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ABSTRACT 

 

A key step in the development of the cerebral cortex is a patterning process which subdivides the 

telencephalon into several molecularly distinct domains and is critical for cortical arealisation. This 

process is dependent on a complex network of interactions between signalling molecules of the Fgf 

and Wnt gene families and the Gli3 transcription factor gene but a better knowledge of the molecular 

basis of the interplay between these factors is required to gain a deeper understanding of the genetic 

circuitry underlying telencephalic patterning. Using DNA binding and reporter gene assays, we here 

investigate the possibility that Gli3 and these signalling molecules interact by directly regulating each 

other’s expression. We show that Fgf signalling is required for Wnt8b enhancer activity in the cortical 

hem while Wnt/-catenin signalling represses Fgf17 forebrain enhancer activity. In contrast, Fgf and 

Wnt/-catenin signalling cooperate to regulate Gli3 expression. Taken together, these findings 

indicate that mutual interactions between Gli3, Wnt8b and Fgf17 are crucial elements of the balance 

between these factors thereby conferring robustness to the patterning process. Hence, our study 

provides a framework for understanding the genetic circuitry underlying telencephalic patterning and 

how defects in this process can affect the formation of cortical areas. 

  



INTRODUCTION 

A patterning process subdividing the telencephalon into several distinct domains represents 

a key step in the development of the cerebral cortex which performs highly complex neural tasks. 

This process is thought to be critically dependent on a complex network of interactions between 

intercellular signalling molecules and transcription factors. Signalling molecules of the Fgf, Wnt and 

Bmp gene families act as morphogens to determine rostrodorsal and dorsomedial telencephalic cell 

fates (Malumbres M et al. 2004; Machon O et al. 2007; Mangale VS et al. 2008), respectively, by 

directly controlling the expression of transcription factors (Theil T et al. 2002; Lai T et al. 2008). In 

turn, these factors regulate not only the expression of genes involved in cell fate determination and 

in controlling proliferation/differentiation of cortical progenitor cells but also that of the signalling 

molecules themselves thereby setting up feedback loops between signalling molecules and 

transcription factors (Del Rio JA et al. 2000; Theil T et al. 2002; Saulnier A et al. 2013). Moreover, 

the signalling molecules have been shown to auto-regulate their own expression (Hasenpusch-Theil 

K et al. 2012) or to repress each other’s expression (Ohkubo Y et al. 2002; Shimogori T et al. 2004; 

Storm EE et al. 2006). Collectively, these complex interactions are used to establish and to maintain 

distinct gene expression territories in the developing telencephalon as a prerequisite for patterning. 

Interactions between Fgfs and Bmps/Wnts are a crucial element in the model outlined above. 

Analyses of mutant mice and studies in chicken embryos have revealed that the disruption of a tight 

balance between Fgfs and Bmp/Wnts leads to severe defects in dorsal telencephalic development 

(Crossley PH et al. 2001; Ohkubo Y et al. 2002; Shimogori T et al. 2004; Storm EE et al. 2006). A 

key factor in regulating this balance is the Gli3 zinc finger transcription factor. In the dorsal 

telencephalon, the Gli3 repressor form predominates (Fotaki V et al. 2006) to inhibit Sonic hedgehog 

(Shh) signalling but it also represses the expression of multiple Fgf family members (Fgf8/15/17/18) 

and is required for the expression of Bmp2/4/6 and Wnt3a/7b/8b (Grove EA et al. 1998; Theil T et 

al. 1999; Kuschel S et al. 2003; Rash BG and EA Grove 2007). Absence or reduced levels of Gli3 

result in the up-regulation of these Fgfs and in a down-regulation of Bmp/Wnt gene expression. 

These changes severely affect telencephalic patterning (Grove EA et al. 1998; Theil T et al. 1999; 

Tole S et al. 2000; Kuschel S et al. 2003) and also later processes in cortical development such as 

the formation of the corpus callosum (Vokes SA et al. 2008; Speksnijder L et al. 2013; Magnani D et 



al. 2014). These findings therefore emphasize the importance of a tightly controlled balance between 

Gli3, Fgfs and Bmps/Wnts for normal cortical development. However, these interactions are mainly 

derived from genetic analyses and very little is known about their molecular basis. A better 

knowledge of the interactions at the molecular level is required for a deeper understanding of the 

molecular and genetic circuitry underlying telencephalic patterning.  

Here, we explore the possibility that Wnts, Fgfs and Gli3 regulate each other’s expression 

through direct transcriptional regulation. Using DNA binding, reporter gene assays and 

overexpression experiments we show that a Wnt8b dorsomedial telencephalon enhancer contains 

an essential binding site for Ets transcription factors, transcriptional mediators of Fgf signalling. 

Mutation of this site results in loss of lacZ reporter gene expression in the cortical hem. In turn, a 

binding site for Tcf transcription factors is required to repress the activity of an Fgf17 forebrain 

enhancer in the dorsomedial telencephalon. Moreover, we show that the activity of a Gli3 dorsal 

telencephalon enhancer depends on Fgf signalling. Mutations of an Ets binding site within this 

enhancer abolish its activity in the dorsomedial telencephalon. Interestingly, this Ets site flanks a Tcf 

binding site which we previously showed to be essential for Gli3 enhancer activity (Hasenpusch-

Theil K et al. 2012). Indeed, the presence of Etv4 protein increases the binding of Lef1 to the Gli3 

enhancer in electromobility shift assays (EMSAs). Taken together, these findings suggest complex 

and direct interactions between Gli3, Wnt8b and Fgf17 including direct (i) mutual interactions 

between Wnt and Fgf signalling and (ii) a cooperative interaction between these signalling pathways 

to regulate Gli3 expression. 

  



MATERIAL AND METHODS 

 

Mice 

Gli3Xt/+ and Gli3Pdn/+ animals were kept on a mixed C57Bl6/C3H and C3H background, respectively, 

and were interbred. Embryonic (E) day 0.5 was assumed to start at midday of the day of vaginal plug 

discovery. Embryos were genotyped as described (Maynard TM et al. 2002; Ueta E et al. 2002). For 

in situ hybridisation, Gli3Xt/+, Gli3Pdn/+ and wild-type embryos which did not show differences were 

used as control embryos and forebrain morphology was used to distinguish them from Gli3Xt/Pdn and 

Gli3Pdn/Pdn embryos (Kuschel S et al. 2003). Emx1Cre and Gli3flox/flox mouse lines have been 

described previously (Gorski JA et al. 2002; Blaess S et al. 2008). For Emx1Cre;Gli3flox/flox conditional 

embryos, Gli3flox/flox, Gli3flox/+,Emx1Cre and Gli3flox/+ embryos were used as controls. All experimental 

procedures involving mice were performed in accordance with local guidelines. For each marker and 

each stage, 3-5 embryos were analysed. 

 

In situ hybridisation, immunohistochemistry and X-Gal staining on sectioned embryonic 

brains 

In situ hybridisation on 10 μm coronal paraffin sections of E12.5 mouse brains were performed as 

described previously (Theil T 2005). Digoxigenin-labeled antisense probes were generated from the 

following cDNA clones: Fgf15 (Lopez-Rios J et al. 2012), Fgf17 (Fry DW et al. 2004), Fgf18 (Finn 

RS et al. 2009).  

For the reporter gene analysis of in utero electroporated embyros, brains were dissected in PBS and 

fixed for 3 hours in 4% PFA. After embedding in OCT/sucrose, 14 μm coronal cryosections were 

analysed by immunofluorescence using an antibody against GFP (1:1000; Abcam), followed by a 

nuclear counterstain with TO-PRO-1 (1:3000, Invitrogen) as described previously (Hasenpusch-

Theil K et al. 2012). Adjacent sections were stained o/n with X-Gal at 37ºC and counterstained with 

Fast RED (Hasenpusch-Theil K et al. 2012). 

 

Plasmid construction and mutagenesis 



All genomic DNA fragments were generated via PCR using wild-type genomic DNA (for 

oligonucleotides see Supplementary Tab. 1). Enhancer sequences were subcloned using a TOPO 

TA cloning kit (Invitrogen) and verified by sequencing. Putative TCF/Lef1 and Ets binding sites were 

mutated using the QuickChange Site-Directed Mutagenesis Kit (Stratagene) (for oligonucleotides 

used in mutagenesis see Supplementary Tab. 2). All mutations were confirmed by sequencing. To 

test for enhancer activity, wild-type and mutant regulatory elements were subcloned into the lacZ 

reporter gene vector pGZ40 upstream of a human β-globin minimal promoter (Yee SP and PW Rigby 

1993). For generating transgenic embryos, the enhancer/reporter fragment was released from the 

plasmid backbone by digestion with the restriction enzymes indicated in Supplementary Tab. 1 and 

gel purified. 

For the Etv4 activator and repressor constructs, the Etv4 DNA binding domain was PCR amplified 

using the forward oligonucleotide 5’CAGCGTCGTGGCTCACTTC3’ and the reverse oligonucleotide 

5’AATACTAGTAAAGCTTCTGGCTCACACAC3’. The resulting PCR fragment was subcloned into 

pCS2+ vector upstream and in frame of either the Engrailed repressor domain or the E1A activator 

domain (Bellefroid EJ et al. 1996).  

 

Electrophoretic mobility shift assay 

Electrophoretic mobility assays for the Wnt8b and Gli3 enhancers were performed with radioactively 

labelled oligonucleotides using purified GST, GST-Etv4 (Pollen AA et al. 2014) and GST-Lef1 as 

described previously (Theil T et al. 2002). For the Fgf17 enhancers, biotin labelled oligonucleotides 

were used for bandshift analysis. The binding reaction were separated on native 5% acrylamide gels 

and transferred onto positively charged nylon membranes (Roche) with a Perfect Blue Semi-dry 

electro blotter (60 minutes at 120volts, 5mA). After UV crosslinking, biotin labelled probes were 

detected using a Chemiluminenscent Nucleic Acid Detection Module (Thermo Scientific #89880) 

according to manufacturer’s instructions and imaged using a Kodak BioMaxXAR film. 

For oligonucleotide sequences covering the wild-type or mutated Etv4 and Tcf/Lef binding sites see 

Supplementary Tab. 3. The exchanged nucleotides in the mutated forms are underlined. Wild-type, 

Ets and Tcf/Lef binding site mutant oligonucleotides were used as specific and unspecific 

competitors, respectively, in a 10- to 100-fold molar excess. 



 

Transgenic embryos 

Transgenic embryos were generated by microinjection of fertilised eggs from B6CBAF1/Crl crosses 

(Charles River) and were identified by PCR using extra-embryonic yolk sac or tail DNA. Expression 

of the transgene was analysed by staining E10.5 or E11.5 embryos for β-galactosidase activity as 

described previously (Theil T et al. 1998). 

 

In utero electroporation 

E12.5 pregnant mice were anesthetized with sodium pentobarbitone at 50 mg per gram of body 

weight and the uterine horns were exposed. LacZ reporter gene plasmids, a GFP expression plasmid 

and Etv4 repressor/activator plasmids were co-injected into the lateral ventricle at 1mg/ml each with 

a glass micropipette. The embryo in the uterus was placed between CUY650 tweezer-type 

electrodes (Nepagene). A CUY21E electroporator (Nepagene) was used to deliver six pulses (30 V, 

50 ms each) at intervals of 950 ms. The uterine horns were placed back into the abdominal cavity 

and embryos were allowed to develop for 24 hours before further processing for 

immunofluorescence. For each construct and time point, at least 4 different embryos were analyzed. 

 

Explant culture 

Organotypic slice cultures of the E13.5 embryonic mouse telencephalon were prepared as previously 

described (Magnani D et al. 2010). Brain slices were cultured on polycarbonate culture membranes 

(8 μm pore size; Corning Costar) in organ tissue dishes containing 1 ml of medium (Neurobasal/B-

27 [Gibco] supplemented with glutamine, glucose, penicillin and streptomycin) in the presence of 

either DMSO or of 25M or 50M CHIR (Cambridge BioScience). Slices were cultured for 24hrs, 

fixed with 4% PFA and processed for in situ hybridization as described above. 

 

  



RESULTS 

 

Interactions between Gli3, Fgfs and Wnts/Bmps play an important role in controlling telencephalic 

patterning. To gain insights into the molecular mechanisms underlying these interactions we 

examined the transcriptional regulation of Gli3 and of members of the Fgf and Wnt gene families. 

We used sequence analyses of regulatory elements controlling forebrain expression of Gli3, Fgfs or 

Wnt8b to identify potential binding sites for Ets and Tcf/Lef transcription factors, transcriptional 

mediators of Fgf and Wnt/-catenin signalling, respectively. We then tested the functionality of these 

binding sites in DNA binding and reporter gene assays. 

 

Fgf signalling controls cortical hem activity of the Wnt8b dorsomedial telencephalon 

enhancer 

 

An ultraconserved enhancer element located between Wnt8b and Sec31b drives expression of a 

lacZ reporter gene in the dorsomedial telencephalon in a pattern highly similar to that of the Wnt8b 

gene (Hasenpusch-Theil K et al. 2012; Visel A et al. 2013; Pattabiraman K et al. 2014). We recently 

showed that this element contains an essential binding site for Lef/Tcf transcription factors 

suggesting that Wnt8b autoregulates its own expression (Hasenpusch-Theil K et al. 2012). Here, we 

investigated the possibility that Fgf signalling directly regulates the activity of the Wnt8b dorsomedial 

telencephalon enhancer. Fgf signalling results in the activation of Ets transcription factors which bind 

to a purine rich 8bp binding motif (C/G/AAGGAAG/AT) (Choi YJ and L Anders 2014). Interestingly, the 

Wnt8b enhancer contains an evolutionarily conserved AAGGAAAT/C motif which closely resembles 

this consensus sequence. We therefore determined whether an Ets transcription factor can bind to 

this sequence from the Wnt8b enhancer in electromobility shift assays (EMSAs). During cortical 

development, Etv1, Etv4, and Etv5 which belong to the same subclass of Ets transcription factors 

with nearly identical DNA binding specificities (Bielas SL et al. 2009) are highly expressed in the 

rostromedial telencephalon (Zimmer C et al. 2010) . Since the full length Etv proteins contain an 

inhibitory domain which interferes with DNA binding and since this inhibition is only relieved upon 

Fgf/Map Kinase signalling we used a previously described Glutathione-S-transferase fusion protein 



(GST-Etv4) containing just the Etv4 DNA binding domain but not the inhibitory domain in the DNA 

binding assay (Pollen AA et al. 2014). Incubation of GST-Etv4 with an oligonucleotide containing the 

Ets motif from the Wnt8b enhancer resulted in the formation of a slower migrating complex (Fig. 1A). 

To further analyze the specificity and affinity of DNA binding, competition assays were conducted in 

the presence of various surplus unlabelled wild-type oligonucleotide (competitor) which resulted in 

progressively diminished binding of GST-Etv4 fusion protein with increasing amounts of competitor. 

However, the formation of this complex was not competed by unlabelled Wnt8b competitor 

oligonucleotide containing an AGG to CTT exchange which abolishes Ets binding (Magnani D et al. 

2013). Thus, GST-Etv4 specifically bound to the Ets binding site within the Wnt8b dorsomedial 

telencephalon enhancer. 

The role of the Ets binding site in regulating the Wnt8b enhancer activity in vivo was determined by 

generating the same point mutations used in the EMSA analyses in the Ets binding site within the 

Wnt8b enhancer. Reporter gene constructs containing either the wild-type or Ets mutant enhancers 

fused to a lacZ reporter gene under the control of a human -globin minimal promoter (Yee SP and 

PW Rigby 1993) were used to generate transgenic embryos. In E11.5 embryos transgenic for a 

Wnt8b enhancer/lacZ transgene X-Gal staining was detected in the cortical hem, in progenitor cells 

of the dorsomedial telencephalon and in preplate neurons (n=5/7 transgenic embryos) (Fig. 1B, C). 

Mutations in the Ets binding site resulted in similar reporter gene expression in cortical progenitor 

cells and in preplate neurons although lacZ+ neurons were detected at the level of the ventral 

telencephalon (n=5/7) (Fig. 1G, H). In contrast, lacZ staining was abolished in the cortical hem 

(n=5/7) suggesting that the Ets binding site is specifically required for Wnt8b enhancer activity in the 

hem. 

To further explore the possibility that Fgf signalling regulates hem Wnt8b expression, we co-

electroporated the Wnt8b enhancer construct with Etv4 expression constructs in which the Etv4 DNA 

binding domain was fused either to an engrailed repressor (Etv4-EngR) or an Adenovirus E1A 

activator domain (Etv4-E1A) into the rostromedial telencephalon. The resulting fusion proteins have 

the Etv4 DNA binding domain but act as transcriptional repressor and activator of Etv4 target genes, 

respectively. Electroporation of just the Wnt8b enhancer/lacZ reporter construct into the rostromedial 

telencephalon resulted in strong X-Gal staining in electroporated cells in the ventral rostromedial 



telencephalon (n=5 electroporated embryos) but not in more dorsal regions despite strong 

electroporation in this area (Fig. 1D, I). Co-electroporation of the Etv4-E1A expression construct 

resulted in the robust activation of the reporter in a dorsally expanded domain (n=6 electroporated 

embryos) (Fig. 1E, J). In contrast, we only detected weakly X-Gal+ cells confined to the rostroventral 

telencephalon after co-electroporation of the Etv4-EngR construct (n=5 electroporated embryos) 

despite similar electroporation efficiencies (Fig. 1F, K). Taken together, these data indicate that Etv 

transcription factor can bind to an essential site within the Wnt8b enhancer and regulate its activity 

in the cortical hem. 

 

Expression of several Fgf family members is differentially regulated in Gli3 mutants 

 

We next analysed how the forebrain expression of Fgf genes is regulated. Several Fgfs including 

Fgf8, Fgf15, Fgf17 and Fgf18 show overlapping but distinct expression patterns in the rostral 

telencephalon. To investigate whether their expression might be regulated by Gli3, Bmp and/or 

Wnt/-catenin signalling, we first analysed their expression in various Gli3 mutants in which Bmp/Wnt 

gene expression is differentially affected. The Gli3 compound mutant Gli3Xt/Pdn carries the Gli3 null 

allele extra-toes (XtJ) over the Gli3 hypomorphic allele Polydactyly Nagoya (Pdn) and shows severely 

reduced Bmp signalling and a lack of Wnt/-catenin signalling in the dorsomedial telencephalon 

while the Gli3 hypomorphic mutant Gli3Pdn/Pdn displays reduced activity of the Bmp and Wnt/-catenin 

pathways (Kuschel S et al. 2003; Friedrichs M et al. 2008; Speksnijder L et al. 2013). In contrast, 

Emx1Cre;Gli3fl/fl (Gli3cKO) embryos in which Gli3 is specifically inactivated in the dorsal telencephalon 

show normal Bmp4 and Wnt7b/8b gene expression at the E12.5 corticoseptal boundary, but show 

reduced Bmp/Wnt gene expression in the caudal cortical hem (Vokes SA et al. 2008; Hasenpusch-

Theil K et al. 2012). Comparing Fgf gene expression patterns in these different Gli3 mutants 

therefore provided us with first insights whether Gli3, Bmps and/or Wnts could regulate Fgf gene 

expression. 

Fgf8 is the major Fgf signalling molecule with crucial roles in telencephalic development 

(Louvi A and EA Grove 2011; van den Ameele J et al. 2014). Its expression is confined to the 

commissural plate (CP) in E12.5 control embryos and expands caudomedially in Gli3Xt/Pdn and 



Gli3Pdn/Pdn embryos (Kuschel S et al. 2003) but not in Gli3cKO embryos (Vokes SA et al. 2008) 

suggesting that Fgf8 expression is repressed by Gli3 in a Bmp and/or Wnt/-catenin dependent 

manner. Fgf18 expression is also detected in the CP but extends further rostrally into the septum 

with a sharp expression boundary at the corticoseptal boundary (CSB). Fgf18 expression is not 

affected in Gli3 mutants (Sup. Fig. 1) indicating that its expression is not regulated by these 

pathways. In contrast, Fgf17 is expressed in the septum and at low levels in the roof plate ventral to 

the cortical hem of control embryos (Fig. 2A-C, G-I) but shows ectopic expression in the cortical hem 

and adjacent hippocampal primordium of all three Gli3 mutants while its septal expression is not 

affected (Fig. 2D-F, J-L) suggesting that Fgf17 expression in the dorsomedial telencephalon is 

repressed in a Gli3 dependent manner likely through Bmp and/or Wnt/-catenin signalling. Finally, 

Fgf15 has the widest Fgf expression domain encompassing the septum and the interganglionic 

sulcus while the cortical primordium is devoid of Fgf15 transcripts (Fig. 2M-O, S-U). In contrast, all 

Gli3 mutants show a dramatic up-regulation of Fgf15 expression in cortical progenitors (Fig. 2P-R, 

V-X) strongly suggesting that its cortical expression is repressed by Gli3. Taken together, these 

findings suggest that the partially overlapping but distinct expression patterns of Fgfs in the 

telencephalon are generated by differential regulation through Gli3, Bmps and/or Wnts signalling. 

 

Activity of an Fgf17 forebrain enhancer is repressed by Wnt/-catenin signalling 

 

Next, we investigated the molecular basis for this differential regulation by analysing 

regulatory elements directing Fgf gene expression in the forebrain. Fgf8 expression is controlled by 

multiple and distinct regulatory modules that act in a holo-enhancer as a coherent unit (Vesely J et 

al. 1994) and this control can only be studied within the context of the holo-enhancer. The regulation 

of Fgf18 is less well characterised, there is currently no regulatory element available directing Fgf18 

expression. 

A 3.5 kb region immediately upstream of the Fgf15 promoter was shown to direct lacZ 

reporter gene expression in the diencephalon and midbrain of E9.5 transgenic mouse embryos and 

to contain a Gli binding site essential for its activity (Pinto L et al. 2009; Mi D et al. 2013). However, 

our in utero electroporation showed that this element is not active in the E13.5 dorsomedial and 



dorsolateral telencephalon and mutations in the Gli binding site did not result in enhancer activity in 

the dorsal telencephalon either (Sup. Fig. 2). Thus, Fgf15 expression in the telencephalon is 

regulated by currently unknown regulatory elements located outside this 3.6 kb region. 

Finally, two evolutionarily conserved Fgf17 regions were shown to control lacZ reporter 

expression in the forebrain (Visel A et al. 2008). An intragenic Fgf17 enhancer (Vista Enhancer 

element # 782) shows specific activity in the septum while an enhancer (Vista Enhancer element # 

781) located in the intergenic region between Fgf17 and Epb4.9, which is not expressed in the 

telencephalon, is active in the telencephalic roof plate as well as in the septum (Sup. Fig. 3). Since 

these two enhancers accurately reflect expression of the endogenous Fgf17 gene, they were used 

for further analysis. Sequence inspection revealed a single evolutionarily conserved Tcf/Lef binding 

site in both enhancers, however, a recombinant full-length Lef1 protein fused to glutathione-S-

transferase (GST-Lef1) only bound to the intergenic Fgf17 enhancer but not to the Fgf17 intragenic 

regulatory element in electromobility shift assays (Sup. Fig. 4). Binding to the oligonucleotide from 

the intragenic enhancer was specific as it was competed by unlabelled wild-type oligonucleotide but 

not by one containing two point mutations which abolish Lef1 binding (Hasenpusch-Theil K et al. 

2012) (Fig. 3A). We next tested the functionality of this Tcf/Lef binding site within the Fgf17 intragenic 

enhancer by electroporating a wild-type Fgf17/lacZ (Fgf17/lacZ) and a Tcf mutant Fgf17/lacZ 

(mTcfFgf17/lacZ) reporter gene construct into the telencephalon. Electroporations of the Fgf17/lacZ 

construct resulted in X-Gal staining in the septum (n=5/6 embryos) but not in the cortex (n=0/4 

embryos) or in the hippocampal primordium (n=0/6 embryos) (Fig. 3B-E) reflecting the expression 

of the endogenous Fgf17 gene. In the rostral telencephalon, the mTcfFgf17/lacZ construct showed 

an identical activity pattern with lacZ staining in the septum (n=5/5 embryos) but not in the cortex 

(n=0/3 embryos) (Fig. 3F, G). In contrast, the mutant construct was ectopically active in the cortical 

hem and in the hippocampus (n=5/6 embryos) (Fig. 3H, I) where Fgf17 is ectopically expressed in 

Gli3 mutant but not in wild-type embryos. These findings suggest that Wnt/-catenin signalling 

represses the activity of the intergenic Fgf17 enhancer in the cortical hem and hippocampus. 

To obtain further evidence for the ability of Wnt/β-catenin signalling to regulate Fgf17 expression, 

we determined the consequences of ectopic activation of this pathway on endogenous Fgf17 

expression. To this end, we employed an ex vivo explant assay (Hasenpusch-Theil K et al. 2012) in 



which we prepared coronal sections of the E13.5 mouse telencephalon and maintained these 

sections in culture for 24h in the presence of DMSO or various concentrations of CHIR99021 (CHIR) 

which selectively inhibits GSK3and thereby activates Wnt/β-catenin signalling (Ring DB et al. 

2003). Under control conditions, Fgf17 expression is confined to the commissural plate (Fig. 3J). 

This expression pattern is maintained in the presence of 25m CHIR (Fig. 3K) but treatment with 

50m CHIR led to a severe reduction of Fgf17 expression (Fig. 3L). These findings indicate that 

Fgf17 expression can be repressed by Wnt/β-catenin signalling. 

 

 

Fgf and Wnt/-catenin signalling cooperate to control the activity of a Gli3 forebrain enhancer 

in the dorsomedial telencephalon and in the thalamus 

 

Finally, we analyzed the transcriptional regulation of Gli3. Our previous analyses showed that 

the activity of a Gli3 forebrain enhancer is directly regulated by Wnt/catenin signalling 

(Hasenpusch-Theil K et al. 2012). Close examination of the enhancer sequences also identified four 

evolutionarily conserved A/GAGGAAA/GG/A motifs in the Gli3 forebrain enhancer raising the possibility 

that Ets transcription factors and hence Fgf signalling could regulate Gli3 enhancer activity. 

Oligonucleotides containing the predicted Ets binding motifs were therefore tested for binding to 

GST-Etv4 in EMSAs. In this assay, GST-Etv4 specifically bound to all four Ets binding sites showing, 

however, different affinities with sites #1 and #4 showing the strongest and site #3 the weakest 

binding (Fig. 4). We next tested whether these sites are essential for Gli3 forebrain enhancer activity 

by generating transgenic reporter gene embryos containing point mutations in these sites to abolish 

Ets binding. The wild-type Gli3 enhancer directed strong reporter gene expression in E11.5 

telencephalon and in the thalamus as described previously (Paparidis Z et al. 2007; Visel A et al. 

2008; Hasenpusch-Theil K et al. 2012) (Fig. 5A). In contrast, a construct containing mutations in all 

four Ets binding sites led to reduced and patchy lacZ expression in the dorsomedial telencephalon 

and to a complete loss of enhancer activity in the thalamus whereas expression in the dorsolateral 

telencephalon is not affected (n=5/9 transgenic embryos) (Fig. 5B). To analyse the individual 



contributions of these sites, we tested Gli3 enhancer activity after introducing mutations in 

combinations of the Ets binding sites. Intact binding sites #3 and #4 were not sufficient to restore 

enhancer activity as constructs containing intact Ets binding sites #3 or #3+4 but mutations in sites 

#1 and #2 still showed loss of enhancer activity in the dorsomedial telencephalon and in the thalamus 

(n=5/9 transgenic embryos for each construct) (Fig. 5C, D) suggesting that binding sites #1 and #2 

are essential for this enhancer activity. We therefore tested the contribution of binding site #1 and 

#2 by individually mutating these two sites. In contrast to a binding site #1 mutant construct which 

produced the wild-type lacZ expression pattern (n=2/4 transgenic embryos) (Fig. 5E), embryos 

transgenic for the binding site #2 mutant construct showed a loss of enhancer activity in dorsomedial 

telencephalon and in the thalamus (n=5/10 transgenic embryos) (Fig. 5F). In addition, we noted that 

embryos transgenic for constructs lacking site #2 but with an intact site #3 have a broader loss of 

enhancer activity in the dorsomedial telencephalon (Fig. 5C, D, F) suggesting that site #3 might 

repress the activity of site #2. Thus, Ets binding site #2 is crucial for Gli3 forebrain enhancer activity 

in these tissues whereas binding site #3 might have a modulatory effect on the activity of site #2. 

Interestingly, Ets binding site #2 lies immediately adjacent to the essential Tcf/Lef binding 

site we previously identified (Hasenpusch-Theil K et al. 2012) raising the possibility that Ets and 

Tcf/Lef transcription factors might cooperate in regulating the Gli3 forebrain enhancer. To test this 

possibility, we performed EMSA analyses with an oligonucleotide containing the Tcf/Lef and Ets #2 

binding sites and recombinant GST-Lef1 and/or GST-Etv4 fusion protein. Incubation with the single 

proteins led to the formation of a single complex (Fig. 6). The formation of the GST-Lef1 complex, 

however, was increased in the presence of both proteins (Fig. 6) suggesting that Etv4 increases the 

binding affinity for Lef1 to its binding site within the Gli3 forebrain enhancer. 

  



DISCUSSION 

 

The Gli3 mediated balance between Fgfs and Wnts is of pivotal importance for the control of 

telencephalic patterning and axon tract formation but very little is known about the molecular basis 

by which this balance is established and/or maintained. Here, we investigated direct interactions 

between Gli3 and these signalling pathways at the transcriptional level. We show that cortical hem 

activity of the Wnt8b dorsomedial telencephalon enhancer is positively regulated by Fgf signalling, 

while in turn Fgf17 expression is directly repressed by Wnt/-catenin signalling. In addition, both 

signalling pathways cooperate in directly regulating Gli3 forebrain enhancer activity in the 

dorsomedial telencephalon. Taken together, these interactions form the basis of a key element 

regulating telencephalic patterning. 

 

Differential expression of Fgfs in the telencephalon coincides with differences in regulation 

and functions 

 

Multiple Fgfs with unique or redundant functions are involved in telencephalic patterning. Among the 

Fgf8/Fgf17/Fgf18 subfamily, Fgf8 is the key factor in telencephalic patterning (Louvi A and EA Grove 

2011; van den Ameele J et al. 2014) while Fgf17 has a more limited role in controlling the patterning 

of the rostral cortical primordium (Cholfin JA and JL Rubenstein 2007; Petrova R et al. 2013). A role 

for Fgf18 in the rostral patterning centre has not been established yet but it has been implicated in 

controlling the migration of cortical neurons (Finn RS et al. 2009). In contrast, Fgf15 opposes the 

function of Fgf8 (Han YG et al. 2008). This functional diversity is at least partially reflected in their 

complex and partially overlapping expression patterns but little is known how this differential 

expression is established and maintained. Our analyses of Fgf gene expression in Gli3 mutants 

provided first insights into this regulation. While Fgf18 expression is not affected, Fgf8 and Fgf17 

show a specific up-regulation in dorsal midline tissues in the Gli3 mutants. In contrast, Fgf15 is 

ectopically expressed throughout the cortex of these mutants. These different effects of Gli3 

mutations on Fgf gene expression suggest differential modes of transcriptional regulation. Due to 

their confined up-regulation, Fgf8 and Fgf17 could be regulated by Bmp and/or Wnt/-catenin 



signalling. Indeed, using bandshift and reporter gene analyses we show that the activity of the 

intergenic Fgf17 forebrain enhancer is repressed in the dorsomedial telencephalon by Wnt/-catenin 

signalling. In addition, pharmacological activation of Wnt/-catenin signalling in an ex vivo explant 

assay resulted in a severe reduction of Fgf17 expression in the commissural plate. Taken together 

with the ectopic Fgf17 expression in the Gli3 mutant dorsomedial telencephalon this finding indicates 

that Fgf17 represents one of the few known directly repressed target genes for Wnt/-catenin 

signalling. Interestingly, a second Fgf17 forebrain enhancer shows an overlapping activity in the 

septum but is not active in the telencephalic roof plate consistent with the failure of GST-Lef1 protein 

to bind to a potential Tcf/Lef binding site within this enhancer in our bandshift assay. While this lack 

of binding is likely to be explained by negative influences of neighbouring sequences, the differential 

response of both enhancers to Wnt/-catenin signalling suggests that the existence of both 

enhancers allowed the development of different regulatory output while maintaining a core activity 

in the septum as has been reported for other shadow enhancers (Paridaen JT and WB Huttner 2014; 

Magnani D et al. 2015; Paridaen JT et al. 2015). Regulation of Fgf8 expression in the forebrain 

appears to be even more complex. Recently, an extensive analysis of Fgf8 expression during 

embryogenesis revealed the existence of multiple enhancers distributed over a 200kb stretch 

forming the Fgf8 holo-enhancer (Vesely J et al. 1994). In an identical enhancer assay to that used 

in our analysis, a couple of these elements (CE63 and CE64) display widespread activity in the 

telencephalon which only becomes confined to the commissural plate by filtering through the holo-

enhancer. Interestingly, our sequence analysis revealed several potential Tcf/Lef binding sites in 

these two elements suggesting that Wnt/-catenin signalling might be involved in regulating their 

activity and hence Fgf8 expression, but this hypothesis needs to be tested within the context of the 

holo-enhancer. 

Fgf15 dramatically differs from other telencephalic Fgfs both in functional as well as in regulatory 

terms. Its activity as an Fgf8 antagonist coincides with a widespread up-regulation throughout the 

dorsal telencephalon of the Gli3 mutants analysed here and in Gli3Xt/Xt mutants (Rash BG and EA 

Grove 2007). This ectopic expression taken together with Fgf15 expression in the interganglionic 

sulcus where Shh signalling is active raised the possibility that Gli3 directly represses Fgf15 



expression in the dorsal telencephalon. However, a mutation in a Gli binding site which has 

previously been shown to be critical for the activity of an Fgf15 ventral midbrain/diencephalon 

enhancer did not result in reporter gene expression in the dorsal telencephalon. This finding 

suggests that different, currently unknown regulatory elements outside the promoter region may be 

responsible for this repression or that this repression is indirect. Regardless of the exact mechanism, 

the repression of Fgf15 expression by Gli3 is likely to be of functional importance since ectopic Fgf15 

expression in the E14.5 dorsal telencephalon causes premature differentiation of cortical progenitors 

(Paridaen JT et al. 2013) but may also limit the effects of ectopic Fgf8 expression in Gli3 mutants 

due to its antagonistic effects on Fgf8 (Han YG et al. 2008).  

 

Fgf signalling regulates the activity levels of the Wnt8b dorsomedial enhancer 

 

In addition to the direct repression of Fgf17 by Wnt/-catenin signalling, we provide evidence that 

Fgf signalling in turn directly regulates Wnt8b expression in the cortical hem. The Wnt8b dorsomedial 

telencephalon enhancer contains an Ets binding site mutation of which results in loss of enhancer 

activity in the hem. Moreover, ectopic expression of activator and repressor forms of the Etv4 

transcription factors led to activation and repression of the Wnt8b enhancer in the rostromedial 

telencephalon, respectively. Taken together, these findings strongly suggest that Wnt8b is a direct 

target for Fgf signalling. Previously, it was shown that Wnt8b expression is repressed by Foxg1 via 

an evolutionarily conserved binding site in the Wnt8b promoter (Wilsch-Brauninger M et al. 2012) 

distinct from the Wnt8b dorsomedial telencephalon enhancer. Hence, Fgfs can regulate Wnt8b 

expression by two independent mechanisms, either directly via the Ets binding site in the 

dorsomedial telencephalon enhancer or indirectly through Foxg1. 

The mutual interactions between Fgfs and Wnts form an important aspect of patterning. The rostral 

telencephalon is peculiar in that domains of Fgf15/17/18 and Wnt7b/Wnt8b expression are 

juxtaposed (Higginbotham H et al. 2013). This juxtaposition combined with the mutual interactions 

provides a mechanism by which not only stable expression domains of these factors are generated 

but which also limit the extent of Fgf and Wnt/-catenin signalling. This mechanism appears of 

particular importance in light of the Wnt8b auto-regulation (Hasenpusch-Theil K et al. 2012). 



 

Fgf and Wnt/-catenin signalling cooperate in regulating Gli3 expression in the dorsomedial 

telencephalon 

 

In addition to the mutual interactions between Fgf and Wnt/-catenin signalling, both pathways 

cooperate in regulating the activity of the Gli3 forebrain enhancer. Previously, we showed that the 

activity of this enhancer depends on a Tcf/Lef binding site (Hasenpusch-Theil K et al. 2012). Here, 

we extend this finding by showing Fgf signalling is also involved in regulating the activity of the Gli3 

forebrain enhancer. While Ets binding site #3 might have a modulatory effect, Ets binding site #2 

immediately adjacent to the Tcf binding site is required for enhancer activity specifically in the 

dorsomedial telencephalon and in the dorsal diencephalon. This spatially confined effect coincides 

with the known expression of Fgfs and with the activity of Fgf signalling in both tissues (Zimmer C et 

al. 2010). Moreover, the presence of Ets protein increases the binding of Lef1 protein to an 

oligonucleotide from the Gli3 enhancer in a bandshift assay. Interestingly, this increased binding 

does not result from the simultaneous binding of both transcription factors suggesting that Etv4 might 

increase Lef1 binding activity in a DNA independent manner. Taken together, these findings strongly 

suggest that both signalling pathways converge to regulate Gli3 expression in the dorsomedial 

telencephalon and dorsal diencephalon. 

This cooperative interaction in the regulation of Gli3 expression combined with the mutual 

interactions between Fgf and Wnt/-catenin signalling confer stability and robustness to the 

telencephalic patterning process. Based on genetic analyses, a model was proposed that 

unidentified factors promoting cortical specification in the dorsal telencephalon are controlled by Fgf 

activity which in turn is disinhibited by Gli3 repressor mediated inhibition of Fgf gene expression 

(Rash BG and EA Grove 2007). Our analyses extend this model and clarify the molecular basis of 

some of these interactions (Fig. 7). Due to their prominent role in dorsal telencephalic development 

(Machon O et al. 2007; Mangale VS et al. 2008) and due to their direct control of Gli3 expression 

(Hasenpusch-Theil K et al. 2012), Wnts are likely to be at least one of the factors specifying cortical 

cell fates and directing early cortical differentiation. Direct regulation of Wnt8b expression in the hem 

by Fgf signalling and a mutual and direct repression of Fgf17 and possibly Fgf8 expression by Wnt/-



catenin signalling provide a balance between these two pathways. Moreover, Gli3 connects these 

two pathways with the third major signalling pathway, Shh signalling, and hence is a central factor 

in cortical patterning by suppressing ventral telencephalic cell fates and by promoting specification 

of dorsal telencephalic cell fates through its control of the expression of multiple Fgfs and Wnts. 

Thus, the interconnectedness between Gli3, Wnt and Fgf genes takes centre stage in conferring 

robustness to the telencephalic patterning process. This tight control is essential to cortical 

development since subtle changes in Fgf or Gli3 expression levels as in Fgf8 hypomorphic and 

Gli3Pdn/Pdn mutants, respectively, or in the Gli3 activator/Gli3 repressor ratio as in ciliary mouse 

mutants can have profound effects not only on telencephalic patterning (Willaredt MA et al. 2008) 

but also on subsequent developmental processes. For example, small differences in Gli3 expression 

levels or in Gli3 processing have been hypothesized to form the basis for agenesis of the corpus 

callosum in GLI3 and ciliopathy patients (Vokes SA et al. 2008; Speksnijder L et al. 2013; Magnani 

D et al. 2014; Laclef C et al. 2015). Moreover, gradients of Fgf and Wnt signalling molecules are 

crucial determinants of cortical arealization and, based on the protomap hypothesis (Rakic P 2009; 

Guo J et al. 2015), changes in the levels of Fgf and Wnt gene expression have been suggested to 

play an important role in the evolution of cortical areas. Our study provides a framework for 

understanding how these gradients are set up early in cortical development during regionalization of 

the dorsal telencephalon. 
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FIGURE LEGENDS 

 

Figure 1: An Ets binding site regulates activity levels of the Wnt8b dorsomedial telencephalon 

enhancer. (A) Electromobility shift assays showing in vitro binding of recombinant Etv4 protein to 

the Wnt8b enhancer (lane2). Complex formation is competed by increasing amounts of wild-type 

enhancer oligonucleotide (lane 3 and 4) but not by oligonucleotides containing point mutations in the 

Ets binding site (lanes 5 and 6). (B, C) The Wnt8b enhancer shows strong activity in the roof plate 

(rp), in thedorsomedial telencephalon (t) including the cortical hem and in preplate neurons in the 

dorsolateral telencephalon of transgenic embryos. The arrow in (C) demarcates the ventral most 

expression in preplate neurons (G, H). Mutation in the Ets binding site led to loss of enhancer activity 

in the cortical hem. Note the ventrally expanded expression domain in preplate neurons (H). The 

number of transgenic embryos is shown at the bottom of the figures. (D, I) Electroporation of the 

Wnt8b/lacZ reporter results in enhancer activity in the rostral midline region. (E, F, J, K) Co-

electroporation of an Etv4-E1A expression construct resulted in a dorsal expansion of lacZ staining 

(J) while an Etv4-EngR construct reduced lacZ staining (K) The arrows in (I-L) indicate the dorsal 

most extent of the lacZ expression domain. (D-F) GFP immunofluorescence revealed the 

electroporation sites. Abbreviations: ctx, cortex; MGE, medial ganglionic eminence; LGE, lateral 

ganglionic eminence; sep, septum. Scale bars: (B, G): 1mm; (C-F, H-K) 100m. 

 

Figure 2: Fgf15 and 17 expression in the Gli3 mutant telencephalon. Fgf17 (A-L) and Fgf15 (M-

X) in situ hybridization on E12.5 control (A-C, G-I, M-O, S-U), Gli3Pdn/Pdn (D, J, P, V), Gli3Xt/Pdn (E, K, 

Q, W) and Emx1Cre;Gli3fl/fl (F, L, R, X) embryos. (A-C, G-I) Fgf17 expression is restricted to the 

septum (sep) rostrally and to the roof plate (rp) caudally. (D-F, J-L) Fgf17 expression in the septum 

is not affected in Gli3 mutants (D-F) while transcripts were ectopically detected in the ventral most 

hippocampal primordium (hp). (M-O, S-U) Fgf15 expression is restricted to the septum and to the 

interganglionic sulcus between medial and lateral ganglionic eminence (MGE and LGE). (P-R, V-X) 

In Gli3 mutants, Fgf15 is ectopically expressed in the cortex (ctx). Scale bars: 100m. 

 

Figure 3: A Tcf/Lef binding site represses Fgf17 enhancer activity in the dorsomedial 

telencephalon. (A) Electromobility shift assays showing in vitro binding of recombinant GST-Lef1 

protein to the Fgf17 enhancer (lane 3). Complex formation is competed by increasing amounts of 

wild-type enhancer oligonucleotide (lane 4, 5 and 6) but not by oligonucleotides containing point 

mutations in the Tcf/Lef binding site (lanes 7, 8 and 9). (B-E) Electroporation of a GFP expression 

construct and an Fgf17/lacZ reporter plasmid into the rostromedial telencephalon leads to enhancer 

activity in the septum (arrows in C) but not in the rostral cortex (C) or in the hippocampal (h) 

primordium (E). (F-I) A Tcf/Lef mutant Fgf17/lacZ construct shows enhancer activity in the septum 

(arrows in G) and ectopic lacZ staining in the cortical hem and in the hippocampus (arrows in I). (J-

L) Ex vivo explant assay to determine the effects of ectopic Wnt/-catenin signalling on Fgf17 



expressioin. (J, K) Fgf17 expression in the commissural plate (cp) after DMSO (J) and 25M CHIR 

treatment (K). (L) In the presence of 50M CHIR, Fgf17 expression is severely reduced. Scale bars: 

(B-E, F-I): 100m; (J-L): 200m. 

 

Figure 4: Electromobility shift assays showing in vitro binding of recombinant Etv4 protein 

to the Gli3 forebrain enhancer. The schematic indicates the position of the four Etv4 and the Tcf/Lef 

binding sites in the Gli3 forebrain enhancer. GST-Etv4 protein binds to oligonucleotides of the Gli3 

forebrain enhancers (lane 2) though with different affinities. In each case, complex formation is 

progressively competed by increasing amounts of wild-type enhancer oligonucleotide (lanes 3 and 

4) but not by oligonucleotides containing point mutations in the Ets binding site (lanes 5 and 6). 

 

Figure 5: Ets binding site 2 is essential for Gli3 enhancer activity in the dorsomedial 

telencephalon and in the thalamus. (A) The Gli3 forebrain enhancer is active in the dorsomedial 

telencephalon (t) and in the dorsal diencephalon (d). (B) Mutations of all four Ets binding sites lead 

to reduced lacZ expression in the dorsomedial telencephalon and abolish enhancer activity in the 

thalamus. (C, D) Embryos transgenic for the mutant Ets1+2+4 (C) and Ets1+2 (D) constructs lack 

enhancer activity in the dorsomedial telencephalon and in the diencephalon. (E, F) Mutation of Ets 

binding site 1 has no effect on enhancer activity (E) while embryos transgenic for the Gli3 reporter 

construct carrying a mutation in Ets binding site 2 show no lacZ staining in the dorsomedial 

telencephalon and in the thalamus (F). Scale bars: 100m. 

 

Figure 6: The presence of Etv4 protein enhances the binding of Lef1 protein to the Gli3 

forebrain enhancer. The sequence indicates the relative position of the Tcf/Lef and Ets binding 

sites. GST-Etv4 and GST-Lef1 bind individually to an oligonucleotide from the Gli3 enhancer 

containing both binding sites while the binding of GST-Lef1 is increased in the presence of GST-

Etv4 protein. 

 

Figure 7: Model describing interactions between Gli3, Shh, Wnt8b and several Fgfs 

underlying cortical development. Specification of the cortex involves the repression of Shh 

signalling via Gli3 and Wnt/-catenin signalling. Gli3 is also required for establishing Wnt8b 

expression through an unknown mechanism. Wnt8b expression is directly activated by Fgf signalling 

and maintains its own expression through an autoregulatory mechanism. In turn, Wnt/-catenin 

signalling directly represses Fgf17 expression. Finally, Fgf and Wnt/-catenin signalling cooperate 

in regulating Gli3 expression. 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1: Fgf18 expression in the Gli3 mutant telencephalon. Fgf18 in situ 

hybridization on E12.5 control (A-C), Gli3Pdn/Pdn (D), Gli3Xt/Pdn (E) and Emx1Cre;Gli3fl/fl (F) embryos. 

Fgf18 expression is restricted to the commissural plate of control embryos and is not obviously 

affected by the Gli3 mutations. 

 

Supplementary Figure 2: The activity of the Fgf15 promoter is not repressed by Gli3 in the 

dorsal telencephalon. Co-electroporation of GFP with either a wild-type Fgf15/lacZ reporter 

plasmid (A, B) or with a reporter plasmid carrying a mutation in a Gli3 binding site (C-F) does not 

lead to enhancer activity in the dorsal telencephalon. 



 

Supplementary Figure 3: Fgf17 forebrain enhancers. Comparison of Fgf17 forebrain enhancer 

activity with Fgf17 mRNA expression. (A, D) Vista enhancer #782 located in the Fgf17 intragenic 

region is active in the septum but not in the roof plate. (B, E) Activity of the Vista enhancer #781 

situated in the Fgf17/Epb4.9 intergenic region is found in the septum and at more caudal levels in 

the roof plate and in the diencephalon (d) reflecting the expression pattern of the endogenous Fgf17 

gene (C, F). 

 

 

Supplementary Figure 4: GST-Lef1 fusion protein binds to the Fgf17 intergenic enhancer but 

not to the Fgf17 intragenic enhancer. EMSA analysis using oligonucleotides from the Fgf17 

intergenic (A) and Fgf17 intragenic enhancers (B) and increasing amounts of GST-Lef1 fusion 

protein. Only the oligonucleotide from the Fgf17 intragenic enhancer binds Lef1 protein. 

 



 

Supplementary Table 1     
      

Vista enhancer 
ID  

fragment 
length (bp)  

gene  primer primer sequence (5' -3')    

hs781 724 Fgf17 781_F1 GAGCTGGGACGGAGCCTGACA   

      781_R1 CTGCTCTCCCAAGCTGCTCTTC   

      

GenBank ID  
fragment 

length (bp)  
gene  primer primer sequence (5' -3')  

restriction sites 
used for cloning 

NC_000073.6 3501 Fgf15 Fgf15_Fwd1 AAAATTCGAACACGGCTCGC 
2.2kb HindIII / 

SphI 

      Fgf15_Rev1 CGGAGCTCTGGGAGAATGTC   

      Fgf15_Fwd2 GAAGTAAAACCCGCCCTGGA 1.3kb SphI / XhoI 

      Fgf15_Rev2 CCGGGCATCAGAGCATTTCT   

 
  



 
Supplementary Table 2     

      

Oligonucleotides used for mutagenesis   

      

Vista 
enhancer ID  

gene    primer primer sequence (5' -3')  
mutations 
introduced  

  Fgf15   Fgf15_GliBSmtg_Fwd CCCCTGCAGACAGACGTGGGATCACCACGGAGCTA (CTCCC/GTGGG) 

      Fgf15_GliBSmtg_Rev TAGCTCCGTGGTGATCCCACGTCTGTCTGCAGGGG   

hs781 Fgf17   781_Tcfmtg_Fwd CTGGAGACAGCTTCAGGGGTGGATTGGG (AA/GG) 

      781_Tcfmtg_Rev CCCAATCCACCCCTGAAGCTGTCTCCAG   

hs111 Gli3 
 

EtsBS1mut 
G3_Ets_B1mtg_Fwd GTGACACTGCGGGCTTAAAAAGGACTTTGAAAC (AGG/CTT) 

      G3_Ets_B1mtg_Rev GTTTCAAAGTCCTTTTTAAGCCCGCAGTGTCAC   

    
 

EtsBS2mut 
G3_Ets_B2mtg_Fwd GAAACTTGAACTTAAAGAGCTTGCTTTCAAC (CCT/AAG) 

      G3_Ets_B2mtg_Rev GTTGAAAGCAAGCTCTTTAAGTTCAAGTTTC   

    EtsBS3mut G3_Ets_B3mtg_Fwd CAACCTCAAAAGCTAGGCTTAAAGGGCTCTGAAAT (AGG/CTT) 

      G3_Ets_B3mtg_Rev ATTTCAGAGCCCTTTAAGCCTAGCTTTTGAGGTTG   

    
 

EtsBS4mut 
G3_Ets_B4mtg_Fwd CCATTAGCCTGTTTCTTAAGTTAGCCTCAAG (CCT/AAG) 

      G3_Ets_B4mtg_Rev CTTGAGGCTAACTTAAGAAACAGGCTAATGG   

hs1006 Wnt8b   W8b_Ets_B1mtg_Fwd CCACTCATTCGTTTAAGTTTAATTAACCCAC (CCT/AAG) 

      W8b_Ets_B1mtg_Rev GTGGGTTAATTAAACTTAAACGAATGAGTGG   

 
 
  



Supplementary Table 3   

    

Oligonucleotides used for EMSA  

    

enhancer    primer primer sequence (5' -3')  

Fgf17_781 781 TcfBS 781_Tcf_Fwd GAGACAGCTTCAAAGGTGGATTG 

    781_Tcf_Rev CAATCCACCTTTGAAGCTGTCTC 

  781 TcfBSmut 781_Tcfmut_Fwd GAGACAGCTTCAGGGGTGGATTG 

    781_Tcfmut_Rev CAATCCACCCCTGAAGCTGTCTC 

Fgf17_782 782 TcfBS 782_Tcf_Fwd GGGCTGCCTTTGAAGCAGTG 

    782_Tcf_Rev CACTGCTTCAAAGGCAGCCC 

Gli3 Gli3 EtsBS1 Gli_Ets_B1_Fwd CACTGCGGGAGGAAAAAGGACTTTG 

    Gli_Ets_B1_Rev CAAAGTCCTTTTTCCTCCCGCAGTG 

  Gli3 EtsBS1mut Gli_Ets_B1mut_Fwd CACTGCGGGCTTAAAAAGGACTTTG 

    Gli_Ets_B1mut_Rev CAAAGTCCTTTTTAAGCCCGCAGTG 

  Gli3 EtsBS2 Gli_Ets_B2_Fwd CTTGAAAGGAAAGAGCTTGC 

    Gli_Ets_B2_Rev GCAAGCTCTTTCCTTTCAAG 

  Gli3 EtsBS2mut Gli_Ets_B2mut_Fwd CTTGAACTTAAAGAGCTTGC 

    Gli_Ets_B2mut_Rev GCAAGCTCTTTAAGTTCAAG 

  Gli3 EtsBS3 Gli_Ets_B3_Fwd CAAAAGCTAGGAGGAAAGGGCTCTG 

    Gli_Ets_B3_Rev CAGAGCCCTTTCCTCCTAGCTTTTG 

  Gli3 EtsBS3mut Gli_Ets_B3mut_Fwd CAAAAGCTAGGCTTAAAGGGCTCTG 

    Gli_Ets_B3mut_Rev CAGAGCCCTTTAAGCCTAGCTTTTG 

  Gli3 EtsBS4 Gli_Ets_B4_Fwd GCCTGTTTCTTCCTTTAGCCTCAAG 

    Gli_Ets_B4_Rev CTTGAGGCTAAAGGAAGAAACAGGC 

  Gli3 EtsBS4mut Gli_Ets_B4mut_Fwd GCCTGTTTCTTAAGTTAGCCTCAAG 

    Gli_Ets_B4mut_Rev CTTGAGGCTAACTTAAGAAACAGGC 

  
Gli3 TcfBS 

EtsBS2 
G-Tcf-EtsBS2_Fwd AGGACTTTGAAACTTGAAAGGAAAGAGCTTGC 

    G-Tcf-EtsBS2_Rev GCAAGCTCTTTCCTTTCAAGTTTCAAAGTCCT 

Wnt8b Wnt8b EtsBS W8b_Ets_BS_Fwd CTCATTCGTTTCCTTTTAATTAAC 

    W8b_Ets_BS_Rev GTTAATTAAAAGGAAACGAATGAG 

  Wnt8b EtsBSmut W8b_Ets_BSmut_Fwd CTCATTCGTTTAAGTTTAATTAAC 

    W8b_Ets_BSmut_Rev GTTAATTAAACTTAAACGAATGAG 

 
 


