types, and vice versa for processor types.3
 I will now outline a response to Sprevak’s arguments from the
perspective of the mechanistic account of computation. Recall that Sprevak’s
claim was that minimal representational content is required in order to
individuate both digits and processors, as prior to knowing whether 5V
represents 0 or 1 we are unable to tell whether the processor in question is an
AND gate or an OR gate.
 However, consider another processor, as described by table 10. Again,
prior to assigning representational content we cannot tell whether this is an AND
gate or an OR gate, but note that what we can do is distinguish it from the gate
previously described (in table 3), which is its mirror image. This, I contend, is
sufficient for computational individuation, and can be achieved with simply a
physical description of how the various components of the mechanism function.
After individuating the two kinds of processor we are free to assign whatever
content we like to the digits in question, but this is strictly irrelevant for
computational individuation and is not necessary in order to give a complete
description of the computing mechanism.

Input a Input b Output
5 V 5 V 5 V
5 V 0 V 5 V
0 V 5 V 5 V
0 V 0 V 0 V

Table 10. AND gate, or OR gate?

 It is true that, when considered in isolation, both gates could be used to
perform the same logical operation – that is to say, in one system gate 3 might
serve as an AND gate, whilst in another system gate 10 could also serve as an

3 See Piccinini 2007 for a more detailed description of a computing mechanism.

 6

AND gate.4 In this sense there is perhaps no computational difference between
the two gates. However, my point is rather that were the two gates to be placed
in the same system, we would easily be able to distinguish between them. In this
more restricted sense the physical mechanism alone is sufficient for
computational individuation, and no assignment of content is required.
 Whilst Shagrir’s arguments are somewhat similar to Sprevak’s, they
require a slightly more complex response. Recall Shagrir’s tri-stable gates;
depending on our syntactic assignments they can be interpreted either as both
performing the OR (or AND) function, or performing the AND (or OR) and XOR
(or XNOR) functions respectively. Whilst this true, we do not require any
assignment of this kind in order to individuate the gates. It is sufficient for us to
note the unique patterns of voltage transformations, as presented in table 11
(this is a repeat of table 7, which can be found on page 3).

Input a Input b Gate a
output

Gate b
output

0-2.5 V 0-2.5 V 0-2.5 V 0-2.5 V
0-2.5 V 2.5-5 V 2.5-5 V 2.5-5 V
0-2.5 V 5-10 V 2.5-5 V 5-10 V
2.5-5 V 0-2.5 V 2.5-5 V 2.5-5 V
2.5-5V 2.5-5 V 2.5-5 V 2.5-5 V
2.5-5 V 5-10 V 2.5-5 V 5-10 V
5-10V 0-2.5 V 2.5-5 V 5-10 V
5-10 V 2.5-5 V 2.5-5 V 5-10 V
5-10 V 5-10 V 5-10 V 2.5-5 V

Table 11. Shagrir’s tri-stable system

 This is a more complex kind of computing mechanism than that presented
in table 10, consisting of two processor types and three digits types, but it is not
intrinsically representational (or even syntactic, in any strong sense). This
maximal description tells us all that we need to know in order to individuate the
components of the computing mechanism, and is sufficient to give a precise
account of any computation that it might perform. The two descriptions that
Shagrir gives in tables 8 and 9, on the other hand, can only be achieved by
making a decision about how to group the three digit types in table 7, so as to
end up with a system that only appears to have two digits. The decision that we
come to about how to group the digits will of course depend on the syntactic and
semantic assignments that we make, but these are strictly irrelevant to the
functioning of the system qua computation – or so says the mechanistic account.
 A further complication arises if we compare Shagrir’s tri-stable system
(table 11) with a bi-stable system consisting of two processors, each equating to
one of Shagrir’s gates but sensitive only to 0-5V and 5-10V.5 Both could be used
for computing addition, in which case we would interpret 0-5V as representing 0,
and 5-10V as representing 1. These systems appear to be performing the same

4 Mark Sprevak brought this point to my attention.
5 An anonymous reviewer brought this point to my attention, along with the subsequent point
about no two physical systems being strictly equivalent. The case presented here is a version of
one that they suggested.

 7

algorithm, which would traditionally be sufficient for computational equivalence.
However, they are structurally distinct, as the tri-stable system is sensitive to
difference in voltages that the bi-stable system is not. According to my
interpretation of the mechanistic account this means that they cannot be
computationally equivalent, as one is a mechanism consisting of three digits and
two processors, whilst the other consists only of two digits and two processors.
The fact that we interpret them as performing the same mathematical operation
is, if you accept my argument, strictly irrelevant to their computational
individuation.
 This would be problematic if one thought that it was important to see
these systems as computationally equivalent, for example in order to be able to
theorize about their equivalent algorithmic status as adders. Something along
these lines is the position traditionally held with regard to systems such as these.
On the contrary, though, what I think this case actually demonstrates is the
importance of keeping algorithmic and computational equivalence (or lack
thereof) distinct. It is indeed an interesting feature of these two systems that we
can use both of them to compute the same mathematical operation. It is also
interesting that we can do this despite them both possessing distinct
computational structures. By conflating computational and algorithmic
equivalence we risk missing this second interesting feature, giving us reason to
reject representational individuation.
 Taken to its logical extreme this argument might imply that no two
systems are computationally equivalent. In practice the physical structure of two
computing mechanisms is always going to be distinct, and it is unclear whether
we can draw any non-arbitrary boundary between the structures that are
relevant or irrelevant to computational individuation. This is a serious issue, and
at this point I am unsure how a proponent of the mechanistic account ought best
to respond. One option would be to appeal, as Piccinini does (2007: 507), to the
distinctions drawn by the relevant experts, which might allow us to say that, for
example, voltage levels but not temperature are relevant. Another option would
be to simply bite the bullet and accept that no two physical computing
mechanisms are equivalent, at risk of inviting a potential reduction ad absurdum.
 Whichever way we decide to go on this issue, it is worth noting that the
problem is shared by mechanistic accounts more generally, not just the
mechanistic account of computation (see e.g. Craver 2009 for a discussion).
Consider a mechanistic account of the cardiovascular system. Such an account
might invoke components such as veins, arteries, and red blood cells, and go on
to posit equivalence between systems that have these components in common.
Of course no two cardiovascular systems will be equivalent in all aspects of
physical structure, but experts in cardiovascular science will specify which
aspects are relevant, and this might be the best that we can do. Ultimately there
is going to be a degree of observer-relative arbitrariness to any scientific
practice, and this does not seem to be any worse in the case of computer science
than in other scientific disciplines. The target phenomenon, in this case
something like the structured transformation of digits, will constrain which
physical properties are to be considered relevant – i.e., those that are detectable
by the processing component(s) of the computing mechanism in question. In this
sense the fortunes of the mechanistic account of computation are hostage to the

 8

fortunes of mechanistic accounts more generally, but a full defence of such
accounts is beyond the scope of this paper.
 Piccinini (2008; 2015: chapter 3) puts forward a similar response to that
which I have outlined above, but he concedes that multiple computations are
implemented by Shagrir’s system. Which of the implemented computations is
most explanatory, he continues, will depend on the context within which they
take place. I agree that the context of implementation is important for
determining which logical operation is of explanatory interest, but I want to deny
that this context relativity extends to the individuation of computational
processes, which are fully captured by the physical structure of the computing
mechanisms. This has some fairly counterintuitive implications, which I will
consider in the next couple of sections.

3. Against Computational Externalism
Shagrir claims that the representation condition provides partial support for
what he calls “computational externalism”, namely, the thesis that
“Computational theories of cognition make essential reference to features in the
individuals environment” (2001: 392). In presenting this claim he equates
computational structure with cognitive processes, which I believe to be a false
equivalence. It is therefore important to respond to his claim here, and to clarify
the relationship between computational individuation and cognitive scientific
explanation.
 Shagrir asks us to consider a case where two computational systems
come to possess a distinct syntactic structure, in virtue of the distinct tasks that
they have been designed to solve (2001: 397). This is intended to demonstrate a
case where external factors determine computational individuation. His
description of this case is brief, and as I see it there are two ways of interpreting
it. Either the two systems are physically distinct, in which case all he has
demonstrated is the almost certainly trivial point that physically distinct
computational systems are also computationally distinct. Or the two systems are
physically identical, in which case we need to give a more thorough account of
what it means for them to be syntactically distinct. I will focus on the second
interpretation, as it is the more charitable.
 If the account given in the previous section is correct, then the received
view is false, and the equivalence that Shagrir draws between computational and
syntactic identity is invalid. This means that for syntactical structure to vary
whilst physical structure is held fixed we need something like Shagrir’s tri-stable
system, which is open to at least two distinct syntactic interpretations. As we
have already seen, however, this kind of case does not pose any threat to the
non-representational individuation of computational systems. Shagrir is correct
in noting that syntactic (or representational) content is at least partially
determined by external factors, but this kind of externalism need not carry over
to computational individuation, which can be accomplished entirely in terms of
intrinsic physical structure.
 Shagrir’s argument for computational externalism is undermined by the
distinction that the mechanistic account draws between computational and
syntactic/representational structure. This does not imply that externalism about
cognition is necessarily false, but only that if externalism about cognition is true

 9

then it must be true in virtue of something other than the computational aspect
of cognition. If computational states and processes can be individuated without
representational content, then we should be able to give a completely internalist
account of computation. Cognition, on the other hand, might require more than
computation, leaving room for some form of externalism with regard to content.
 The advantage of this approach is that provides a principled way of
separating what we might call ‘mere’ computation (i.e. computation without
representation) from full-blown cognition. If we allow for representational
content to determine the individuation of computational states then we risk
getting trapped in a kind of “vicious” circularity, where computational structure
determines content at the same time as content determines computational
structure (see Piccinini 2004a, 2004b). By giving a distinctive, non-
representational description of computation, the mechanistic account provides
room for computational structure to contribute to the determination of
representational content without inviting any kind of circularity or regress.
Computational individuation remains important because we want to be able to
identify the computational structures that instantiate cognitive systems, but the
determination of cognitive content turns out to require the invocation of
additional, non-computational factors, some of which may even be external to
the system in question.

4. Implications For The Mechanistic Account
I have demonstrated that it is possible for the mechanistic account to individuate
digits and processors without invoking the notion of representation. However,
this position does not come without costs – in particular, it leads to some fairly
counterintuitive implications for our understanding of computation. Here I will
focus on just one of those implications – computation, in the
physical/mechanistic sense, becomes distinct from the abstract logical
operations that it is typically thought to implement. It also turns out that so long
as we require an account of mental representation from our theories of
cognition, computation alone will be insufficient for the constitution of cognitive
systems.
 If, as I have argued, computational processes can be individuated without
invoking any representational content, however minimal, then the logical status
of those processes, which requires the attribution of minimal content (‘true’ or
‘false’), will no longer be an intrinsic feature of computation. Recall that both
Sprevak and Shagrir’s arguments rested on the logical indeterminacy of the
physical systems captured by tables 3, 4, 7, and 10. Without knowing which
binary value to assign to each voltage level, it becomes impossible to determine
what kind of logic gate these systems implement. My response was to accept this
indeterminacy, but point to the fact that each system is still distinguishable from
its inverse, and thus we are able to individuate them. To make this absolutely
clear, imagine a physical system consisting of two processing components
captured by tables 12 and 13 (these are identical to tables 3 and 10, found
respectively on pages 2 and 5) connected in parallel. They each take the same
pair of digits as inputs, and together they produce a pair of digits as output (one
from each processor). If, for instance we gave them 0 V + 5 V as input, they would
produce 0 V (from gate 3) + 5 V (from gate 10) as output.

 10

Input a Input b Output

0 V 0 V 0 V
0 V 5 V 0 V
5 V 0 V 0 V
5 V 5 V 5 V

Table 12. ‘Gate 3’

Input a Input b Output
5 V 5 V 5 V
5 V 0 V 5 V
0 V 5 V 5 V
0 V 0 V 0 V

Table 13. ‘Gate 10’

 It should be apparent that this system as a whole does something
comparable to Shagrir’s first voltage gate (see table 4 on page 2). If we were to
assign binary numerical values to the voltage levels then the system could be
interpreted as performing addition for the domain {0, 1}. Which voltage level is
0, and which is 1? This, perhaps ironically considering Sprevak’s formulation of
this problem, depends on which processor we label as an AND gate, and which
we label as an OR gate. If 3 is an AND gate and 10 is an OR gate, then 5 V = 1 and
0 V = 0, but if 3 is an OR gate and 10 is an AND gate, then 5 V = 0 and 0 V = 1. This
does not mean that we cannot individuate the components of the system (tables
3 and 10 do just that), but rather that our individuation of this system will not
make any reference to the logical values of the digits or processor.
Computational individuation, it seems, is in some sense prior to logical
individuation.
 To many this will seem extremely counterintuitive. What could be more
fundamental to our understanding of computation than logic? Historically this
may have been the case, but I think it is clear that the logical status of the system
described above is indeterminate, whilst its computational status, in the
mechanistic sense, is not. What this allows for is the grounding of our logical
apparatus in a non-logical physical system, in much the same way as I described
for representation at the end of the previous section. The benefit of this is a
degree of objectivity it what might otherwise seem like a very subjective
attribution of representational (or logical) content, but the cost is biting the
counterintuitive bullet of making logic (in physical systems) strictly dependent
upon pre-existing computational structure.
 Another potential concern is that a totally non-representational account
of computation might seem to provide a poor basis for a theory of cognition,
which is frequently assumed to be a paradigmatically representational
enterprise. Shagrir’s argument for computational externalism, discussed in the
previous section, highlights this concern. The arguments for externalism that he
dismisses fail primarily because they are concerned with the semantic content of
mental states, not the formal structure of a computational system. The latter, I
want to claim, is determined entirely by internal, mechanistic factors, whilst the

 11

former might well require reference to the external world. In fact, depending on
what theory of mental content we adopt, it seems that some form of cognitive
externalism will be quite likely to follow. I am not concerned with how that
debate plays out – provided that computational individuation is kept entirely
separate and prior to the determination of mental content, it will not matter for
my purposes whether or not we think cognitive externalism is true.
 There also remains the lingering threat of pancomputationalism. By
reducing computation to a mere physical process, one might worry that it
becomes trivially easy to identify computation in all kinds of unseemly places,
such as the infamous wall that implements WordStar (Searle 1992: 208-9).
However I think this is less of a concern than it might first appear – the only
physical systems that will compute are those where distinct computational
components can be identified. Searle’s WordStar wall does not contain anything
resembling strings of digits or processors, and treating it as a computational
system does not gain us any explanatory purchase. In contrast, even a minimal
computational system such as that captured by table 3 is amenable to
mechanistic explanation. We know what a digit looks like (5 V or O V), and we
know what will happen when we feed it certain strings of digits (O V + 5 V will be
converted to 0 V, for example). What we do not know is whether this
computational system is implementing an AND gate or an OR gate, but my main
message in this paper has been that this should not surprise us. By itself a
voltage level does not mean anything, and if as a result of this it turns out that
the logical structure of computational systems is context relative, then so be it.

Acknowledgements
Oron Shagrir prompted me to write this paper, and Mark Sprevak gave
invaluable comments and feedback on several earlier drafts. An anonymous
referee gave a very detailed review, which led to extensive revisions that
improved the paper greatly. Any remaining errors or inaccuracies are entirely
my own.

References
 Bechtel, W. 2005. “Mental Mechanisms: What are the operations?”

Proceedings of the 27th annual meeting of the Cognitive Science Society:
208-13.

 Craver, C. & Bechtel, W. 2006. “Mechanism.” In Sarkar & Pfeifer (eds.),
Philosophy of Science: an encyclopedia. New York: Routledge.

 Craver, C. 2007. Explaining the Brain. Oxford: OUP.
 Craver, C. 2009. “Mechanisms and natural kinds.” Philosophical Psychology

22/5: 575-94.
 Piccinini, G. 2004a. “Functionalism, computationalism, and mental

contents.” Canadian Journal of Philosophy 34/3: 375-410
 Piccinini, G. 2004b. “Functionalism, computationalism, and mental states.”

Studies in History and Philosophy of Science 35/4: 811-33.
 Piccinini, G. 2007. “Computation mechanisms.” Philosophy of Science 74/4:

501-26.

 12

 Piccinini, G. 2008. “Computation Without Representation.” Philosophical
Studies 137(2): 205-241.

 Piccinini, G. 2015. Physical Computation: A Mechanistic Account. Oxford:
OUP.

 Searle, J. 1992. The Rediscovery of Mind. MIT Press.
 Shagrir, O. 2001. “Content, Computation and Externalism.” Mind

110/438: 369-400.
 Sprevak, M. 2010. “Computation, individuation, and the received view on

representations.” Studies in History and Philosophy of Science 41: 260-70.

