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Molecular noise induces concentration oscillations in chemical systems
with stable node steady states
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(Received 20 October 2012; accepted 9 January 2013; published online 4 February 2013)

It is well known that internal or molecular noise induces concentration oscillations in chemical sys-
tems whose deterministic models exhibit damped oscillations. In this article we show, using the
linear-noise approximation of the chemical master equation, that noise can also induce oscillations
in systems whose deterministic descriptions admit no damped oscillations, i.e., systems with a sta-
ble node. This non-intuitive phenomenon is remarkable since, unlike noise-induced oscillations in
systems with damped deterministic oscillations, it cannot be explained by noise excitation of the
deterministic resonant frequency of the system. We here prove the following general properties of
stable-node noise-induced oscillations for systems with two species: (i) the upper bound of their fre-
quency is given by the geometric mean of the real eigenvalues of the Jacobian of the system, (ii) the
upper bound of the Q-factor of the oscillations is inversely proportional to the distance between the
real eigenvalues of the Jacobian, and (iii) these oscillations are not necessarily exhibited by all inter-
acting chemical species in the system. The existence and properties of stable-node oscillations are
verified by stochastic simulations of the Brusselator, a cascade Brusselator reaction system, and two
other simple chemical systems involving auto-catalysis and trimerization. It is also shown how exter-
nal noise induces stable node oscillations with different properties than those stimulated by internal
noise. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4788979]

I. INTRODUCTION

Concentration oscillations are a ubiquitous characteris-
tic of intracellular dynamics.1 The period of these oscilla-
tions can vary from few seconds to several hours, well-known
examples being calcium oscillations (seconds to minutes),2

glycolytic oscillations (minutes),3 and circadian rhythms
(1 day).4

The oscillatory properties of various biochemical circuits
have been extensively studied by means of the rate equation
formalism.5 This deterministic framework allows one to build
time evolution equations for the concentrations, the rate laws
being determined by the principle of mass action. A com-
mon strategy to analyze these equations is linear stability
analysis by which one derives an equation for the time evo-
lution of a small perturbation about the steady state of the
system. From this analysis one can determine, by considera-
tion of the eigenvalues of the Jacobian of the rate equations,
if these small perturbations will decay in a non-oscillatory
manner (a stable node), decay in an oscillatory manner (a
stable focus) or lead to periodic oscillations (a limit cycle).
The last case is that in which the steady state loses stabil-
ity and is replaced by sustained oscillations, conditions which
are achieved when the system possesses a negative feedback
mechanism with sufficient memory, sufficient nonlinearity in
the reaction rates, and a proper balancing of the time scales
of species involved in the feedback loop.6 It has been shown
that the minimal realistic chemical system, i.e., that composed
of a set of unimolecular and bimolecular reactions, which
satisfies these properties involves the interaction of three
species.7

Deterministic approaches are valid in the limit of large
molecule numbers. Contrastingly the number of molecules
per cell of many intracellular chemical species is quite small
(few tens to few thousands—see, for example Ref. 8). In
such conditions the stochasticity in reaction kinetics cannot
be ignored.9 These fluctuations are an inherent property of the
system and cannot be turned off; they are commonly referred
to as internal or intrinsic noise. Thus deterministic approaches
may not lead to an accurate description of many intracellular
biochemical oscillators.

Stochastic models of biochemical oscillators have thus
become more common in the past decade,10–13 their dynam-
ics being explored principally by means of the stochastic sim-
ulation algorithm.14 To a lesser extent, the problem has also
received theoretical attention by analysis of the chemical mas-
ter equation,15 a set of differential-difference equations con-
taining complete information about the stochastic properties
of the trajectories generated by the stochastic simulation al-
gorithm. This led to the important insight that stochasticity
is not necessarily detrimental to the production of sustained
oscillations but that rather it can promote oscillations. In par-
ticular, using the linear-noise approximation15 of the chemical
master equation, it was shown that internal noise induces sus-
tained oscillations in biochemical networks whose determin-
istic rate equations predict stable foci, i.e., those whose per-
turbations decay in an oscillatory manner.16, 17 The intuitive
reason for this phenomenon is that the “underlying stochastic-
ity has a flat spectrum in frequency space (i.e., white noise),
and this automatically excites the resonant frequencies of the
system,”16 i.e., the frequency of the damped oscillations in
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the deterministic model. Similar conclusions were reached
by means of multiple-scale analysis in the context of oscil-
lating numbers of infected individuals in a population18 and
by analysis of the Q-matrix in simple models of biochemical
reactions.19

In this article, we show that internal noise induces os-
cillations even in biochemical systems whose deterministic
rate equation models predict a stable node. This is remark-
able since it cannot be explained by the intuitive reasoning
used for noise-induced oscillations (NIO) associated with sta-
ble foci. In particular, stable nodes are not characterized by a
damped oscillatory return to steady state and hence there does
not exist a resonant frequency which white noise can excite.
We also show that external noise (noise whose origin lies out-
side the chemical system under consideration20) can as well
lead to NIO in stable node systems, albeit these having differ-
ent properties than NIO produced by internal noise.

The article is divided as follows. In Sec. II we provide a
short summary of the linear-noise approximation theory for
NIO. In Sec. III we use this theory to show that NIO can be
observed for systems with a stable node. General properties
of these NIO such as their frequency and quality and the fun-
damental reason for their origin are studied in Sec. IV. The
existence of these new types of NIO are verified by means of
stochastic simulations of three simple chemical systems in-
volving the interaction of two species in Sec. V. Therein we
also study the relationship between the quality of the NIO and
the distance from the node-focus borderline in phase space,
as well as the robustness of the linear-noise approximation re-
sults for small molecule numbers. In Sec. VI we show that in
some cases, the quality of stable node NIO improves dramat-
ically with the number of interacting species thus lending ev-
idence of their possible importance in large biochemical net-
works. In Sec. VII we show that external noise generates sta-
ble node NIO with properties differing from those produced
by internal noise. Finally, we conclude with a discussion in
Sec. VIII.

II. DESCRIPTION OF NIO USING THE LINEAR-NOISE
APPROXIMATION

A. Preliminaries

Consider a general reaction system containing N distinct
chemical species which react according to R distinct reactions
in a compartment of volume �. A particular reaction j can be
written in the general form,

N∑
i=1

sijXi

kj−→
N∑

i=1

rijXi, (1)

where the sij and rij are the stoichiometric coefficients. Ac-
cording to this formulation, if species Xi is not involved in
reaction j as a reactant (product) then sij (rij) is simply set to
zero.

Assuming well-mixed conditions, the state of the system
at any time t is completely described by the vector of the
number of molecules of each species, �n = (n1, n2, . . . , nN ).
At random times, one of the R reactions (say reaction j) oc-
curs somewhere in the volume � and the state vector changes

from some (n1, n2, . . . , nN) to (n1 + S1j, n2 + S2j, . . . , nN + SNj)
where Sij = rij − sij. Realizations of this stochastic process
can be obtained by the stochastic simulation algorithm. Alter-
natively, the statistical properties of the stochastic process are
completely described by the chemical master equation:15, 21

∂P (�n, t)

∂t
= �

R∑
j=1

(
N∏

i=1

E
−Sij

i − 1

)
f̂j (�n,�) P (�n, t), (2)

where P (�n, t) is the probability of the system being in state �n
at time t, dt�f̂j (�n,�) is the probability that a single j th re-
action occurs in the next time interval [t + dt) and Ex

i is a step
operator whose action on some function of ni is to change it to
a function of ni + x.15 It has been shown using combinatorial
arguments15 that the microscopic rate function f̂j (�n,�) has
the general form,

f̂j (�n,�) = kj

N∏
z=1

�−szj
nz!

(nz − szj )!
. (3)

By the Wiener-Khinchin theorem,22 the one-sided power
spectrum of the fluctuations in the number of molecules of
species i at stationary state is given by the Fourier trans-
form of the autocorrelation of the number fluctuations in this
species,

Si(ω) = 1

π

∫ ∞

−∞
e−iωτ 〈[ni(t) − 〈ni〉ss][ni(t + τ )−〈ni〉ss]〉dτ,

(4)
where the angled brackets denote the statistical average, t is
any time for which steady-state conditions have been achieved
and 〈ni〉ss is the steady-state number of molecules of species i.
A power spectrum peak at some frequency, ω = ω̂ (the peak
frequency), indicates the presence of oscillations in the num-
ber of molecules at this particular frequency.

The problem with the determination of the power spec-
trum lies in the fact that one cannot generally derive a closed
form equation for the autocorrelation (and more generally for
the moments) using the chemical master equation and hence
an approximation method is needed.

B. The linear-noise approximation

One means to circumvent this inherent analytical in-
tractability involves expanding the master equation as a se-
ries in powers of the inverse square root of the compartment
volume, a technique popularly referred to as the system-size
expansion.15

To lowest order, i.e., in the limit of large volumes, it is
found that the time-evolution equations for the mean con-
centrations predicted by the chemical master equation are the
same as the conventional rate equations,

d

dt
�φ = S �f ( �φ), (5)

where �φ = 〈�n〉/� is the mean concentration vector,
S is the stoichiometric matrix with elements Sij and
�f = lim�→∞ �̂f (〈�n〉,�). The fluctuations about the mean

concentrations are given by a linear stochastic differential
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equation,

d�ξ (t) = J�ξ (t) dt + B d �W (t), (6)

where �ξ (t) = �1/2( �n(t)
�

− �φ) and d �W (t) is an N-dimensional
Wiener process. The matrices J and D = BBT are the Jaco-
bian and diffusion matrices, respectively, which can be con-
structed directly from the rate equations and from the stoi-
chiometric matrix; their elements are given by23

Jij = ∂

∂φj

R∑
r=1

Sirfr , (7)

Dij =
R∑

r=1

SirSjrfr . (8)

Equations (5) and (6) constitute the linear-noise approxi-
mation: a continuous stochastic approximation of the chemi-
cal master equation, Eq. (2), which is valid in the large volume
limit.

The utility of this approximation lies in the fact that the
linearity of Eq. (6) enables one to write down a closed form
solution for the autocorrelation function, 〈ξ i(t)ξ i(t + τ )〉 in
terms of the elements of the Jacobian and diffusion matri-
ces. The quantity �〈ξ i(t)ξ i(t + τ )〉 is the linear-noise approx-
imation estimate of the correlator 〈[ni(t) − 〈ni〉ss][ni(t + τ )
− 〈ni〉ss]〉 which appears in the spectrum definition, Eq. (4).
The result is an approximate closed-form equation for the
power spectrum of the number fluctuations22

Si(ω) = �

π

[
[−J + Iiω]−1D[(−J)T − Iiω]−1

]
ii

. (9)

III. A CLASSIFICATION OF NIO
FOR TWO SPECIES SYSTEMS

In this section we restrict ourselves to chemical reaction
schemes involving two species and use the linear-noise ap-
proximation result of Sec. II to explore the intimate relation-
ship between the existence of NIO and the type of steady state
(stable node or stable focus) in the deterministic equations.

For systems with only two interacting species, the resul-
tant functional form of the spectrum equation, Eq. (9), for
species Xi is

Si(ω) = �

π

αi(J, D) + βi(D) ω2

p(J) + q(J) ω2 + ω4
, (10)

where the parameteric dependencies on the Jacobian and dif-
fusion matrices are explicitly shown. In particular, the func-
tions p and q are equal to λ2

1λ
2
2 and λ2

1 + λ2
2, respectively,

where the λ’s are the eigenvalues of the Jacobian matrix,
J. For a stable node, the eigenvalues are real and negative
while for a stable focus, the eigenvalues are a complex pair,
λ1,2 = −μ ± iω̃ where both μ and ω̃ are positive real num-
bers. Hence it follows that generally p ∈ R>0 and q ∈ R. The
parameter β i = Dii and hence by Eq. (8) one can deduce that
βi ∈ R>0. Lastly, the parameter αi has to be a positive real-
valued number since αi = (π /�)pSi(0).

(a) (b)

FIG. 1. Plots of the spectrum (11) along with the sub-spectra (12) show-
ing the two possible ways in which a peak in the power spectrum can arise:
(a) The parameters p and q are such that both sub-spectra have a peak
(p = 1, q = −1) and a peak in Si(ω) is guaranteed; (b) The parameters p
and q are such that only the sub-spectrum S

β
i has a peak (p = 5, q = 1), but

the magnitude of β i is sufficiently large that a peak exists in Si(ω).

We now decompose the spectrum Eq. (10) for a single
species into two sub-spectra, Sα

i (ω) and S
β

i (ω):

Si(ω) = �

π

(
Sα

i (ω) + S
β

i (ω)
)
, (11)

Sα
i (ω) = αi

p + q ω2 + ω4
, S

β

i (ω) = βi ω
2

p + q ω2 + ω4
. (12)

It is easy to show that Sα
i (ω) has a peak if q < 0 and that

S
β

i (ω) always has a peak. Hence one can classify NIOs into
two distinct cases (see Fig. 1 for an illustration):

� Stability dominated NIO: The parameter q < 0 and
hence both sub-spectra have a peak, guaranteeing a
peak in Si(ω) (see Appendix A).

� Noise dependent NIO: The parameter q ≥ 0 such that
only the sub-spectrum S

β

i has a peak, but the magni-
tude of β i relative to αi is sufficiently large that a peak
exists in Si(ω). The exact criterion in this case is β i >

αiq/p (see Appendix A).

The first case is termed stability dominated NIO because
the existence of the NIO solely rests on the sign of q which is
a function of the eigenvalues of the Jacobian and hence of the
type of steady state. The second case is termed noise depen-
dent NIO because β i being a function of the diffusion matrix
is a measure of the strength of the noise and this needs to be
larger than a critical threshold for NIO to exist. Note the im-
portant implication that for the stability dominated NIO case,
NIO present in one species dictates that NIO are present in the
other species, however, this is not necessarily true for noise
dependent NIO since the αi and β i are species dependent.

Consider the case of stability dominated NIO. If we have
a stable focus then the eigenvalues can be denoted as λ1,2

= −μ ± iω̃ where both μ and ω̃ are positive real numbers.
The condition q < 0 is then fulfilled if μ < ω̃, in other words
if the time scale of decay of the amplitude of the damped os-
cillations in the deterministic model is larger than the period
of the same oscillations.
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Now we consider the case of noise dependent NIO. The
condition q ≥ 0 is satisfied for stable foci with μ ≥ ω̃ and
also for stable nodes, i.e., those steady states characterized by
two real and negative eigenvalues. Hence these type of steady
states can also be expected to give rise to NIO, this condi-
tion being dictated by the magnitude of the elements of the
diffusion matrix.

Hence in summary it is clear that not only stable foci can
give rise to NIO but that stable nodes can do as well. In the rest
of this article we focus on studying the existence and proper-
ties of the latter type of NIO, which we refer to as stable node
NIO.

IV. GENERAL PROPERTIES OF STABLE NODE NIO

A. Frequency of the oscillations

While one would expect that the frequency of stable foci
NIO is close to the frequency of damped oscillations in the
deterministic model, it is not at all clear what should be the
frequency of stable node NIO. A simple expression for this
can be deduced by differentiating Si(ω) in Eq. (10), setting
the resulting equation to zero and solving for the roots of the
quartic in ω. Using the fact that q > 0 for a node, one finds
that the only positive (and hence admissible) solution for the
peak frequency of NIO in species i is

ω̂i =
(

[p(p + q2xi(xi − 1))]1/2 − p

qxi

)1/2

, (13)

where xi = β ip/αiq. Note that the criterion for a peak for a
noise dependent NIO (see Sec. III) implies xi > 1. From the
above equation we can see that ω̂i varies between 0 and a
maximum value of p1/4 = √

λ1λ2. Hence the period of NIO
in the node case is bounded from below by the geometric

mean of the two decay time scales of non-oscillatory tran-
sients in the deterministic model.

Furthermore, one can deduce that the peak frequency in-
creases monotonically with xi meaning that this frequency
increases with the fraction of power contributed by the sub-
spectrum S

β

i (ω) to the total power spectrum Si(ω). It is also
easy to show that the maximum peak frequency value of p1/4

for Si(ω) is equal to the peak frequency of the S
β

i (ω) sub-
spectrum. These observations are intuitively clear since for a
noise dependent NIO (of which a stable node NIO is a special
case) only the S

β

i (ω) has a peak and hence its size relative to
the peakless Sα

i (ω) sub-spectrum crucially dictates the spec-
tral properties of the NIO.

B. Quality of the oscillations

Next we discuss the quality of the stable node NIO. A
typical measure of oscillation quality is the Q-factor, defined
as

Q = ω̂

�ω
, (14)

where the bandwidth �ω is the difference of the two fre-
quencies at which the power takes its half-maximum value.
To make connection with later developments, we denote this
conventional Q-factor as Q50%.

The Q50% of the spectrum Si(ω) can be written as a func-
tion of two parameters, Rε = λ1/λ2 which is the ratio of the
two real eigenvalues, and RHαβ which is the relative weight-
ing of the α and β subspectra, as quantified by the ratio of
their maximum heights (see Fig. 2(a) for a contour plot). This
choice of parameters is convenient because Rε is a parameter
which is dictated solely by deterministic stability considera-
tions whereas RHαβ is a parameter which is determined by the
properties of the internal noise. Note that Rε is specified such

(a) (b)

FIG. 2. (a) The quality of stable node oscillations, as described by the conventional quality factor, Q50%. Contours of Q50% (blue) are shown as a function of
the two parameters Rε and RHαβ (see text for definitions). The thick gray line demarks the parameter regions in which NIO are/are not observed and the thick
dark blue line demarks the regions in which the peak is strong enough to obtain its half-maximum value on the low frequency side of the peak (i.e., Q50% is
defined). It is clear that Q50% is not a suitable measure for describing the quality of weak stable node NIO as it is only defined for a small region of the full
parameter space in which NIO is observed. (b) Illustration of an example noisy evolution of the fluctuation variables ξ1, ξ2 in a system with degenerate node
stability, i.e., Rε = 1, corresponding to the maximum Q50% case. Red curves are deterministic trajectories, the blue curve is the stochastic trajectory, and the
black line is the single linearly independent eigenvector of the Jacobian.
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that |λ1| < |λ2|. The quality of the NIO increases with increas-
ing Rε and with decreasing RHαβ and reaches a maximum of
Q50% = 1/2 when Rε = 1 and RHαβ = 0.

The first observation can be explained as follows. As Rε

approaches its maximum of one, it approaches the case of a
stable degenerate node. Such a steady state lies at the node-
focus borderline and is characterized in phase space by de-
terministic trajectories which approach the origin tangent to
the single linearly independent eigenvector;24 the determinis-
tic trajectories in this case display a degree of curvature, in a
sense trying to wind around in a spiral but not quite making it.
The stochastic trajectories will follow to some extent the cur-
vature of the deterministic trajectories and for some cases, the
noise will cause the trajectory to close on itself hence leading
to a noise-induced oscillation (see Fig. 2(b) for an illustra-
tion). Hence as one approaches the node-focus borderline, i.e.,
as Rε → 1, one expects the quality of NIO to increase since
the stochastic trajectories can sample increasingly curved de-
terministic trajectories. Note that similar arguments have been
previously used to explain how the existence and properties of
stable focus NIO are related to the curvature of the focus tra-
jectories (see, for example, Ref. 25).

The observation that the quality increases with decreas-
ing RHαβ is intuitively obvious when one considers that out
of the two sub-spectra composing the total spectrum, only
the S

β

i (ω) sub-spectrum has a peak, and hence its increased
contribution to the total spectrum necessarily improves the
quality. The same argument hints that that the maximum
Q50% = 1/2 for the total spectrum Si(ω) equals the Q50% of
the S

β

i (ω) sub-spectrum. This is indeed the case. The latter is
given by the remarkably simple expression,

Q50%
Sβ =

√
Rε

(Rε + 1)
, (15)

which maximizes at a value of 1/2 when the eigenvalues be-
come equal.

In Fig. 2(a), it is observed that there is a large region
of parameter space for which NIO exist (this is the area be-
tween the thick blue and gray lines in the figure), but the
shape of the power spectrum is such that it does not fall to
its half-maximum value on the low frequency side of the peak
and hence a Q50% cannot be defined. To allow a measure of
quality over a greater range of the parameter space, we intro-
duce a more general version of the conventional Q-factor in
Eq. (14): Qf % = ω̂/�ωf %, where f ∈ (0, 100) and �ωf %

is the difference of the frequencies at which the spectrum
takes f % of its maximum value. We choose to use the Q-
factor Q99% in order to describe the vast majority of the region
which cannot be captured by the Q50% measure.

This measure, while more complicated analytically than
Q50%, is also a function of only Rε for S

β

i (ω) and a function
of Rε and RHαβ for Si(ω), and shows very similar behaviour to
the Q50% measure over the parameter regions in which Q50%

is defined (compare the blue contours in Figs. 2(a) and 3).
It can be shown that the maximum possible value of Q99%

is 3
√

11/2 
 5. The Q99% measure only uses spectrum in-
formation very close to the peak frequency; it is a very lo-
calized measure which directly captures the high curvature
at the peak. However, we note that the measure successfully

FIG. 3. The quality of stable node oscillations, as described by Q99%. Con-
tours of Q99% (blue) are shown as a function of the two parameters Rε and
RHαβ . Green filled contours show the variation of the amplification factor
Si (ω̂)
Si (0) , with selected contour values shown. The thick gray line demarks the
parameter regions in which NIO are/are not observed.

captures the behaviour of the spectrum over wider frequency
ranges. As an example, a large amplification value Si (ω̂)

Si (0) (ratio
of the power at the peak frequency to the power at zero fre-
quency) has been highlighted as being an important parame-
ter in describing pronounced stochastic oscillations.16 In Fig.
3 this amplification factor is also shown (lighter green con-
tours represent higher amplification), and it is observed that
it is not possible to obtain a very high Q99% value without an
associated high amplification value. Further validation of the
Q99% factor as a reliable measure of stable node quality can
be found in Appendix B.

We note that it is difficult to further develop the general
theory of stable node NIO for biochemical systems with in-
ternal noise because generally the J and D matrices are both
dependent on the rate constants in the system as well as the
steady-state values of concentrations of the rate equations (see
Eqs. (7) and (8)). This places important constraints on the val-
ues that can be taken by the parameters αi(J, D) and βi(D) and
hence constraints on the region of parameter space where sta-
ble node NIO exist. Hence the rest of this article is devoted
to understanding stable node NIO in the context of specific
biochemical systems.

V. TWO SPECIES BIOCHEMICAL SYSTEMS
WITH STABLE NODE NIO

In this section we use the linear-noise approximation to
study the relationship between the type of steady state and
the existence of NIO for three biochemical systems involving
the interaction of two species. These numerical classifications
are listed in Table I. For selected points in parameter space
where stable node NIO are predicted to exist, we use the pe-
riodogram method to numerically estimate the power spectra
from stochastic simulations using the stochastic simulation al-
gorithm (see Appendix C) and compare these with the theo-
retical spectra predicted by the linear-noise approximation. In
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TABLE I. Existence of NIO and linear stability classifications as used in
Figures 4, 7, and 11.

Classification

Numerical ID NIO Stability of steady state

0 None Unstable
1 Species A Node
2 Species A Focus
3 Species B Node
4 Species B Focus
5 A and B Node
6 A and B Focus
7 None Node
8 None Focus

all cases we find good agreement with the two spectra, and
hence verify that a peak in the power spectrum of number
fluctuations does indeed exist for certain stable node steady
states. We shall also investigate the relationship between the
Q99% quality factor of stable NIO and the distance of the node
from the node-focus borderline in phase space, as well as the
robustness of the linear-noise approximation predictions for
small molecule numbers.

A. Example 1: The Brusselator

The Brusselator is the only known chemical scheme in-
volving just two interacting species and whose deterministic
equations admit limit cycle oscillations,26–29

� k0−→ A, 2A + B
k1−→ 3A, A

k2−→ B, A
k3−→ �. (16)

The autocatalytic step 2A + B → 3A is not an elementary
reaction but rather an effective reaction composed of simpler
reaction steps (more on this later). The possible biological rel-
evance of this reaction scheme stems from the fact that the
autocatalytic step can be produced by a series of enzyme-
catalyzed reactions.28

We start by defining two dimensionless parameters

�1 = k2
0 k1

k3
3

, �2 = k2

k3
. (17)

The stoichiometric matrix and the macroscopic rate function
vector for this system are

S =
(

1 1 −1 −1
0 −1 1 0

)
, (18)

�f = {k0, k1[A]2[B], k2[A], k3[A]}T , (19)

where [A] and [B] are the macroscopic concentrations of
species A and B. The rate equations are then given by
{∂t [A], ∂t [B]}T = S �f . Linear stability analysis of these equa-
tions reveals that the regions in �1-�2 space which character-
ize a stable node and a stable focus respectively are

�1 > �2 − 1, 1 + (�1 − �2)2 − 2(�1 + �2) ≥ 0, (20)

�1 > �2 − 1, 1 + (�1 − �2)2 − 2(�1 + �2) < 0. (21)

Now we use the linear-noise approximation to deduce
the conditions for the existence of NIO. Substituting the
stoichiometric matrix and rate function vector into Eqs. (7)
and (8) we obtain the Jacobian and diffusion matrices. Fi-
nally substituting the latter in Eq. (9) we obtain equations
for S1(ω), the power spectrum of species A, and for S2(ω),
the power spectrum of species B. The latter equations are of
the form given by Eq. (10) with global parameters p = k4

3�
2
1,

q = k2
3(1 + (�1 − �2)2 − 2�2) and species-specific parame-

ters given by

α1 = 2k0k
2
3�

2
1, (22)

β1 = 2k0(1 + �2), (23)

α2 = 2k0k
2
3�2(1 + �2), (24)

β2 = 2k0�2. (25)

Differentiating the expressions for S1(ω) and S2(ω) with re-
spect to ω, one finds the conditions for the peak in the power
spectrum and hence for the existence of NIO in the number
fluctuations of species A and of species B, respectively, are

(�1 − �2)2 − 3�2 < 0, (26)

�2(1 + 2�1 + �2 − (�1 − �2)2) − 1 > 0. (27)

In Fig. 4(a) we plot in �1-�2 space the inequalities
Eqs. (20) and (21) which determine the type of steady state
(solid black line), together with the inequalities Eqs. (26) and
(27) which determine the existence of NIO (red and blue
lines). The intersection of the regions defined by these in-
equalities are numbered according to the classification set
forth in Table I. A large region of the space, i.e., region 6,
exhibits NIO in both species and the steady state is a focus.
This is the conventionally studied case. However, one can also
see that there is a region, namely region 1, wherein the steady
state is a node but there are NIO for species A. Interestingly
there is no region where there are NIO in species B and the
steady state is a node. We shall return to this point in Sec. VII.

In Fig. 4(b) we plot the Q99% quality factor for region 1
in Fig. 4(a). This shows that, broadly speaking, the quality of
the stable node NIO increases with decreasing distance from
the node-focus boundary. This relationship is only approxi-
mate, however, the reason being that the quality is also sig-
nificantly influenced by the properties of internal noise which
are not single handedly captured by the Jacobian of the rate
equations. In Fig. 5 we show the spectra obtained from the
linear-noise approximation and from stochastic simulations
for the three points marked by white circles in Fig. 4(b). A
comparison of cases (a) and (b) in this figure shows the large
difference in quality factor even though the location of the
nodes in �1-�2 space puts both of them approximately the
same distance from the node-focus border (see Fig. 4(b)). In
all cases we find good agreement between theory and simula-
tions confirming the existence of stable node NIO.
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(a) (b)

FIG. 4. (a) NIO existence and stability classification for the Brusselator in �1-�2 space. Number classifications are as in Table I. Red (blue) circles are used to
emphasize the existence of NIO in the number fluctuations of species A (B); the dotted region corresponds to the stable focus regime; white regions correspond
to the stable node regimes and the gray region is where the fixed point is unstable (limit cycle). (b) Contour plot of the variation of the Q factor Q99% with �1,
�2 in the stable node regime ( 1© in (a)). The black contour lines, labelled with red numbers, represent Q99% values from 0.5 to 4.5 in 0.5 increments. White
circles indicated on the Q99% (�1, �2) surface correspond to the three power spectra in Figure 5.

1. Finite volume effects and elementary reaction
versions of the Brusselator

We used stochastic simulations to explore two further
questions: (i) given that the linear-noise approximation theory
is valid in the limit of large volumes/large molecule numbers,
how well do its results for stable node NIO hold when one has
small volume/small molecule numbers? (ii) the Brusselator is
composed of one trimolecular reaction, a reaction which in
practice occurs very rarely due to the unlikely event of three
colliding molecules30 (though important in atom and diatom
recombination and collision-induced reactions30–32). Thus in
many instances such a reaction approximately models a set of
underlying (fast) elementary (unimolecular and bimolecular)
reactions. Is it the case that stable node NIO can also be pre-
dicted from elementary reaction models of the Brusselator?

The first question is important since molecule numbers
of many species inside cells are quite small, typically in the
range of few tens to few thousands.8, 9 In Fig. 6 we show the

results of stochastic simulations investigating how the power
spectra for the parameter sets (a) and (b) used in Fig. 5 change
with decreasing volume and a corresponding decrease in the
mean molecule numbers of species A. The linear-noise ap-
proximation result is shown as a solid line. Note that in both
cases the linear-noise theory is accurate for mean molecule
numbers of the order of a thousand molecules. For parame-
ter set (b) the theory remains remarkably accurate for mean
molecule numbers less than that of a single molecule while
for parameter set (a) considerable deviations from the the-
ory are evident for mean molecule numbers below a hundred
molecules. In particular one observes a clear deterioration of
quality with decreasing mean molecule numbers. These re-
sults show that stable node NIO can exist for molecule num-
bers typical of those inside cells and suggest that the quality of
the spectra predicted by the linear-noise approximation pro-
vides an upper bound for the quality of spectra at finite mean
molecule numbers (finite volumes).

(a)Λ1 = 0.04,Λ2 = 0.6:

Q99% = 4.38.

(b)Λ1 = 0.35, Λ2 = 0.15:

Q99% = 2.63

(c)Λ1 = 0.04, Λ2 = 0.04:

Q99% = 1.06

FIG. 5. Power spectrum plots of the number fluctuations in species A in the Brusselator reaction system for three different sets of dimensionless parameters
for which a stable node steady state exists. Solid lines show the analytical spectrum from the linear-noise approximation; open circles show the numer-
ical spectrum calculated by averaging the periodograms of 2500 realizations of the stochastic simulation algorithm. The constants are � = 1 × 10−15l,
k0 = 1 × 10−4 M s−1, and k3 = 100 s−1. In addition k1 and k2 take values of 4 × 1012 M−2 s−1 and 60 s−1 for case (a), 3.5 × 1013 M−2 s−1 and 15 s−1 for
case (b) and 4 × 1012 M−2 s−1 and 4 s−1 for case (c). Note that the units for concentration, time and frequency ω are Molar (M), second (s), and radians per
second (rad s−1), respectively.
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(a) (b)

FIG. 6. Normalized power spectrum plots of the number fluctuations in species A in the Brusselator reaction system for parameter sets (a) and (b) in Fig. 5, as a
function of compartment volume �. Solid lines show the analytical spectrum (normalized by the total power) from the linear-noise approximation; open circles
show the normalized numerical spectrum for each reaction volume, calculated by averaging the periodograms of 2500 realizations of the stochastic simulation
algorithm and then normalizing by the total power (sum of all spectrum values × frequency resolution). In the figure legends, compartment volumes � are
shown in units of litres, 〈nA〉 is the steady-state mean number of molecules of A and Q50% is the quality factor calculated from the numerical power spectrum
(see Appendix D for details). The unit for frequency ω is rad s−1.

The importance of the second question stems from the
fact that the linear-noise approximation can generally give
different results for effective models and their elementary
versions33, 34 and hence there exists the possibility that the
stable node NIO is an artifact of modeling a trimolecular re-
action. We simulated an elementary reaction version of the
Brusselator put forward by Cook et al.35 where the trimolecu-
lar reaction 2A + B → 3A is broken down into the pair of bi-
molecular reactions: A + A ⇀↽ X,X + B → X + A (this is
labeled Scheme III in the aforementioned article). The sys-
tem displayed stable node NIO with similar quality (data not
shown) which hence verifies that such oscillations are not an
artifact of the non-elementary reaction in the Brusselator. Fur-
ther support to this conjecture will be evident in the next sub-
sections where we study two systems composed of purely ele-
mentary reactions and in both cases we find stable node NIO.

B. Example 2: A simpler autocatalytic reaction

We now consider another autocatalytic reaction scheme
in which two distinct species are input to a reaction volume
wherein they are involved in a bimolecular autocatalytic reac-
tion, before the product species is exported from the reaction
volume,

� k0−→ A, � k1−→ B, A + B
k2−→ 2B, B

k3−→ �. (28)

This reaction is simpler than the Brusselator and indeed
more realistic in the sense that it is composed of at most bi-
molecular (and hence elementary) reactions. It is also the case
that such autocatalytic reactions appear in various biological
contexts such as the autocatalytic conversion of normal prion
protein to its pathogenic form,36 and the activation of MPF
(maturation promoting factor) complex in the cell division
cycle.37

Its analysis proceeds as for the previous example. We de-
fine two non-dimensional parameters,

�1 = k1

k0
, �2 = k0k2

k2
3

. (29)

The stoichiometric matrix and the macroscopic rate function
vector for this system are

S =
(

1 0 −1 0
0 1 1 −1

)
, (30)

�f = {k0, k1, k2[A][B], k3[B]}T , (31)

from which we obtain the deterministic rate equations
{∂t [A], ∂t [B]}T = S �f . Note that in contrast with the Brus-
selator, this system’s deterministic rate equations do not ex-
hibit limit cycle behaviour. Linear stability analysis of the rate
equations shows that its steady state is a node if the condition

(�1 + (1 + �1)2�2)2 − 4(1 + �1)3�2 ≥ 0, (32)

is satisfied; otherwise the steady state is a focus. The linear-
noise analysis proceeds as before, namely one uses Eqs. (7)
and (8) to construct the Jacobian and diffusion matrices from
S and �f and then substitutes these into Eq. (9) to obtain the
spectra equations: S1(ω) for species A, and S2(ω), for species
B. The latter equations are of the form given by Eq. (10)
with global parameters p = k4

3(1 + �1)2�2
2, q = k2

3(�2
1 −

2(1 + �1)2�2 + (1 + �1)4�2
2)/(1 + �1)2 and species-

specific parameters given by

α1 = 2k0k
2
3, (33)

β1 = 2k0, (34)

α2 = 2k0k
2
3�

2
2(1 + �1)3, (35)

β2 = 2k0(1 + �1). (36)
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(a) (b)

FIG. 7. (a) NIO existence and stability classification for a simple autocatalytic reaction system in �1-�2 space. Number classifications are as in Table I. Red
(blue) circles are used to emphasize the existence of a peak in the power spectrum of species A (B); the dotted region corresponds to the stable focus regime;
white regions correspond to the stable node regimes. (b) Contour plot of the variation of the Q factor Q99% with �1, �2 in the stable node regimes ( 1© and 3© in
(a)). The black contour lines, labelled with red (for species A) and blue numbers (for species B), represent Q99% from 0.5 to 4.5 in 0.5 increments. Open circles
indicated on the Q99% (�1, �2) surface correspond to the � values of the five power spectra in Figs. 8 and 9.

Maxima of the power spectra at non-zero frequencies (and
hence NIO) for species A and B, respectively, occur when the
conditions:

2(1 + �1)2�2 − �2
1 > 0, (37)

1 + 2�1 + (1 + �1)2�2(2 − (1 + �1)2�2) > 0, (38)

are satisfied. From the inequalities Eqs. (32), (37), and (38)
we obtain the complete phase space plot of the system’s de-
terministic and NIO behaviour (see Fig. 7(a)). Note that un-
like for the Brusselator, stable node NIO are possible for both
species, i.e., regions 1 and 3. However note that it is not pos-
sible to have simultaneously stable node NIO in both species;
this situation is only achievable for stable focus NIO (re-
gion 6, Figure 7(a)). In Fig. 7(b) we show the Q99% quality
measure of stable node NIO in both species (hues of red in-
dicate the strength of NIO in A and hues of blue indicate the
strength of NIO in B). Note that as for the case of the Brusse-
lator, there is a degree of correlation between the quality and
the distance from the node-focus borderline in phase space; it
is also found that the quality of NIO in species B are better
than those in species A.

We again present the power spectra from the linear-noise
approximation alongside simulation results for the simple au-
tocatalytic system for selected parameter sets (see Figs. 8 and
9). The locations of these parameter sets in phase space are
shown as white circles in Fig. 7(b). In all cases the linear-
noise approximation and simulation results agree very well,
confirming the existence of stable node NIO in a chemical
system with no limit cycle behaviour. It is also noteworthy
that the Q99% measure corresponds well with the more visu-
ally pronounced, sharp peaks in the power spectra which indi-
cates its general usefulness in quantifying the quality of NIO
of all types.

As mentioned in Sec. IV, the maximum Q99% of a stable
node which can be observed in a two species system is ≈5.
The simple autocatalytic reaction can give rise to NIO with
quality approaching this maximum (see Fig. 9(a)). However,

stochastic trajectories of these near-maximum quality NIO,
as produced by the stochastic simulation algorithm, give rise
to oscillations in the time series data which are generally not
easily discernible by the naked eye. An example of the most
visually observable NIO that can be expected using the pa-
rameters for the high and low Q cases of Figs. 9(a) and 9(c)
are presented in Fig. 10. An approximation of the visually
observable underlying oscillation is represented by a running
time average of the data (dotted line). As well as aiding the
reader in visualising the shape and regularity of the NIO, we
note that this running time average provides a simple mea-
sure of the proportion of the variance in the data which is
attributable to the visually discernible oscillatory behaviour.
For the high Q and low Q parameters, the oscillation obtained
from time averaging accounts for 54% and 22% of the vari-
ance of the non-time averaged data respectively. This again
supports the quality measure used to describe the weak NIO
in this article.

(a)Λ1 = 2.5 × 10−2,Λ2 = 4:

Q99% = 3.21

(b)Λ1 = 2, Λ2 = 1.5:

Q99% = 1.43

FIG. 8. Power spectrum plots of number fluctuations in species A in the auto-
catalysis reaction system for two different sets of dimensionless parameters
for which a stable node steady state exists. Solid lines show the analytical
spectrum from the linear-noise approximation; open circles show the numer-
ical spectrum calculated by averaging the periodograms of 5000 realizations
of the stochastic simulation algorithm. The parameters common to both cases
are: � = 1 × 10−15l, k0 = 1 × 10−6 M s−1, k3 = 10 s−1. The case specific
rate constants are: (a) k1 = 2.5 × 10−8 M s−1, k2 = 4 × 108 M−1 s−1 and
(b) k1 = 2 × 10−6 M s−1, k2 = 1.5 × 108 M−1 s−1. The unit for frequency
ω is rad s−1.
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(a)Λ1 = 0.25, Λ2 = 7.5 × 10−3:

Q99% = 4.55

(b)Λ1 = 2.5,Λ2 = 1 × 10−2:

Q99% = 2.04

(c)Λ1 = 20, Λ2 = 2 × 10−3:

Q99% = 1.02

FIG. 9. Power spectrum plots of number fluctuations in species B in the autocatalysis reaction system for three different sets of dimensionless parameters for
which a stable node steady state exists. Solid lines show the analytical spectrum from the linear-noise approximation; open circles show the numerical spec-
trum calculated by averaging the periodograms of 5000 realizations of the stochastic simulation algorithm. The parameters common to both cases are:
� = 1 × 10−15l, k0 = 1 × 10−6 M s−1, k3 = 100 s−1. The case specific rate constants are: (a) k1 = 2.5 × 10−7 M s−1, k2 = 7.5 × 107 M−1 s−1;
(b) k1 = 2.5 × 10−6 M s−1, k2 = 1 × 108 M−1 s−1; (c) k1 = 2 × 10−5 M s−1, k2 = 2 × 107 M−1 s−1. The unit for frequency ω is rad s−1.

C. Example 3: Trimerization reaction

We now study a simple reaction scheme which describes
a trimerization process,

� k0−→ A, 2A
k1−→ B, A + B

k2−→ �. (39)

In this scheme the monomer A is produced, binds to another
A to form the dimer B, and finally both monomer and dimer
bind to form a trimer. The trimer is not explicitly represented
in this two-species model. Independent of whether it accumu-
lates, decays, or simply exits from the reaction volume, no
effect is observed on the behaviour of A or B since the last re-
action step is irreversible. This simple reaction is of relevance
to various biological situations such as the trimerization of
receptor proteins and of heat-shock factors.38, 39

As we shall see the behaviour of this system can be quan-
tified by means of a single non-dimensional parameter

� = k1

k2
. (40)

As before from the stoichiometric and macroscopic rate
function vector one obtains both the type of steady state and
the linear-noise approximation. We here just state the relevant
results. The condition for a stable node is

1 + �(25� − 14) ≥ 0. (41)

A stable focus is obtained otherwise; similar to the simple au-
tocatalysis scheme previously studied, there is no Hopf bifur-
cation in the system and hence no deterministic oscillations
are possible. The linear-noise analysis gives power spectra of
the form given by Eq. (10) with global parameters p = 4k2

0k
2
2,

q = k0k2(1 + �(25� − 2))/3� and species-specific parame-
ters given by

α1 = 4k2
0k2/3�, (42)

β1 = 8k0/3, (43)

α2 = 16k2
0k2�/3, (44)

FIG. 10. Time series plots of the number of B molecules in the autocatalysis reaction system for (a) the kinetic parameters of the high Q case in Fig. 9(a);
(b) the kinetic parameters of the low Q case in Fig. 9(c). For each case 100 realizations of the stochastic simulation algorithm were obtained and the time
series with the most visually observable oscillation is here shown. To allow fair comparison, volumes were chosen in each case to give a mean number of B
molecules 〈nB〉 = 500. Based on the characteristic period T found from the peak frequencies of the linear noise approximation spectra in Figs. 9(a) and 9(c),
four period-lengths of data were recorded at time intervals �t = 1

50 T . In each figure, the solid line is the simulated data and the dotted line is a running average
of the data over 13 points (approximately one quarter of a period).
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(a) (b)

FIG. 11. (a) NIO existence and stability classification for the trimerization system with the parameter �. Number classifications are as in Table I. Blue circles
are used to emphasise the existence of a peak in the power spectrum of variable B; the dotted region corresponds to the stable focus regime whereas white
regions correspond to the stable node regimes. (b) Variation of the Q factor Q99% with � (regions 3© and 4© in (a)). Open circles indicated on the Q99% (�)
curve correspond to the � values of the three power spectra in Fig. 12.

β2 = 2k0/3. (45)

From these we deduce that the conditions for the existence of
NIO in species A and B are

(� − 1)2 < 0, (46)

1 + 4� − 50�2 > 0. (47)

Note that the first of these two conditions cannot be met
and hence there are no NIO in species A; however NIO is
possible for species B. Plotting the inequalities Eqs. (41)
and (47) we obtain the phase space diagram for the exis-
tence of species B NIO in stable node and focus regions (see
Fig. 11(a)). The theoretical quality factor of the stable node
and stable focus NIO (regions 3 and 4) are shown in
Fig. 11(b). The maximum quality of this extremely simple
system is limited (Q99% = 2.67) in comparison to the sim-
ple autocatalysis and Brusselator schemes. A comparison
of linear-noise approximation and simulation derived power

spectra at three � values (whose position in phase space is
marked by open circles in Fig. 11(b)) are shown in Fig. 12;
the spectra are in good agreement and as for previous cases
confirm the existence of stable node NIO. The simulations
also confirm that optimal quality is obtained in the stable node
regime, and not in the stable focus regime. This is intriguing
given that one would expect noise to generate the largest oscil-
lations by exciting the resonant frequencies of the damped os-
cillations in the focus regime; furthermore this clearly shows
that the quality is not always inversely proportional to the dis-
tance from the node-focus borderline.

VI. STABLE NODE NIO IN CASCADE CHEMICAL
REACTION SYSTEMS

As mentioned in Sec. II, the maximum Q99% of a stable
node which can be observed in a two species system is ≈5.
In Sec. III, we saw how both the Brusselator and the simpler
autocatalytic reaction can give rise to NIO with quality ap-
proaching this maximum (see Figs. 5(a) and 9(a)). However

(a)Λ = 0.005: Q99% = 1.26 (b)Λ = 0.053: Q99% = 2.67 (c)Λ = 0.13: Q99% = 1.55

FIG. 12. Power spectrum plots of number fluctuations in species B in the trimerization reaction system for three different sets of dimensionless parameters
for which a stable node steady state exists. Solid lines show the analytical spectrum from the linear-noise approximation; open circles show the numerical
spectrum calculated by averaging the periodograms of 2500 realizations of the stochastic simulation algorithm. The parameters common to both cases are: � = 1
× 10−15l, k0 = 1 × 10−6 M s−1, k2 = 1.204 × 108 M−1 s−1. The case specific rate constant is: (a) k1 = 6.022 × 105 M−1 s−1; (b) k1 = 6.339 × 106 M−1 s−1;
(c) k1 = 1.566 × 107 M−1 s−1. The unit for frequency ω is rad s−1.
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(a) (b)

FIG. 13. Normalized power spectrum plots of the number fluctuations in species A (a) and in species B (b) involved in the cascade Brusselator reaction system
illustrated in scheme (48) with N = 15. The parameters are �1 = 0.15 and �2 = 0.35, as defined in Eq. (17). For selected stages along the cascade reaction,
solid lines show the analytical spectrum from the linear-noise approximation (normalized by the total power) and open circles show the normalized numerical
spectrum calculated by averaging the periodograms of 750 realizations of the stochastic simulation algorithm and then normalizing by the total power (sum of
all spectrum values × frequency resolution). The inset shows a realization of a time series of the number of A/B molecules at the first stage (n = 1, red) and last
stage (n = 15, black) of the cascade reaction, as obtained from the stochastic simulation algorithm. The unit for frequency ω is rad s−1.

stochastic trajectories of these near-maximum quality NIO, as
produced by the stochastic simulation algorithm, give rise to
oscillations in the time series data which are not easily dis-
cernible by the naked eye. In other words, even though the
oscillation is present, the noise is so large that it masks the
former. In this section we show that for certain classes of
chemical systems, the quality of stable node NIO consider-
ably improves with the number of interacting species, eventu-
ally leading to pronounced oscillations in the time series data.

Consider the following reaction scheme:

� k0−→ A1,

2A1 + B1
k1−→ 3A1, A1

k2−→ B1,

A1
k3−→ A2,

2A2 + B2
k1−→ 3A2, A2

k2−→ B2,

A2
k3−→ A3,

......

2AN + BN
k1−→ 3AN, AN

k2−→ BN,

AN

k3−→ �. (48)

This describes a chain of N downstream-connected Brus-
selator modules, and was first introduced by Shibata40 (a
similar model has been studied by means of deterministic
rate equations by Tyson28) and further investigated by Ra-
maswamy and Sbalzarini.41

The cascade is composed of a chain of similar modules
connected by an irreversible reaction. Steady-state conditions
imply that the influx into a given module equals the outflux
from this module to the next. Hence we have the condition

k3[Ai]* = k0 for i ∈ {1, N}, where [Ai]* is the steady-state
concentration of species Ai. At all stages, the steady-state con-
centrations are the same, i.e., [Ai]* = [A1]*; [Bi]* = [B1]* for
all i. However, the dynamics of the fluctuations at each stage
are very different; for example, Ramaswamy and Sbalzarini
reported a downstream amplification of stable focus NIO.41

Here we investigate whether this process also leads to a down-
stream improvement of the quality of stable node NIO.

Figure 13 shows the variation in the normalized power
spectra (from the stochastic simulation algorithm and the
linear-noise approximation) of A and B molecule fluctuations
at different stages along a cascade chain of N = 15 Brusse-
lators. At every stage of the cascade, the eigenvalues of the
Jacobian of the deterministic rate equations describing this
system are −30 and −50 (in units of s−1) and hence the
steady state is a stable node. Note how the quality of the stable
node NIO improves as it is processed by successive stages,
finally leading to remarkably large NIO (insets). The agree-
ment between the spectra obtained from simulations and the
linear-noise approximation is generally good, although some
deviations can be discerned in the final stage. The drastic im-
provement in quality is evident for both species (see insets of
Fig. 13; in Fig. 14 we also show a plot of the quality of the
NIO in species A versus the cascade stage); this improvement
in NIO quality is particularly spectacular for species B since
in this case in the first stage there is not even a stable node
NIO and yet pronounced stable node NIO ensues at the final
stage. Hence it is clear by this example that certain systems
with more than 2 interacting species can lead to very high
quality stable node NIO.
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FIG. 14. Plot of the quality of the spectrum of the number fluctuations of
species A versus the stage of the cascade Brusselator reaction system. The
quality is calculated using the theoretical linear noise approximation spectra
shown in Fig. 13(a). Note that the quality of the NIO increases as the noisy
oscillatory signal makes its way downstream through the cascade.

Because each stage of the cascade is identical in the rate
constants, the dramatic increase in the NIO quality seen along
the cascade can be understood as a resonance resulting from
the action of a weak oscillator feeding back its output spec-
trum to itself, which therefore further excites the natural fre-
quency. There are many developments which could be made
to the model which are worthy of further investigation. In par-
ticular, it would be of interest to study the effect on NIO when
there is variability in the cascade modules, and also to look
at the effect of other forms of coupling, e.g., bi-directional
coupling between stages or coupling stage N to stage 1 and
forming a cyclical reaction system.

VII. EXTERNAL VERSUS INTERNAL NOISE INDUCED
STABLE NODE OSCILLATIONS

In our investigation of internal noise NIO in exemplary
biochemical systems, we observed two counter-intuitive prop-
erties: (i) for all of the reaction schemes, it was not possible to
have NIO in both species within the stable node region; (ii) for
the trimerization reaction, the maximum quality is attained at
a point in parameter space within the stable node region and
not the stable focus region. Since in Sec. III we established
that stable node NIO are of the noise dependent type, it is
a natural step to question whether the particular constraints
placed on the diffusion matrix are fundamental in generating
these counter-intuitive properties.

For a two-species system, the diffusion matrix D (de-
scribing either internal or external noise) can be written in
the form,

D =
(

c1 c2

c2 c3

)
= σm

(
σ

−1/2
r σc

σc σ
1/2
r

)
,

where σm = √
c1c3, σr = c3

c1
, σc = c2√

c1c3
. The parameter σ m

only scales the fluctuation spectrum in power (y-axis) and has
no effect on the frequency composition of the spectrum. The
other parameters satisfy the positive semi-definite require-
ment of D when σ r ∈ (0, ∞) and σ c ∈ [ − 1, 1].

In biochemical systems with internal noise, as described
by the linear noise approximation, the diffusion and Jacobian
matrices are in general intimately and non-trivially linked
by their dependence on the rate constants (see Eqs. (7) and
(8)). This coupling means that it is impossible to vary the
parameters σ r and σ c independently of the underlying form
of system stability. However, it is possible to uncouple these
matrices and therefore directly study the importance of the
precise form of the noise by reframing the biochemical model
as one in which internal noise is negligible but external noise
is significant. The details of an approach for introducing
external noise for the trimerization reaction are given in
Appendix E. The starting point is to assume that external
noise sources introduce stochasticity in the rate constants,
i.e., k̃i(t) = ki(1 + ε η̃i(t)), where ε is a small parameter and
η̃i(t) is Gaussian white noise. This results in an alternative
linear stochastic differential equation for the concentration
fluctuations (cf. Eq. (6)) given by

d �ξ e(t) = J �ξ e(t) dt + Be d �W (t), (49)

where the superscript e denotes external noise. The matrix
J is the same as for internal noise, but in the external noise
case the diffusion matrix De = Be.(Be)T can be changed
independently of J by changing the external noise parameters
(see Appendix E).

For the simple trimerization reaction, the internal noise
forces the constants to take values: σ r = 1/4 and σ c = −1/4.
In contrast, for external noise these constants can take any
value provided they satisfy the positive semi-definite con-
straints mentioned earlier. In Fig. 15(a) we show the existence
of NIO obtained from external noise for four different val-
ues of σ c, and with σ r fixed to unity. Note that for internal
noise stable node NIO were only possible in one species (see
Fig. 11(a)) but for external noise it is possible to obtain NIO
in both species in the stable node regime (region 5 for the case
σ c = +0.99).

With internal noise we found that the quality at a point
in the stable node regime (Q99%

node ≈ 2.7 when � ≈ 0.053) is
larger than in the focus regime (Q99%

f ocus ≈ 1.6 when � = 0.13,
see Fig. 11(b)). In Fig. 15(b) we show the variation of Q99%

node

and Q99%
f ocus as a function of the noise coupling parameter σ c

when σ r is fixed to the same value as for the internal noise (σ r

= 1/4). Note that when σ c<−0.8, Q99%
f ocus > Q99%

node, indicating
that at this level of external noise coupling the quality of sta-
ble focus NIO is better than stable node NIO, a case opposite
to that observed for the reaction stimulated by internal noise.
Hence it is clear that the counter-intuitive properties of stable
node NIO as induced by internal noise stem from the special
form of the diffusion matrix enforced by the linear-noise ap-
proximation. It is also interesting that this implies that the ori-
gin of noise plays a significant role in determining the proper-
ties of NIO. For example, for both the node and focus points,
increasing positive noise coupling is observed to dramatically
weaken and ultimately destroy the NIO. For the focus point,
when σ c > −0.1 the NIO are so weak that the power spectrum
peak is all-but destroyed and the Q99% value is undefined; the
NIO disappear altogether for σ c ≥ +0.1. Interestingly, for the
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(a) (b)

FIG. 15. Properties of NIO stimulated by external noise in the trimerization reaction. (a) Existence of external noise NIO as a function of the noise coupling
strength parameter σ c with σR held constant and equal to unity. When σ c ≤ 0 there are NIO only in species B, with similar behaviour as for internal noise (see
Fig. 11(a)). For larger, positive, noise coupling σ c = +0.50, NIO in A become possible (region 1©); for very large noise coupling σ c = +0.99 it is possible to
have NIO in both A and B (region 5©). (b) Quality of external noise NIO as a function of the noise coupling strength parameter σ c with σR held constant and
equal to 1/4. The solid line is for the stable node point, � ≈ 0.053, and the dotted line is for the stable focus point, � = 0.13. The open circles here correspond
directly to the open circles in Fig. 11(b) as they indicate the external noise characteristics that exactly match the internal noise case. Note that when σ c < −0.8
the quality is higher in the focus regime, i.e., opposite to that observed for internal noise NIO. Note also that the quality factor Q99% is calculated as the peak
frequency divided by the difference of the two frequencies at which the spectrum achieves 99% of its maximum power.

node point, NIO with defined Q99% exist for noise coupling
values as large as σ c ≈ +0.3.

We note in passing that an example of a stable node
giving rise to NIO has recently been reported by Qian who
showed that for a particular numerical choice of the Jacobian
and diffusion matrices, one can obtain a peak in the power
spectrum for a stable node (see Fig. 3 of Ref. 42). This ex-
ample falls within the general category of stable node NIO
stimulated by external noise since the Jacobian and diffu-
sion matrices are not constrained by means of the linear-noise
approximation. Our work in the present article goes further
than42 by developing a general theory of stable node NIO in
the presence of both internal and external noise and studying
the quality of these noisy oscillations in realistic biochemical
models.

VIII. DISCUSSION AND CONCLUSION

In this article, we have shown that NIO can be induced
by internal noise in biochemical systems characterized by de-
terministic stable node steady states. This phenomenon goes
beyond the conventional well-known case in which NIO are
induced by noise for systems with a deterministic focus steady
state since stable nodes do not possess an intrinsic frequency
which can be stimulated by white noise. Rather the frequency
of stable node NIO is determined by the time scales charac-
terizing the non-oscillatory decay of perturbations in stable
nodes; in particular for two species systems, the frequency
is bounded from above by the geometric mean of the two
real eigenvalues of the Jacobian. Although our results are pre-
sented in the context of biochemical reactions, the same can
be envisaged to occur in other scenarios such as predator-prey

systems subject to demographic fluctuations43 and chemostats
subject to fluctuations in nutrient and biomass levels.44

These stable node NIO possess properties which are
counter-intuitive. For example, for deterministic oscillatory
systems and for stable focus NIO close to the Hopf bifur-
cation oscillations are present in all interacting species, but
for stable node NIO we find that this is not generally the case.
We note that for internal noise, the linear-noise approximation
enforces a complicated dependence of the diffusion matrix on
the elements of the Jacobian matrix and on the stoichiometric
matrix and that this could be the origin of the counter-intuitive
property delineated above. This line of thought is suggested
by the fact that if the elements of the diffusion matrix could be
freely chosen then the counter-intuitive property can be elimi-
nated by appropriate choices (Sec. VII). This indeed turns out
to be the fundamental reason why stable NIO stimulated by
external noise may have different properties than those stim-
ulated by internal noise since the former (unlike the latter) is
characterized by a diffusion matrix which can take any values,
provided the matrix is positive semi-definite.

It is also the case that one would expect NIO for stable
foci to be of better quality than stable node NIO because in
the former there exists a clear internal frequency which can
be stimulated by white noise while in the latter there is not.
However, we found that this is not generally the case: there
are stable foci regions in parameter space where there are no
NIO (region 8 in Figs. 4(a), 7(a), and 11(a)) whereas there are
stable node regions where NIO are present (regions 1 and 3
in Figs. 4(a), 7(a), and 11(a)). For the trimerization reaction
we found that the NIO quality maximized in the node region
and subsequently decreased as one approached the node-focus
borderline (Fig. 11(b)). Furthermore as we saw for the cas-
cade reaction system of Sec. VI, the quality of stable node
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(a) (b)

FIG. 16. From LTI theory, the filtering action of the bandpass filter H on an input stationary process with spectrum SU(ω) results in an output stationary process
with spectrum SV (ω). (a) Bandpass filter Hbp1 with white noise input, (b) A different bandpass filter Hbp2 whose input process has a spectrum which matches
that of a selected variable in one of the parameterized biochemical models. For an output spectrum SV (ω) with the same quality in (a) and (b), the required
bandpass filter parameter Qbp2 < Qbp1, i.e., the filter in (b) requires less filtering to achieve an optimal output than the filter in (a) since the input to the filter in
(b) is of higher quality than the input to the filter in (a).

NIO increases as the noisy signal makes its way downstream
through the network eventually leading to massive NIO, sim-
ilar to those previously observed for stable foci.16

We have also shown that stable node NIO do occur for
chemical systems with mean molecule numbers ranging from
the order of one to a few thousand (see Figs. 6 and 13), i.e.,
the physiologically relevant range.9 Furthermore, we have
identified two chemical systems composed of at most bi-
molecular reactions and each involving merely two species,
in which noise induces oscillations; this is in contrast to the
well-known deterministic result that at least three species
are needed to obtain limit cycle oscillations from elemen-
tary reaction models.7, 45 It is, however, the case that oscilla-
tions for two species systems are very noisy and their quality
improves considerably as the number of interacting species
increases.

We conclude from our study that noise can induce oscil-
lations over larger regions of parameter space and for simpler
chemical systems than currently thought, hence further am-
plifying the current trend of thought that noise plays a con-
structive and essential role in cellular regulation.46, 47
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APPENDIX A: EXISTENCE OF NIO FOR STABILITY
DOMINATED & NOISE DEPENDENT CASES

In the large ω limit, Si(ω) monotonically decreases as
ω−2. In the opposite limit of small ω, we have

Si(ω) = 1

p
αi + 1

p

(
βi − αi q

p

)
ω2 + O(ω4).

A peak in the power spectrum will then exist if the spectrum
increases for small ω, i.e., if the ω2 term above is positive.
As shown in Sec. III, the parameters p, αi, and β i are positive.
For a stability dominated NIO, q < 0 and hence a peak always
exists. For noise dependent NIO, q ≥ 0 and hence a peak only
exists if β i > αiq/p.

For both cases, it can be further shown that the peak
power in Si(ω) occurs at a frequency lying between the peak
frequencies of the two sub-spectra. The proof is as follows.
Let the Sα

i and S
β

i subspectra have peaks at the frequencies

ω̂Sα and ω̂Sβ , respectively. Taylor expanding Si(ω) at these two
frequencies, one finds that the slope of Si(ω) at ω = ω̂Sα is
>0, and the slope at ω = ω̂Sβ is <0. Since there can only be a
single peak in the spectrum of a two species system, it follows
that the peak power in Si(ω) is in the range (ω̂Sα , ω̂Sβ ).

APPENDIX B: VALIDATION OF THE Q99% MEASURE
USING LINEAR FILTER THEORY

In this section we validate the Q99% measure used to de-
termine the quality for weak stable node oscillations in the
main text. The underlying idea is as follows. Consider a filter
whose input signal has the same power spectrum as a selected
variable in one of the biochemical models studied in Sec. V.
Now say that the output of the filter should be such that its
power spectrum has some chosen optimal quality factor. It
then follows that the lower the quality of the input signal, the
larger the degree of filtering needed to be performed by the
filter. Hence if the Q99% measure is reliable then we expect an
inverse relationship between it and the degree of filtering. In
what follows we now flesh out these ideas using the theory of
linear time invariant (LTI) filters.

If a stable LTI system with gain function H takes as its
input (U) a stationary process with spectrum SU(ω), the output
V is also a stationary process with power spectrum given by48

SV (ω) = H 2(ω)SU (ω).

Figure 16(a) shows an illustrative example where the in-
put is stationary white noise and H is the gain function of a
simple bandpass filter, given by

Hbp1(ω) =
∣∣∣∣∣ ω̂bp1 ω

−Qbp1 ω2 + i ω̂bp1 ω + ω̂2
bp1 Qbp1

∣∣∣∣∣ .
With this system, the output spectrum SV (ω) has a

peak at ω = ω̂bp1 and (conventional) Q-factor given by Q50%
V

= Qbp1. Note that this Q-factor is a measure of the degree of
filtering that the filter performs.

We validated the Q99% quality measure of stable node
oscillations by considering another LTI bandpass filter sys-
tem in which the spectrum of the input process is the fluctu-
ation spectrum of a particular species in one of the biochem-
ical models (Fig. 16(b)). Specifically, for each of the three
biochemical systems evaluated at the parameters in Figs. 5, 8,
9, and 12, we considered the problem of obtaining an output
quality Q50%

V = 1 by selecting an appropriate value of Qbp2
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FIG. 17. With the setup as shown in Fig. 16(b) and inputs with spectra from the parameterized biochemical models (Figs. 5, 8, 9, and 12), the required additional
filter quality Qbp2 was determined for a “system” (output) quality of Q50%

V = 1. The figure shows that a biochemical species whose spectrum has a low value
of Q99% (here the input (model) Q99%) requires a greater degree of filtering (larger Qbp2 value) for an output Q50%

V = 1. This inverse relationship validates the
use of Q99%.

for a bandpass filter described by

Hbp2(ω) =
∣∣∣∣ ω̂U ω

−Qbp2 ω2 + i ω̂U ω + ω̂2
U Qbp2

∣∣∣∣ .
Note that here we tune the parameter ω̂bp2 to the value

of the peak frequency of the particular input fluctuation spec-
trum, ω̂U , so that the bandpass filter works constructively with
the input to create a higher quality output. If the Q99% mea-
sure is valid then we would expect that for input spectra with
high Q99% values, lower values of Qbp2 would be required to
obtain Q50%

V = 1. This was indeed found to be the case, as
shown in Fig. 17, which validates the use of Q99%.

APPENDIX C: POWER SPECTRUM ESTIMATES FROM
THE STOCHASTIC SIMULATION ALGORITHM

From a single realization r of the stochastic simulation al-
gorithm, the number of molecules nr(t) of a particular species
over some time interval T was regularly sampled at L discrete
points separated by �t (such that (L − 1)�t = T).

Using the notation nr
l ≡ nr (l�t), l ∈ [0, L − 1], the

fluctuation in numbers of molecules about the mean is
n̂r

l = nr
l − ∑L−1

j=0 nr
j . The discrete Fourier transform of n̂r ,

which we denote Nr, was calculated by

Nr
k =

L−1∑
l=0

n̂r
l e−2πilk/L, k ∈ [0, L − 1]. (C1)

From this, the one-sided periodogram estimate, Pr, of the
number fluctuation power spectrum from realization r is de-
fined as49

P r
k = 1

L2

{∣∣Nr
k

∣∣2
k = 0, L

2∣∣Nr
k

∣∣2 + ∣∣Nr
L−k

∣∣2
k ∈ [

1, L
2 − 1

] . (C2)

The L
2 + 1 frequencies ωk over which Pr is defined span

the frequency range [0, ωNyq] where ωNyq is the Nyquist rate,
ωNyq = π

�t
rad s−1. The frequency interval �ω between ωk

and ωk+1 is �ω = 2π
L�t

rad s−1.
Since n̂r

l has zero mean, P r
0 = 0. The remaining L

2
periodogram values are normalized in Eq. (C2) such that∑L/2

k=1 P r
k = σ 2

n̂r where σ 2
n̂r is the sample variance of n̂r , i.e.,

σ 2
n̂r = 1

L

∑L−1
l=0 (n̂r

l )2. For comparison with the spectrum from
the linear-noise approximation, Eq. (9), which is truly a power
spectral density, we desire that the integral and not the sum
of the numerical spectral density over these L

2 frequencies is
equal to σ 2

n̂r .
The value of Pr at frequency ωk = 2πk

L�t
represents some

average of the power within the frequency bin ωk ± 1
2�ω.49

By assuming that the power in a frequency bin ωk ± 1
2�ω is

uniformly distributed within that bin, the integral-normalized
form of the power spectral density over the frequency range
(ω1 − 1

2�ω,ωL
2

+ 1
2�ω) is given by

Sr

(
ωk ± 1

2
�ω

)
= 1

�ω
P r

k , k ∈
[

1,
L

2

]
. (C3)

For display purposes in Figs. 5, 8, 9, and 12, we repre-
sent the power spectral density estimate over the frequency
bin ωk ± 1

2�ω by a single point of value Sr (ωk ± 1
2�ω) at

ωk. We refer to this as Sr
k .

Finally, since the variance of the estimate Sr at a single
frequency k from the periodogram method is known to be
high, we obtain the final numerical power spectral density es-
timate by averaging Sr over R realizations, i.e.,

Sk = 1

R

R∑
r=1

Sr
k . (C4)



055101-17 D. L. K. Toner and R. Grima J. Chem. Phys. 138, 055101 (2013)

APPENDIX D: ESTIMATION OF Q50% VALUES FROM
THE NUMERICAL POWER SPECTRUM

For each of the numerical power spectra SSSA from the
stochastic simulation algorithm shown in Fig. 6(a), the Q50%

was determined as follows. First we fit the numerical power
spectra using a function of the form,

Sf it = α + βω2

p + qω2 + ω4
.

We then use the parameterized function to find ω̂ (the
frequency at which the power maximizes) and �ω (the
difference of the two frequencies at which the power is half
maximum) analytically, from which we finally obtain Q50% =
ω̂/�ω. To determine the parameters of Sfit, the MATLAB op-
timization toolbox function fminsearch was used to perform
an unconstrained parameter search which minimized the Eu-
clidean norm between the data and the fitted function, i.e.,

C =
√∑L/2

k=1(Sf it

k − SSSA
k )2.

APPENDIX E: TRIMERIZATION REACTION
WITH EXTERNAL NOISE

Consider the trimerization reaction scheme discussed in
Sec. V. When there is no noise of any form, the deterministic
rate equations for the concentrations are given by

∂tφA(t) = k0 − 2k1φ
2
A(t) − k2φA(t)φB(t), (E1)

∂tφB(t) = k1φ
2
A(t) − k2φA(t)φB(t). (E2)

Now consider the case when there is some external noise
present in the system. One method of representing external
noise is by allowing the rate constants to be stochastic.50

White Gaussian noise processes η̃i(t) are added to the rate
constants and scaled by a small parameter, ε, so that the new
stochastic rate constants read

k̃i(t) = ki(1 + ε η̃i(t)), (E3)

where the tilde is used throughout to denote a random vari-
able. It follows that the dynamics in the presence of external
noise is described by the stochastic rate equations:

∂t φ̃A(t) = k̃0(t) − 2k̃1(t)φ̃A
2
(t) − k̃2(t)φ̃A(t)φ̃B(t), (E4)

∂t φ̃B(t) = k̃1(t)φ̃A
2
(t) − k̃2(t)φ̃A(t)φ̃B(t). (E5)

We solve these equations by making the ansatz,

φ̃i(t) = φ∗
i + ε ξ̃ e

i (t), (E6)

where φ∗
A =

√
k0

3k1
and φ∗

B = k1
k2

√
k0
3k1

are the steady-state so-

lutions of the deterministic rate equations Eqs. (E1) and (E2)
in the absence of any noise and ε ξ̃ e

i (t) represents the stochas-
tic contribution about φ∗

A, φ∗
B . Collecting terms of order ε we

obtain

∂t

[
ξ̃ e
A(t)

ξ̃ e
B(t)

]
=

√
k0

3k1

[−5k1 −k2

k1 −k2

][
ξ̃ e
A(t)

ξ̃ e
B(t)

]

+k0

3

[
3 −2 −1

0 1 −1

]⎡⎢⎢⎣
η̃0(t)

η̃1(t)

η̃2(t)

⎤⎥⎥⎦,

or

∂t

[
ξ̃ e
A(t)

ξ̃ e
B(t)

]
=

√
k0

3k1

[−5k1 −k2

k1 −k2

][
ξ̃ e
A(t)

ξ̃ e
B(t)

]
+

[
w̃A(t)

w̃B(t)

]
,

w̃A(t) = k0

3
(3η̃0(t) − 2η̃1(t) − η̃2(t)) ,

w̃B(t) = k0

3
(η̃1(t) − η̃2(t)) .

The symmetric positive semi-definite external noise diffusion
matrix De is defined by

〈w̃i(t)w̃j (t ′)〉 = De
i,j δ(t − t ′), i, j = 1, 2,

where in the above notation w1 = wA and w2 = wB . We ob-
tain this matrix by writing the 3 × 3 symmetric positive semi-
definite covariance matrix C for the external noise η0, η1, and
η2 as

〈η̃i(t)η̃j (t ′)〉 = Ci+1,j+1δ(t − t ′), i, j = 0, 1, 2.

As an example, the term De
1,1 = 〈w̃A(t)w̃A(t ′)〉 is given by

De
1,1 = 〈w̃A(t)w̃A(t ′)〉,

= k2
0

9
(9C1,1 − 12C1,2 − 6C1,3 + 4C2,2 + 4C2,3 + C3,3).

Writing the matrix De in the form

De = σm

(
σ

−1/2
r σc

σc σ
1/2
r

)
,

we find that the noise parameters σ r and σ c are given as func-
tions only of the Ci, i (but in a combination which is specific
for the trimerization reaction scheme):

σr = C2,2 − 2 C2,3 + C3,3

9 C1,1 − 12 C1,2 − 6 C1,3 + 4 C2,2 + 4 C2,3 + C3,3
,

σc = 3 C1,2 − 3 C1,3 − 2 C2,2 + C2,3 + C3,3√
(9 C1,1 − 12 C1,2 − 6 C1,3 + 4 C2,2 + 4 C2,3 + C3,3)(C2,2 − 2 C2,3 + C3,3)

.
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Varying the external noise parameters, Ci, i, allows a large
range of possible σ r, σ c. Given no prior information about
the external noise, we might propose that noise in the in-
put reaction parameter k0 is uncorrelated with the noise in
the other parameters, i.e., C1,2 = C1,3 = C2,1 = C3,1 = 0,
but that the other parameters are only constrained so far as
to give a positive semi-definite C matrix. We were able to
find noise matrices to satisfy these criteria for all of the
σ r, σ c values used in the investigation of external noise in
Fig. 15.

The power spectra of the new stochastic differential equa-
tion can be calculated using Eq. (10) in the main text. NIO due
to external noise are obtained whenever the spectrum displays
a maximum at some peak frequency.
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