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Abstract 

Mice deficient in the glucocorticoid-regenerating enzyme 11β-HSD1 resist age-related 

spatial memory impairment. To investigate the mechanisms/pathways involved, we used 

microarrays to identify differentially expressed hippocampal genes that associate with 

cognitive ageing and 11β-HSD1. Aged wild-type mice were separated into memory-impaired 

and unimpaired relative to young controls according to their performance in the Y-maze. All 

individual aged 11β-HSD1-deficient mice showed intact spatial memory. The majority of 

differentially expressed hippocampal genes were increased with ageing (e.g. 

immune/inflammatory response genes) with no genotype differences. However, the 

neuronal-specific transcription factor, Npas4 and immediate early gene, Arc were reduced 

(relative to young) in the hippocampus of memory-impaired but not unimpaired aged wild-

type or aged 11β-HSD1-deficient mice. Quantitative RT-PCR and in situ hybridization 

confirmed reduced Npas4 and Arc mRNA expression in memory-impaired aged wild-type 

mice. These findings suggest that 11β-HSD1 may contribute to the decline in Npas4 and Arc 

mRNA levels associated with memory impairment during ageing, and that decreased activity 

of synaptic plasticity pathways involving Npas4 and Arc may, in part, underlie the memory 

deficits seen in cognitively-impaired aged wild-type mice. 

 

Introduction 
 
Cognitive decline is a prominent feature of normal ageing in humans and rodents. However, 

large inter-individual differences exist ranging from little change to mild or severe 

impairments (1, 2). Glucocorticoids (GCs; largely cortisol in humans, corticosterone in rats 

and mice), released from the adrenal cortex following stress or diurnal activation of the 

hypothalamic-pituitary-adrenal (HPA) axis are implicated in age-related cognitive 

impairment. While short-term elevated GC levels are generally considered adaptive, 

prolonged exposure can detrimentally affect brain structure and function, particularly in the 

hippocampus where they decrease neurogenesis, cause dendritic atrophy and impair 
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memory (3, 4). Hippocampus-dependent memory impairments are associated with elevated 

circulating GC levels during ageing in humans and rodents (5-7).  

GCs modulate episodic and working memory processes primarily via activation of 2 nuclear 

receptors, the high affinity mineralocorticoid receptors (MR) and low affinity glucocorticoid 

receptors (GR). Both are ligand-activated transcription factors and highly expressed in the 

hippocampus (8). Before accessing receptors, GCs may be subject to intracellular 

metabolism. The hippocampus highly expresses 11β-hydroxysteroid dehydrogenase type 1 

(11β-HSD1) which contributes to intracellular GC levels by catalysing the regeneration of 

cortisol and corticosterone from inert 11keto forms (cortisone, 11-dehydrocorticosterone) (9, 

10). Our recent studies support a pivotal role for 11β-HSD1 generated GCs in age-related 

cognitive decline (11). Aged 11β-HSD1 deficient mice show preserved hippocampus 

dependent learning and memory throughout life, resisting age-related spatial memory 

deficits observed in wild-type mice as shown in both watermaze and Y-maze tasks (12, 13). 

Conversely, transgenic mice with forebrain specific overexpression of 11β-HSD1 show 

accelerated cognitive ageing (14). Short-term selective inhibition of 11β-HSD1 reverses 

spatial memory deficits in aged C57BL/6J mice (15, 16). Improved cognition in aged mice 

with 11β-HSD1 deficiency or inhibition associates with reduced intrahippocampal 

corticosterone (CORT) levels during learning (17), a switch from predominant activation of 

‘anti-cognitive’ GRs to predominant ‘pro-cognitive’ MRs (18) and enhanced hippocampal 

long-term potentiation (LTP) (13). The downstream genes/pathways beyond receptor 

activation that underlie age-related memory deficits associated with 11β-HSD1 activity are 

unknown.   

Acquisition of long-term memory requires gene transcription and protein synthesis (19). 

Gene expression microarrays have identified genes and pathways in rodent hippocampus 

that associate with cognitive ageing (20-23). These include down-regulated immediate early 

gene (e.g. Arc, Egr-1, Vgf) and insulin signaling pathways (e.g. Insr, Ide, Stat5b) and up-

regulated general oxidoreductase activity genes (e.g. Acads, Aldh9a1) selectively in aged 

cognitively impaired animals (22). To dissect the pathways underlying cognitive protection 
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with 11β-HSD1 deficiency, the Y-maze was used to define cognitive function in aged wild-

type and 11β-HSD1-deficient mice (relative to young controls) prior to microarray analysis of 

hippocampal gene transcript profiles. Aged wild-type mice were further separated into 

memory impaired and unimpaired groups with the aim of identifying differentially expressed 

hippocampal genes that associate with cognitive ageing. 

 

Materials and Methods 
 
 Animals  

Male mice homozygous for targeted disruption of the Hsd11b1 gene (Hsd11b1-/-), congenic 

on the C57BL/6J genetic background (24, 25) and age-matched C57BL/6J mice as wild-type 

(Hsd11b1+/+) controls were bred and maintained within our biomedical research facility 

housed under standard conditions on a 12 h light/dark cycle (lights on at 07:00 h), with food 

and water ad libitum until behavioural testing in the Y-maze at either 6 m (young) or 24 m 

(aged). All animal procedures were performed according to local ethical guidelines of the 

University of Edinburgh Ethics Committee and those of the U.K. Animals (Scientific 

Procedures) act, 1986.  

 
Y-maze  

Young (6 months) and aged (24 months) wild-type and Hsd11b1-/- mice were tested in a two 

trial Y-maze task previously validated as hippocampus dependent (18, 26) for assessment of 

their spatial memory. All behavioural testing was carried out in the morning (between 08.00 -

11.00am) in a dimly lit room. Each mouse was placed at the end of one of the three arms of 

the maze designated the “start arm” and allowed to explore the maze with one arm blocked 

(novel arm) for 5 min (trial 1) before returning to their home cage. Fixed spatial cues (various 

objects such as glass bottle, pipette rack, plastic breaker etc) surrounded the maze. After an 

inter-trial interval (ITI) (either 1 min or 2h) the mouse was placed back in the maze start arm 

and allowed to explore all three arms (trial 2) for 5 min (18). The maze was wiped clean with 

70% ethanol in between animals to remove olfactory cues. All mice (young, n=9/genotype; 
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aged WT, n=13; aged Hsd11b1-/- mice, n=8) were tested first with the 1 min ITI to ensure 

they responded to novelty, had no motor deficits and could see the spatial cues around the 

maze. Spatial memory was tested with the 2h ITI one week later. The time spent in each of 

the arms was calculated with the ANY-maze software (Stoelting, Dublin, Ireland). Aged mice 

failing to spend significantly more time in the novel arm compared to the previously visited 

arms were classed as cognitively impaired while mice showing a preference for the novel 

arm similar to young controls were cognitively unimpaired. Aged cognitively impaired (AI) 

and unimpaired (AU) wild-type mice were randomly selected from the groups for the 

microarray study (n=4/group). 

Animals were culled by cervical dislocation between ~8 and 10 AM three days following the 

end of Y-maze testing. Brains were removed, dissected and the hippocampus was snap 

frozen in RNase free eppendorf tubes on dry ice and stored at -80°C. For in situ 

hybridization studies, brains were frozen on powdered dry ice and stored at -80°C. 

 
RNA extraction and Affymetrix GeneChip processing 
 
Total RNA was extracted from hippocampal tissues of young wild-type (WT_Y), young 

Hsd11b1-/-(KO_Y), aged unimpaired wild-type (WT_AU), aged impaired wild-type (WT_AI) 

and aged Hsd11b1-/- (KO_A) mice using TRIzol reagent (Invitrogen, Paisley, UK) and 

RNeasy Mini Kit (QIAGEN, West Sussex, UK). Concentration and purity of each RNA 

sample was assessed using a GeneQuant RNA/DNA calculator (GE healthcare, Amersham, 

UK). Hippocampal RNA samples were processed through standard Affymetrix protocols, and 

hybridized to Affymetrix Mouse Genome 430 2.0 GeneChips (n=4 per group, Affymetrix, 

Santa Clara). CEL files for all 20 chips were imported into the Affy package of BioConductor, 

and were processed (background subtraction and normalization) with the Robust Multichip 

Average (RMA) algorithm. Chip data quality control was performed by (i) visual inspection of 

the chip images (not shown) which showed no obvious abnormalities and (ii) histogram of 

raw intensities from all chips which showed no clear outliers and had the usual distribution. 

Quality control indicated that the data were technically good. Expression levels for each chip 
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and fold changes between genotype for each tissue were calculated. Genes with no or very 

low expression (i.e. expressed below a normalized expression value of 100 in all, or all but 

one, of the samples) were excluded. Data were exported in text format and imported into a 

MySQL database. Annotation data for the genes were obtained from NetAffx. A web 

accessible front-end query tool was built that allows query of the data by expression data 

(normalised expression, fold-changes, p-values) and by sequence annotation (gene title and 

symbol, Entrez gene ID, Affymetrix ID, and Gene Ontology data). Microarray data are 

available in the Gene Expression Omnibus (GEO) with accession number GSE68515. 

Microarray processing was carried out by ARK-Genomics (Roslin Institute, Edinburgh UK). 

 

Real-Time Quantitative RT-PCR  
 

Total RNA (1.5 μg) from hippocampal samples from the experimental groups (WT_Y, KO_Y, 

WT_AU, WT_AI and KO_A) (n=5-8/group including overlap with animals used in microarray) 

was reverse transcribed into cDNA with oligo(dT) primers using the QuantiTect Reverse 

Transcription Kit (QIAGEN) according to the manufacturer’s instructions. Gene specific 

mRNA levels were determined in cDNA samples incubated in triplicate with gene specific 

primers and fluorescent probes (using pre-designed assays from Applied Biosytems, 

Warrington, UK) in 1 x Roche LightCyclerR 480 Probes mastermix. PCR cycling and 

detection of fluorescent signal was carried out using a Roche LightCyclerR 480 (Roche 

Applied Science, Burgess Hill, U.K.). A standard curve was constructed for each primer 

probe set using a serial dilution of cDNA pooled from all samples. The primers (Invitrogen) 

were designed for use with intron-spanning probes from the Roche Universal Probe Library. 

LightcyclerR 480 Software was used to analyse the data produced after RT-PCR. All results 

were corrected by normalization to the expression level of the reference (housekeeping) 

gene Gapdh, which did not differ between groups and expressed arbitrarily as an adjusted 

ratio.  
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In situ hybridization 

PCR products corresponding to nucleotides 1859-2349 of the mouse Arc cDNA and 1055-

1607 of the mouse Npas4 cDNA were generated from control C57BL/6J mouse 

hippocampus cDNA and subcloned into the pGEM-T Easy vector (Promega). 35S-UTP 

(Perkin Elmer Life) labeled sense and antisense cRNA probes were generated using 

restriction enzyme-linearized plasmid as template for in vitro transcription using either T7 or 

SP6 RNA polymerase as appropriate. Cryostat coronal brain sections at the level of the 

dorsal hippocampus from young and aged WT_AI (WT_AU were omitted due to small 

sample size) and Hsd11b1-/- (KO) mice (n=6-9/group, including overlap with animals used in 

microarray) were post-fixed in 4% paraformaldehyde, acetylated (0.25% acetic anhydride in 

0.1M triethanolamine, pH 8.0), washed in phosphate-buffered saline, dehydrated in graded 

ethanol and air-dried. Sections were hybridized with probe overnight at 50°C, followed by 

RNaseA treatment and standard saline citrate (SSC) buffer washes. Slides were dehydrated 

in graded ethanol and air-dried before exposure to Biomax MR-1 film (Amersham) for 5-8 

days at RT. The slides were then dipped in NTB-2 emulsion (Eastman Kodak Co, Rochester, 

NY) and exposed for 3 weeks at 4°C before developing and counterstaining with 1% 

pyronine. Hybridization signal was assessed by computer-assisted grain counting using 

Zeiss KS300 image analysis software. Silver grains were counted within a fixed circular area 

under bright-field illumination using the X40 magnification objective, over individual cells by 

an investigator blinded to age and genotype. For each animal, 15-18 cells/subregion of 

hippocampus or cortical layer were assessed and background, counted over areas of white 

matter was subtracted. The labeled RNA probes (antisense and sense) were first hybridized 

onto control brain sections from adult mice to test their specificity at the autoradiographic 

level. No binding was detected with labeled sense probes of Npas4 and Arc (data not 

shown). 
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Data Analysis 
 

Statistical analysis of the microarray gene expression data was carried with the Limma 

R/Bioconductor software package (27) yielding multiple testing corrected p-values for each 

comparison of interest. A non-parametric statistical test (Rank Products, RP) was also used. 

The RP approach has been shown to be reliable for identifying biologically relevant 

expression differences even with highly noisy data (28, 29). Genes were considered 

differentially expressed between groups when rank product P values were less than 0.05. 

The Y-maze (2h ITI time spent in novel arm) and in situ gene expression data across the 

groups were analyzed using two-way analysis of variance (ANOVA) with age and genotype 

as the independent variables followed by Tukey’s multiple comparison’s test as appropriate 

for between group comparisons. Comparisons of time spent in the arms of the Y-maze 

within each group were analyzed by Student’s paired t-tests. The quantitative RT-PCR data 

with the aged impaired and unimpaired wild type mice as separate groups were analyzed by 

one-way analysis of variance with Tukey’s multiple comparison’s test as appropriate for 

between group comparisons. Data are shown as means ± SEM.  

 

 
Results 
 

Spatial memory status of aged wild-type and 11-HSD1-deficient mice in the Y-maze 

All young and aged wild-type and Hsd11b1-/- mice spent significantly more time in the novel 

arm than previously visited arms of the Y-maze (P<0.01, paired t-tests) following a 1 min ITI 

(Fig. S1) confirming the aged mice had no impairment of vision or motor deficits. There were 

little inter-individual differences within the aged mice groups (both wild-type and Hsd11b1-/-) 

following the 1 min ITI with all mice performing equally well regardless of their later cognitive 

status following the 2h ITI. Analysis of the 2h ITI Y-maze data, as a measure of spatial 

memory, revealed a significant effect of genotype (F1,33 =8.4, P< 0.01) and genotype x age 

interaction (F1,33= 5.7, P<0.05) (Fig. 1A). Aged (24 months) wild-type mice spent less time in 

the novel arm during the retention trial after a 2h ITI compared to young (6 months) wild-type 
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controls (P<0.05) and to aged Hsd11b1-/- mice (P<0.01) (Fig. 1A), recapitulating previous 

findings (13, 18). Aged wild-type mice (n=13) showed an overall impairment in spatial 

memory (Fig. 1A), but examination of individual animals revealed 4 unimpaired mice with 

intact spatial memory similar to young mice i.e. spending significantly more time in the novel 

arm (P<0.05) than previously visited arms of Y-maze (Fig. 1B). Aged memory-unimpaired 

wild-type (WT_AU) mice spent significantly (P<0.001) greater % time in the novel arm than 

aged memory-impaired wild-type mice (WT_AI) (Fig.1B). Mice from each age and genotype 

group were used for microarray analysis of hippocampal gene expression (Fig.1B). 

 

Differentially expressed hippocampal genes associated with 11-HSD1 deficiency, memory 

impairment and ageing 

Data from aged wild-type mice were examined as two subgroups [aged memory-impaired 

(WT_AI, n=4) and aged memory unimpaired (WT_AU, n=4)] and also as a combined group 

(WT_A, n=8). These were compared with aged Hsd11b1-/- mice, which showed no cognitive 

impairment. Most differentially expressed hippocampal transcripts were increased with age, 

but did not differ between genotypes (~1.5 fold increased, <0.05 RP score compared to 

corresponding young controls). These include inflammatory/immune response genes (C1qb, 

C1qbc, B2m, Aif1, Fcgr2b, Fcgr3, Trem2, Lyz2, Mpeg1), glial/structural genes (Gfap, Vim, 

Dmp1), cholesterol/lipid metabolism (Apod), signal transduction/transport (Anxa3, Cyba, 

Abca8a), protein binding (Rtp4, Tyrobp) (Table S1). Some genes were increased with age 

(~1.5 fold, P<0.05 RP score) in wild-type mice regardless of cognitive status (WT_A) but not 

in Hsd11b1-/- mice including the rate-limiting retinoic acid-synthesizing enzyme (Aldh1a2) 

and the GABA transporter 2 (Slc6a13) (Fig. 2). Only three genes were differentially 

expressed significantly between WT_AI and WT_AU (Fig. 2 and Fig. S2) and between 

WT_AI and KO_A (Fig. 2 and Fig. S3). Of these, the transcription factor Npas4 and 

immediate early gene Arc, are of particular interest because of their link with learning and 

memory (30, 31). Npas4 and Arc mRNA levels were selectively decreased with age in the 

hippocampus of WT_AI (P<0.01 and P<0.05, RP score respectively) but not WT_AU or 
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KO_A mice (Fig. 2 and Fig. 3). Npas4 mRNA levels were also lower in KO_Y compared to 

WT_Y (P<0.05, Fig. 2). Interestingly, the level of Agxt2l1 (alanine-glyoxylate 

aminotransferase 2-like 1), a gene whose function is poorly characterized but a 

dysregulation in prefrontal cortex has been associated with mood disorders (32), differed 

significantly between AU and AI WT mice (P<0.01, RP score) and was increased with age in 

the hippocampus of both WT-AU and KO_A (P<0.001, RP score) but not WT_AI mice (Fig. 2 

and Fig. 3). 

 

Decreased Npas4 and Arc but increased Hsd11b1 mRNA levels in the hippocampus of aged 

memory-impaired wild type mice 

Differential expression of Npas4 and Arc mRNA levels was validated by quantitative real-

time PCR (qPCR) using total RNA from the hippocampus of WT_AI, WT_AU, KO_A, and 

corresponding young mice of each genotype (n=5-8/group). The microarray changes in 

Agxt2l1 mRNA levels were, however, not fully validated by qPCR with no significant increase 

in WT_AU compared to WT_AI (P=0.11) or compared to WT_Y (P=0.47) (Fig. 3). Although 

the microarray data analysis did not reveal differences in Hsd11b1 mRNA levels between 

young and aged wild-type mice, qPCR showed significantly higher levels of Hsd11b1 mRNA 

in the WT_AI group compared to WT_Y controls (P<0.001) (Fig. 3) confirming our previous 

findings (14). Both hippocampal Npas4 and Arc mRNA levels differed significantly between 

the groups (F4,27 =5.1, P<0.01, and F4,26=5.9, P<0.01, respectively, Fig. 3). Hippocampal 

Npas4 and Arc mRNA levels were decreased selectively in WT_AI but not WT_AU mice 

(WT_Y vs WT_AI, P<0.05 and P<0.01, respectively Fig. 3). Npas4 mRNA levels were lower 

in the hippocampus of WT_AI compared to WT_AU mice (P<0.01, Fig. 3). In contrast, both 

hippocampal Npas4 and Arc mRNA levels were not significantly altered with age in 

Hsd11b1-/- mice (Fig. 3). The lower Npas4 mRNA levels in KO_Y vs WT_Y from the 

microarray data (n=4/genotype) was however not evident by qPCR in the larger sample size 

(n=8/genotype) (Fig. 3). 
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Decreased Npas4 and Arc mRNA expression selectively in hippocampal CA1 cells of aged 

memory-impaired wild type but not 11-HSD1-deficient mice. 

We performed in situ hybridization to gain a regional resolution of the reduced hippocampal 

Npas4 and Arc mRNA expression in aged memory-impaired wild-type mice. In young WT 

mice, Npas4 mRNA expression was greatest in the cortical region (layers 2/3 and 5) and 

hippocampus, particularly in the CA1 and CA3 cell layers (Fig. 4A). Within the CA1 

subregion of the hippocampus, Npas4 mRNA levels were decreased with age (~40% 

reduction, F1,26=11.8, P<0.01) in WT_AI but not KO_A mice (Fig. 4B). Levels of Npas4 

mRNA in the CA1 region showed a non-significant trend to be lower in WT_AI mice 

compared to KO_A mice (F 1,26 =3.2, P=0.08) (Fig. 4B). CA3 Npas4 mRNA levels were 

decreased with age regardless of genotype (~40% reduction, F1,24 =19, P<0.001, Fig. 4B). In 

the cortex, levels of Npas4 mRNA were affected by age but not genotype (cortical layer 2/3, 

F1,25= 12.9, P<0.01; cortical layer 5, F1,25= 6.8, P<0.05, Fig. 4B); post hoc analysis showed a 

decrease with age in WT_AI (~37% decrease, P<0.05) but not KO_A mice (Fig. 4B). 

 

Levels of Arc mRNA were highest in the CA1 cell layer of the hippocampus and layers 2/3 

and 5 of the cortex (Fig. 5A). In the hippocampus, there was an age (F1,27=14.8, P<0.001) 

and age x genotype interaction (F1,27=5.0, P<0.05) selectively in CA1 (Fig. 5B). Arc mRNA 

levels were decreased with age in hippocampal CA1 cells of WT_AI mice (~ 50% reduction, 

P<0.001) and CA3 (~33% reduction, P<0.05) but not KO_A mice (Fig. 5B). In the cortex, Arc 

mRNA levels were decreased with age but not genotype (cortical layer 2/3, F1,30= 32, 

P<0.001; cortical layer 5, F1,30= 40, P<0.001), Fig. 5B. Post hoc analysis revealed a 

decrease with age in both WT_AI (~52-57% decrease, P<0.001) and KO_A mice (~41-46% 

decrease, P<0.05)(Fig. 5B). 
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Discussion 
 
Lifelong deficiency or short-term inhibition of 11β-HSD1 consistently preserves or improves 

spatial memory in aged mice (12, 13, 15, 18). Here we identified two hippocampal genes, 

the brain-specific activity-dependent transcription factor Npas4 (neuronal Per-Arnt-Sim 

domain protein 4) and the immediate early gene Arc (activity-regulated cytoskeleton-

associated protein) as differentially expressed with ageing, cognitive decline and 11β-HSD1 

deficiency. Given the crucial roles of Npas4 and Arc in the regulation of learning and 

memory (31, 33-37), their decreased mRNA levels in the hippocampus of aged memory-

impaired (AI) but not unimpaired  (AU) wild-type or 11β-HSD1-deficent mice, suggests that 

these proteins may lie in pathways that are important for preservation of hippocampus-

associated memory in ageing and which are maintained by 11β-HSD1 deficiency/inhibition.  

Several studies have used microarrays to identify hippocampal gene transcripts associated 

with cognitive ageing under basal (home cage) and memory-activated (1h after watermaze 

training) conditions in rats (22, 23, 38-40) and mice (41, 42). The number of hippocampal 

genes identified as differentially expressed between aged cognitively impaired and 

unimpaired animals vary with some studies revealing more genes altered than others. 

Importantly, several of the transcripts elevated with ageing regardless of genotype or 

cognitive status in our study were also identified as genes regulated by ageing and not 

memory decline in cognitively tested aged rats, including inflammatory/immunity genes 

(C1qc, C1qb, B2m, Aif1, Fcgr2b), structural (Gfap, Vim), cholesterol/lipid metabolism (Apod) 

and signal transduction (Anxa3) (21, 22, 43). This affords some confidence that these reflect 

ageing per se rather than the processes underlying cognitive variation with age. 

 

In contrast to previous studies in rats that examined memory-activated hippocampal gene 

expression profiles (22, 23), only three notable hippocampal genes were differentially 

expressed between the AI and AU wild-type mice as characterized in the Y-maze spatial 

recognition memory task. This low number of differentially expressed hippocampal genes 

suggests that the AI and AU characterization based on a single “non-aversive” Y-maze trial 
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may not be as reliable as previous methods which use multiple “aversive” watermaze trials 

as shown in aged mice (42) and rats (6, 44, 45). The AU wild-type mice would benefit with 

further characterization in the watermaze to demonstrate a consistent phenotype of 

preserved memory function. Thus the implications of the altered gene transcript levels in AU 

wild-type mice are less clear and could simply reflect within-subject variability rather than a 

consistent distinct subject cognitive phenotype. In contrast, the impaired and preserved 

cognitive phenotype of the key comparisons between AI wild-type and aged 11β-HSD1-

deficient mice, respectively, have been reliably confirmed in previous studies following both 

Y-maze and watermaze protocols (12, 13, 18). Among the differentially expressed genes, 

Arc transcript levels were reduced selectively in AI wild-type mice, a finding consistent with 

the correlation of hippocampal Arc mRNA levels with spatial memory (46) and previous 

studies in aged rats with memory deficits (21, 22, 47, 48).  Acutely, both a memory-

enhancing dose of CORT and learning have been shown to increase Arc mRNA and protein 

expression (43, 46, 49) indicating a plausible pathway linking stress and its GC mediators 

through life, cognition and individual differences in cognitive decline with age. Moreover, 

hippocampal Arc expression was reduced in CA1 and CA3 but not dentate gyrus of AI wild-

type mice in line with sub-regional changes in basal levels of Arc mRNA in aged rats (47). 

Decreased Arc mRNA levels have been reported during both “off line” periods of rest and 

following spatial behavior in the aged hippocampus (47). Indeed, Arc mRNA levels under 

resting home cage conditions is thought to reflect active information processing in cells that 

previously transcribed Arc in response to behaviour (50). Thus, reduced levels of Arc mRNA 

in CA1 and CA3 pyramidal cells of AI wild-type mice may reflect impaired memory 

consolidation, as in Arc-/- mice (51), during the rest (home cage) period. Importantly, aged 

11β-HSD1-deficient mice and AU wild-type mice do not show reduced Arc mRNA levels in 

CA1 and CA3 cells and are not impaired in the Y-maze.  

 
Npas4 mRNA levels were also decreased in the hippocampal CA1 region of AI wild-type but 

not aged 11β-HSD1-deficient mice. Reduced levels of Npas4 mRNA in hippocampus have 
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previously been noted in aged rats (52) but this has not been specifically associated with the 

subset of animals showing cognitive decline. However, recent evidence indicates a key role 

for Npas4 in memory formation (33, 34). Moreover, Npas4 influences the survival of 

neurons, development and maintenance of synapses, and regulation of synaptic plasticity 

(30) via downstream target genes, including brain derived neurotrophic factor (BDNF)(53). 

Indeed, in a separate study we found hippocampal levels of Bdnf mRNA to be reduced in 

aged wild-type but not aged 11β-HSD1-deficient mice (Yau et al, unpublished data). This is 

consistent with the lower Npas4 mRNA levels in AI wild-type mice, decreased mRNA levels 

of both Bdnf and Npas4 in the hippocampus of aged rats (52), and reduced transcription of 

multiple Bdnf isoforms in Npas4-/- mice (54). 

 
Putative negative glucocorticoid response elements (GREs) found upstream of the Npas4 

transcription initiation site suggest regulation by CORT (55). Indeed, in vivo treatment with 

high CORT doses reduce Npas4 mRNA and protein expression in mouse hippocampus and 

frontal cortex (55, 56). This suggests the maintained NPas4 mRNA levels in AU wild-type 

mice and aged 11β-HSD1-deficient mice may, at least in part, be due to lower brain 

intracellular CORT levels as a consequence of decreased 11β-HSD1 activity (17). In support 

of this notion, hippocampal Hsd11b1 mRNA levels were selectively increased in AI but not 

AU wild-type mice compared to young wild-type mice. 

 
It may be speculated that the greater rise in hippocampal CORT levels induced by 

learning/training in aged wild-type mice (17), activates GRs which in turn reduces Npas4 

transcription directly by binding to negative GREs in its promoter (55). A decrease in Npas4 

mRNA expression may contribute to reduced transcription of its target gene, Bdnf (52) which 

regulates neuroplasticity and memory mechanisms (30, 52). Lower Npas4 expression may 

also affect the expression of Arc indirectly. Indeed, memory-activated expression of Npas4 

mRNA in the dorsal hippocampus of mice appears upstream of several other immediate 

early genes including Arc (33). Moreover, conditional deletion of Npas4 in cultured mouse 

hippocampal neurons abolished the depolarization-induced expression of Arc mRNA (33). 
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Thus, a reduced Npas4 expression could contribute to lower levels of Arc transcripts in the 

hippocampus of AI wild-type mice.  

These findings implicate both Npas4 and Arc in the pathways that may underlie the 

impairment and maintenance of spatial memory associated with ageing and 11β-HSD1 

deficiency. However, any causal relationship between 11β-HSD1 deficiency, resistance to 

ageing-associated decline of Npas4 and Arc mRNA levels, and ageing-associated spatial 

memory deficits remains to be determined. If 11β-HSD1 deficiency causes resistance to 

age-related decline of hippocampal Npas4 and/or Arc mRNA levels then short-term selective 

inhibition of 11β-HSD1 in aged C57BL/6J mice, which reverses spatial memory impairments 

(16), would be anticipated to associate with increased Npas4 and/or Arc mRNA levels. 

Future studies could examine this in aged mice during 11β-HSD1 inhibitor treatment when 

spatial memory is improved and after stopping treatment when memory reverts back to 

impaired to test if Npas4 and/or Arc mRNA levels are increased and decreased, respectively. 

Furthermore, intra-hippocampal administration of high CORT levels to aged 11β-HSD1 

deficient mice (to levels equivalent to those found in aged wild type mice), could be carried 

out to establish whether it is the lower hippocampal CORT levels as a consequence of 11β-

HSD1 deficiency (17) that prevents the decreased Npas4 and Arc mRNA levels and/or 

memory deficits. It is likely that there are other hippocampal synaptic plasticity genes 

modulated by 11β-HSD1 activity that play a role in the variable cognitive decline with ageing. 

Examination of learning-activated gene transcripts and proteins in the hippocampus and 

functional characterization of selected genes in vivo could help gain further insight into the 

mechanisms whereby 11β-HSD1 activity contributes to age-related memory decline.  
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Figure legends  
 

Figure 1. Spatial memory status of aged wild-type and 11-HSD1-deficient mice 

in the Y-maze (A) Aged (24 months) wild-type (WT) mice as a group (n=13) showed 

impaired spatial memory retention in the Y-maze after a 2h inter-trial interval (ITI) (less 

time in novel arm) compared to young (6 months) WT controls (n=9) and aged (24 

months) Hsd11b1-/- (KO) mice (n=8). (B) Spatial memory of mice selected for 

microarray analysis from (A) showing the 5 groups used: WT_Y (young wild-type), 

KO_Y (young Hsd11b1-/-), KO_A (aged Hsd11b1-/-), WT_AI (aged wild-type memory-

impaired) and WT_AU (aged wild-type memory-unimpaired) (n=4/group). *P<0.05, 

**P<0.01 significant difference between comparisons. Data shown are mean ± SEM. 

 

Figure 2. Microarray mean chip intensity of a selection of differentially 

expressed hippocampal genes in wild-type and 11β-HSD1-deficient mice. (A) 

Increased with age in WT but not in KO. (B) Decreased with age in WT_AI but not in 

KO. (C) Increase with age in WT_AU and in KO but not in WT_AI. Comparisons 

between young and aged wild-type unimpaired and impaired mice  [(WT_Y) and 

(WT_AU) or (WT_AI), n=4/group] and between aged wild-type and Hsd11b1-/- mice 

[WT_AI and KO_A, n=4/group] differed by ~1.5 fold (*P<0.05, **P<0.01 RP score). § 

P<0.05 compared to WT_Y. Data shown are mean ± SEM. 
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Figure 3. Quantitative real time PCR measurement of Hsd11b1, Agxt2l1, Npas4 

and Arc mRNA levels in the hippocampus of wild-type and 11-HSD1-deficient 

mice. Levels of Hsd11b1, Agxt2l1, Npas4 and Arc mRNA in the hippocampus of 

young wild-type (WT_Y), young Hsd11b1-/- (KO_Y), aged wild-type impaired (WT_AI), 

aged wild-type unimpaired (WT_AU) and aged Hsd11b1-/- mice (KO_A) were 

measured relative to Gapdh and expressed as a ratio (n=5-8/group). *P<0.05, 

**P<0.01, ***P<0.001 significance difference between groups. Data shown are mean ± 

SEM. 

 

Figure 4. Differentially expressed Npas4 mRNA in hippocampus and cortex of 

aged wild-type and 11-HSD1-deficient mice. (A) Representative in situ 

hydridization autoradiograms showing Npas4 mRNA expression in coronal mouse 

brain sections at the level of the dorsal hippocampus from young wild-type (WT_Y), 

young Hsd11b1-/- (KO_Y), aged memory-impaired wild-type (WT_AI) and aged 

Hsd11b1-/- mice (KO_A) (n=6-8/group). Mice were previously tested in the Y-maze to 

confirm spatial memory status as in figure 1 with only WT_AI mice included for in situ 

hybridization analysis. (B) Quantification of Npas4 mRNA levels in hippocampus sub-

regions (dentate gyrus, DG, CA1 and CA3) and cortex (layers 2/3 and V) of wild type 

and Hsd11b1-/- mice. *P<0.05 significant difference between groups. Data shown are 

mean ± SEM. 

 

Figure 5. Differentially expressed Arc mRNA in hippocampus and cortex of aged 

wild-type and 11-HSD1-deficient mice. (A) Representative in situ hybridization 

autoradiograms showing Arc mRNA expression in coronal mouse brain sections at the 

level of the dorsal hippocampus from young wild-type (WT_Y), young Hsd11b1-/- 

(KO_Y), aged memory-impaired wild-type (WT_AI) and aged Hsd11b1-/- mice (KO_A) 

(n=6-9/group). Mice were previously tested in the Y-maze to confirm spatial memory 
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status as in figure 1 with only WT_AI mice included for in situ hybridization analysis. 

(B) Quantification of Arc mRNA levels in hippocampus sub-regions (dentate gyrus, 

DG, CA1 and CA3) and cortex (layers 2/3 and V) of wild-type (WT) and Hsd11b1-/- 

mice. *P<0.05, **P<0.01, ***P<0.001 significant difference between groups. Data 

shown are mean ± SEM. 
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