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• Environmental DNA biological quality
elements enable effective environmen-
tal assessment using high throughput
sequencing

• Non-traditional 18S biological indica-
tors provide a finer scale assessment of
environmental conditions

• Network based analyses enable quanti-
fication of changes in biotic and abiotic
associations across multiple taxonomic
groups

• Transitivity network properties enable
direct assessment with currently
existing environmental policy metrics
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Current approaches to ecological assessment are limited by the traditional morpho-taxonomic methods pres-
ently employed and the inability to meet increasing demands for rapid assessments. Advancements in high
throughput sequencing now enable rapid high-resolution ecological assessment using environmental DNA
(eDNA). Here we test the ability of using eDNA-based ecological assessment methods against traditional assess-
ment of two key indicator groups (diatoms and macroinvertebrates) and show how eDNA across multiple gene
regions (COI, rbcL, 12S and 18S) can be used to infer interactive networks that link to ecological assessment
criteria. We compared results between taxonomic and eDNA based assessments and found significant positive
associations betweenmacroinvertebrate (p b 0.001 R2= 0.645) and diatom (p=0.015, R2= 0.222) assessment
metrics. We further assessed the ability of eDNA based assessment to identify environmentally sensitive genera
and found an order of magnitude greater potential for 18S, versus COI or rbcL, to determine environmental filter-
ing of ecologically assessed communities. Lastly, we compared the ability of traditional metrics against co-
occurrence network properties of our combined 18S, COI and rbcL indicator genera to infer habitat quality mea-
sures currently used by managers. We found that transitivity (network connectivity), linkage density and cohe-
sion were significantly associated with habitat modification scores (HMS), whereas network properties were
inconsistentwith linking to the habitat quality score (HQS)metric. The incorporation ofmulti-marker eDNA net-
work assessment opens up a means for finer scale ecological assessment, currently limited using traditional
methods. While utilization of eDNA-based assessment is recommended, direct comparisons with traditional
r).
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approaches are difficult as the methods are intrinsically different and should be treated as such with regards to
future research. Overall, our findings show that eDNA can be used for effective ecological assessment while offer-
ing a wider range of scope and application compared to traditional assessment methods.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

A major challenge for the 21st century is ensuring natural re-
sources are well managed for current and future generations
(Lampert, 2019). Increased awareness of the negative impacts of
human interactions, paired with continued technological develop-
ment and budgetary constraints, calls for a practical reassessment
of howwe implement environmental regulation and the strengthen-
ing of links between assessment methods and underlying ecological
principles. Freshwater ecosystemmanagement is immensely impor-
tant as access to freshwater via lakes and rivers is essential for
human societies. Freshwater ecosystems are highly sensitive and
are regularly exposed to multiple stressors including toxic
chemicals, pharmaceuticals, and thermal profiles, which compro-
mise their stability and ecosystem function. Instability of natural wa-
terways imposes a negative impact on human livelihood, particularly
with regards to growth, development and sustainment of our popu-
lations and communities. Whereas direct chemical assessment
would intuitively seem the most logical means to evaluate natural
systems for contamination, it often lacks temporal and spatial reli-
ability resulting in false positive or negative associations (Morse
et al., 2007). Additionally, with the ever increasing number of
manufactured compounds, the ability to detect all possible point ef-
fects and the innumerable interactions of potential environmental
stressors is impractical (Gavrilescu et al., 2015). Ecological assess-
ment, whereby observations of living populations or communities
within and among sampling locations is used to assess natural re-
source health, is a well-established practice and serves as the basis
for freshwater regulation such as that required by the Water Frame-
work Directive (WFD) (Morse et al., 2007).

The WFD is a key piece of legislation within the European Union
(EU) with the primary objective of ensuring sustainable aquatic re-
sources for future generations. Implementation of the WFD requires
a system for evaluating the health of aquatic ecosystems, as a means
of identifying those in need of remediation, and to ensure no deteri-
oration of ecosystems currently in a healthy state (referred to as
“good ecological status”) (Carvalho et al., 2019). The WFD requires
characterization of biological communities, along with physiochem-
ical and hydromorphological conditions. The ecological status of a
given freshwater body is determined by the assessment of biological
quality elements (BQEs); including fish, benthic macroinverte-
brates, phytobenthos, macrophytes and phytoplankton, each requir-
ing unique sampling, analysis and computational approaches (e.g.
metrics) (Simboura et al., 2005). Benthic macroinvertebrate metrics,
such as the Whalley, Hawkes, Paisley & Trigg (WHPT) metric (Water
Framework Directive, 2014b), function by assigning taxonomically
identifiable groups to scores based on their pollution tolerance,
which are then used to generate ecological assessment metrics, in-
cluding Average Score per Taxon (ASPT) (Mandaville, 2002), from
which ecological status can be derived. Similarly, the Trophic Dia-
tom Index (TDI) assigns scores based on pollution tolerance to dia-
tom species (Kelly, 1998). Furthermore, current biomonitoring
metrics rely heavily on the assumption of environmental sorting of
communities, which may induce false positive or negative associa-
tions of the sampled individuals if other community factors are not
considered, including species interactions and dispersal dynamics
(Cadotte and Tucker, 2017). While increased replication would
allow for greater accuracy under traditional protocols, current bud-
getary and manpower constraints hinder effective implementation.
Traditional biomonitoring protocols also rely heavily on identifica-
tion of organisms by skilled analysts and can be time and resource
intensive if a centralized identification database is not used to
cross reference variants (Baird and Hajibabaei, 2012). Alternatively,
utilizing a molecular based sampling and taxonomic assignment
protocol that relies on a centralized taxon database and computer
assignment may allow for a standardized biomonitoring protocol
as well as furthering the scope and depth of the indicator groups
used to associate pollution or environmental perturbation, thereby
allowing finer scale assessment of any environmental changes that
have occurred at target sites (Pawlowski et al., 2018).

Environmental DNA (eDNA) is DNA isolated from environmental
samples and has been shown to be a reliable means for assessing biodi-
versity in freshwater environments (Bohmann et al., 2014; Seymour,
2019). Utilizing eDNA for community biomonitoring is not yet fully rec-
ognized, however eDNA based methods are increasingly being used
across government and industry sections to assess individual species
populations that are of conservation concern (Biggs et al., 2015), or
pose a threat as invasive species (Jerde et al., 2013). Environmental
DNA assessment methods facilitate rapid sampling and can be analyzed
faster than traditional methods, thereby providing greater spatial and
replication scope when sampling a given environment. The eDNA-
based assessment approach also facilitates a standardized sampling
and assessment protocol across broad taxonomic space, providing sev-
eral orders of magnitude more diversity data generated per sample
than traditional assessment methods. With regards to traditional com-
munity biomonitoring, eDNA-based assessment still needs to be vali-
dated as a viable surrogate for current biomonitoring protocols, but
offers several potential advantages with increased sensitivity, spatial
and temporal scope, and reduced manpower requirements (Cordier
et al., 2017; Pawlowski et al., 2018). Currently, eDNA based biomonitor-
ing studies have shown good agreement between traditional and eDNA
based methods (Gibson et al., 2015), but many are limited in their spa-
tial scale, having been restricted to mesocosm experiments often with
narrow taxonomic breadth, and do not link to an existing ecological as-
sessment strategy (though see recent efforts regarding diatom eDNA
biomonitoring; Vasselon et al., 2018).

In contrast to current biomonitoring data, environmental DNA-
derived data also has the potential to include a much wider range of
taxa and indicator groups that are not currently included due to limita-
tions of traditional taxonomic identification. This may allow for a finer
scale assessment, particularly in assessing differences among neighbor-
ing sites or in evaluatingmoderate changes in environmental conditions
(Cordier et al., 2017). While there is a need to ensure continuity be-
tween traditional and eDNA based assessment methods, there should
also be a forward thinking approach to utilizing the broader eDNA
data to derive comparable biometric data that encompass not only the
concept of environmental filtering on individual indicator taxa, but
also the interactive qualities that are also linked to the stability and eco-
logical complexity of habitats (Cadotte and Tucker, 2017). Co-
occurrence networks are one way to assess taxa interactions across
deep diversity pools, and have been linked to several aspects of
metacommunity dynamics that are directly relatable to biomonitoring
principles (Araújo et al., 2011). From co-occurrence networks, several
network properties can be used to summarize the interactive relation-
ship between abiotic (effects of the environment on the individual indi-
cators) and the biotic (strength of the relationship between sets of
indicators). Linkage density is a surrogate measure of community com-
plexity, whereas transitivity provides a measure of network
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connectivity. Modularity indicates network redundancy, and cohesion
indicates the sensitivity of the community to changes in community
structure (Karimi et al., 2017).

This study assesses the reliability of applying eDNA based ecological
assessment metrics using matched traditional and eDNA based sam-
pling from a national biomonitoring program. We compared biomoni-
toring assessment approaches for benthic macroinvertebrates and
diatoms using both traditional and eDNA-derived data to determine
whether eDNA can be used as a surrogate for traditional methods. We
further assessed the ability of using eDNA genera groups as indicators
by comparing environmental association between the 18S nuclear
small subunit (nSSU) universal molecular marker and molecular
markers that targets traditional biomonitoring groups (rbcL, 12S and
COI). The expectation being that traditional biomonitoring groups are
the preferred monitoring biological units to determine inter-site varia-
tions based on environmental differences, since biomonitoringmethods
were originally designed for the traditional indicator groups. Finally, we
assessed the ability of co-occurrence networks of environmentally sen-
sitive genera to infer ecological status of rivers, with the expectation
that network properties associated with connectivity among genera
(i.e. network vertices) should link to differences in ecological status.

2. Methods

2.1. Sampling

The Glastir Monitoring and Evaluation Programme (GMEP) was a
Wales-wide environmental assessment program that included assess-
ment of freshwater biodiversity (Emmett et al., 2017). The GMEP as-
sessments were based on structured, unbiased reporting of ongoing
national trends in widespread habitat, soil and landscape types across
the rural and peri-urban landscape of Wales, based on a survey of 300
squares (1 × 1 km) sampled over a 4-year period between 2012 and
2016. The survey squares used for sampling were chosen by random
samplingwithin Institute of Terrestrial Ecology (ITE) land classes to pro-
vide a good representation of widespread broad habitats and wider
countryside. Headwater streams are typically found in 50–60% of the
randomly selected GMEP squares. In the 75 squares sampled in 2016,
35 included rivers for which eDNA samples were collected, and eDNA
successfully analyzed for 31 of the collected samples for this study
(Fig. 1). The streams sampled for eDNAwere also analyzed for chemical,
Fig. 1.Map of Wales and the GMEP sampling sites (blue squares).
physical and biological metrics including diatoms, macrophytes,macro-
invertebrates and habitat suitability. For each sampling event (i.e. site)
we collected eDNA and traditional invertebrate kick-net samples on
the sameday. Each sitewas visited on a separate daywith separate sam-
pling kits to avoid contamination among sites. Kits consisted of single
replicate sampling material prepared in sterile plastic bags and have
been found to be highly effective in avoiding cross contamination in a
previous 300 replicate experiment (Seymour et al., 2018). Water sam-
ples for eDNA analysis (1 L) were collected, in triplicate, from each
stream and filtered through enclosed 0.22 μm Sterivex filter units
(EMDMillipore Corporation, Billerica, USA) using a Geopump TMSeries
II peristaltic pump (Geotech, Denver, USA). Filters were immediately
preserved in lysis buffer (buffer ATL; Qiagen, Venlo, The Netherlands)
and stored at room temperature during transit to the laboratory for fur-
ther processing. Invertebrate communities were sampled using a stan-
dardized 3-minute kick sampling protocol, with a kick/hand net
(500 μmmesh gauge). Both bank margins and riffle habitats were sam-
pledduring this timed samplingperiod. Invertebrateswere preserved in
absolute ethanol (99.8%; VWR International, Lutterworth, UK) after col-
lection. On return to the laboratory, invertebrates were sorted from
other collectedmaterial and identified to the lowest practical level. Ben-
thic diatom sampleswere collected from submerged surface structures;
cobblewhen available, otherwise large pebbles and small boulderswere
used. At least five separate surface structures with obvious diatom film
were sampled per site. Structures were placed in a tray with 50 mL of
stream water and brushed vigorously with a stiff toothbrush. After
each structure had been scrubbed in the same tray, the suspension
was transferred to sample bottles for transport back to the lab for
identification.

2.2. Extraction and sequencing

DNA from filters was extracted using a modified QIAGEN DNA
blood and tissue extraction protocol (Spens et al., 2017). Extracts
were then cleaned for impurities using QIAGEN Power Clean kit
and frozen at −20° for subsequent analyses. Four sequence libraries
were created using a twostep protocol (e.g. Bista et al., 2017) with
unique matching index ends (manufactured by Integrated DNA
Technologies, IDT) and the following metabarcode gene regions:
1) 18S primers TAReuk454FWD1 (5′- 463 CCAGCA(G/C)C(C/T)
GCGGTAATTCC-3′) and TAReukREV3 (5′- 464 ACTTTCGTTCTTGAT
(C/T)(A/G)A-3′) (Stoeck et al., 2010); 2) COI primers m1COIintF
(5′-GGWACWGGWTGAACWGTWTAYCCYCC-3′) and jgHCO2198
(5′-TAIACYTCIGGRTGICCRAARAAYCA-3′) (Leray et al., 2013);
3) rbcL rbcL646F (5′-ATGCGTTGGAGAGARCGTTTC-3) and rbcL998R
(5′-GATCACCTTCTAATTTACCWACAACTG-3) (Glover, 2019); 4) 12S
MiFish-U forward (5′-GTCGGTAAAACTCGTGCCAGC-3) and reverse
(5′-CATAGTGGGGTATCTAATCCCAGTTTG-3) (Miya et al., 2015).
Each sample library was amplified using each primer set in tripli-
cates which were then pooled and index labeled with assistance of
a Gilson pipette max liquid handler. For the 18S, rbcL and 12S
barcodes we used New England Biolab's Q5 mastermix. For the COI
barcodes we utilized Thermo Scientific's Ampli-gold mastermix,
due to the higher number of inosine in the COI barcodes, which
would not amplify when using the Q5 master mix. For the 2nd
round index PCR, Q5 master mix was used for all reactions. All PCRs
were run in 25 μL reactions. For 18S barcodes, PCR reactions
consisted of 1.5 μL DNA template, 12.5 μL mastermix, 1 μL (10ng/
μL)of each primer pair and 9 μL PCR grade water, and amplified
using 98 °C for 30 s followed by 15 cycles of 98 °C for 10 s, 50 °C for
30 s and 72 °C for 30 s followed by a final annealing step at 72 °C
for 10 min. COI barcodes were generated using a reaction mix of
12.5 μL mastermix, 2 μL DNA template, 1 μL of each primer and 8 μL
nuclease free water and amplified using an initial 95 °C for 5 min
then 25 cycles of 95 °C for 30 s, 54 °C for 30 s and 72 °C for 60 s
followed by a 72 °C final annealing for 10 min. RbcL barcode
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reactions were setup using 12.5 μL master mix, 1.5 μL DNA template
and 9 μL nuclease free water and amplified using 98 °C at 30 s with
23 cycles of 98 °C for 5 s, 54 °C for 10 s and 72 °C for 20 s followed
by 72 °C for 5 min. 12S barcode reactions were initiated with
12.5 μL mastermix, 2 μL DNA template, 1 μL of each primer and 9 μL
nuclease free water and amplified using 98 °C for 30 s, followed by
15 cycles of 98 °C for 10 s, 54 °C for 30 s, 72 °C for 30 s with a final an-
nealing step of 72 °C for 5 min. Libraries were then shipped to the
University of Birmingham's Genomic sequencing facility for quality
control and sequencing. For quality control amplicons were purified
using High Prep PCR magnetic beads (Auto Q Biosciences) and quan-
titated using a 200 pro plate reader (TECAN) using qubit dsDNA HS
solution (Invitrogen). Final library amplicons were mixed in equi-
molar quantities (at a final concentration of 12 pmol) using a Biomek
FXp liquid handling robot (Beckman Coulter). Pool molarity was
confirmed using a HS D1000 tapestation screentape (Agilent) prior
to 2 × 250 bp paired end sequencing on an Illumina HiSeq platform
to obtain ≥100,000 reads per sample.

2.3. Bioinformatics

Bioinformatics up to taxonomic assignments were performed by the
University of Birmingham. Amplicon reads were demultiplexed by the
sequencing facility. Quality based trimming of the fastq reads were per-
formed using SolexaQA++v.3.1.7.1 (Cox et al., 2010). Paired endswere
merged using Flash (Magoč and Salzberg, 2011) under the default pa-
rameters. Primer sequences were removed by TagCleaner, whereby up
to 3 mismatches per primer sequence was allowed (Schmieder et al.,
2010; Miya et al., 2020). Only sequences with both forward and reverse
primers were retained for further analyses. Amplicon sequence variants
(ASVs) were obtained using Unoise3 using default parameters (Edgar,
2016). Diatom taxonomy was assigned to representative ASVs using
the Diat.barcode data based at 97% similarity threshold (Rimet et al.,
2019). COI and 12S taxonomy was assigned to representative ASVs
using the non-redundant nucleotide database (NCBI) at 97% similarity
threshold (Alberdi et al., 2018). 18S taxonomy was assigned to repre-
sentative ASVs using the SILVA v128 database at 97% similarity (Quast
et al., 2013). Taxonomic assignments, and their associate ASVs that
returned incomplete taxonomy or unknown identifiers were excluded
from further analyses. Amplicon sequence variants were rarified to the
lowest replicate level to normalize the diversity of the samples. Mean
read numbers for each amplicon sequence variant (ASV) were calcu-
lated across the rarified sequences before being matched to their taxo-
nomic identifier. Amplicon sequence variants that did not occur in at
least two of the three site replicates were discarded from subsequent
analyses.

2.4. Statistics

All statistical analyses were performed using R version 3.6.1(R Core
Team, 2019). Whalley, Hawkes, Paisley & Trigg (WHPT) average score
per taxa (ASPT) was based on WFD river invertebrate metric scores to
the identified family groups from the traditional and eDNA based sam-
pling (Water Framework Directive, 2014a). WHPT is an abundance-
basedmethod that assignsmetric scores based on rawor log scale abun-
dance groups. To adapt the traditional metric to eDNAwe used propor-
tional read numbers within each sample to assign metric scores to each
group, such that 0.1, 1, 10, N10 translated to 1, 10, 100, N100 class group-
ings in the traditional metric protocol (Water Framework Directive,
2014a). Correlations were assessed between traditional and eDNA
based ASPT numbers for each site using type II linear regressions using
a major axis regression. Diatom biomonitoring scores were calculated,
following existing protocols, as the sum of the percentages for all taxa
(counts for traditional sampling and read numbers for eDNA) in each
sample using the TDI4 taxon scores for rivers (Kelly et al., 2008). Corre-
lations were assessed between traditional and eDNA based TDI values
for each site using type II linear regressions using a major axis
regression.

2.5. Networks

Co-occurrence networks were constructed in a two-step process
that utilized the unique genera found across all four markers
(Table S1). First, Genera sensitivity to environmental conditions across
the sites was assessed against the first principle component axis of the
PCA characterizing habitat variation across the sites (listed below).
We used logistic regression and maximum likelihood to determine
whether the presence or absence of each genera was significant
(p b 0.05) against the response variable (first PCA axis characterizing
environmental variation) across the sites. To account for unequal
weighting due to study design sampling and unequal groupings of envi-
ronmental variation across sites, an environmental weighting was used
based on the density of the environmental values across the sites (King
and Zeng, 2001). Additionally, each genus had to occur in at least 3 sites
to be statistically tested. Second, genera co-occurrence (across all sites)
networkswere constructed from the generawho significantly (p b 0.05)
associated with the PCA derived environmental gradient, with links be-
tween genera (edges) determined using the proportion of shared sites
between each genera (vertices) as a threshold for linking (edges) gen-
era. Due to the general nature of connectivity networks to be sensitive
to threshold values, we took a holistic approach and calculated all net-
works for thresholds between 1% and 80% (0.5% increments; 159
resulting networks) co-occurrence, whereby connections (edges) be-
tween genera (vertices) were connected (non-directional) if they co-
occurred at or above the threshold value (proportion of shared sites).

For each site we isolated the site-specific subnetwork (N = 31) for
each of the co-occurrence networks created (N = 159). Subnetwork
properties; including linkage density, modularity, transitivity and cohe-
sion were calculated to compare changes in networks structure across
sites for each threshold via the igraph package in R (Csardi and
Nepusz, 2006).We assessed the relationship between each biomonitor-
ingmetric and network property vs the habitat quality score (HQS) and
habitat modification score (HMS) using linear regression across all net-
work co-occurrence threshold values, to assess overall relationships in
subnetwork properties to water framework environmental quality
measures.

3. Results

3.1. Environmental variation

Across all sites (N= 31) mean pHwas 6.30 (SD= 0.81), conductiv-
ity was 106.5 μS/cm (SD = 116.85), alkalinity was 31.26 mg/L (SD =
51.36), width was 1.11 m (SD = 0.714), depth was 9.30 cm (SD =
4.88), boulder coverage was 36.55% (SD = 26.02), gravel coverage
was 45.52% (SD = 21.27), sand coverage was 9% (SD = 7.17), silt cov-
erage was 8.71% (SD = 20.76), moss coverage was 5.74% (SD = 8.75),
algae coverage score was 1.71 (SD = 3.55), plant coverage score was
7.90 (SD = 18.96), altitude was 238.66 m (SD = 148.85) and slope
was 84.27% (SD = 71.79). To avoid bias in the PCA analyses, environ-
mental variables were assessed for significant correlation using Spear-
man tests, where variables that were highly correlated (p b 0.01) with
several other variables were used as surrogate variables for their co-
varying counterparts. As such, boulder coverage was surrogate for con-
ductivity (p b 0.001, R2 = 0.613), alkalinity (p = 0.001, R2 = 0.587),
width (p b 0.001, R2 = 0.599), gravel (p b 0.001, R2 = 0.598) and silt
(p b 0.001, R2 = 0.645). Depth was used as surrogate for moss (p =
0.008, R2 = 0.469). This resulted in pH, depth, boulder, sand, algae cov-
erage, altitude and slope being used to create the PCA based environ-
mental gradient axes which in-turn explained 39.1% of the variation
across the sites in the first PC axes.



Fig. 2. Bioscore comparison plots. Each point represents a unique sampling site. The black
line is thefitted curve fromamodel II regression using amajor axis regression and the gray
line a 1:1 line. Panel A is for the ASPT (macroinvertebrates) and Panel B is for the TDI
(diatom) metrics.
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3.2. Biodiversity

Average cleaned and rarified read numbers used for downstream
analyses were 11,460 (SD = 6445) per site for COI, 46,981 (SD =
22,408) for rbcL, 101,036 (SD = 27,540) for 18S and 266 (SD = 680)
for 12S. Average individuals used for kick-net taxonomy per site was
1179 (SD = 1388).

Across all sites we found 1157 unique universal (18S) genera, 219
uniquemacroinvertebrate (COI) genera, 138 unique diatom (rbcL) gen-
era and 9 unique fish (12S) genera. We found an average of 66.12 mac-
roinvertebrate genera across all sites (SD = 20.33) via COI eDNA, and
22.84 genera (SD=8.57)with traditional kick netting.We found an av-
erage of 47.93 diatom (rbcL) genera (SD = 17.95) per site using eDNA
and an average of 12.5 genera (SD = 4.67) per site using traditional
sampling. The universal 18S marker found 412.23 genera (SD =
94.73) on average per site using eDNA. Fish (12S) diversitywas on aver-
age 2 genera (SD = 1.43) across all sites using eDNA.

3.3. Bioscores

Across all sites, ASPT derived from macroinvertebrate eDNA was on
average 6.140 (SD = 0.564) and 6.391 (SD = 0.702) using traditional
surveying methods. Mean overlap in eDNA versus traditional biotic
macroinvertebrate indicators was 47.83% (SD = 10.58) across all sites
and 15.57% (SD = 5.97) for macroinvertebrate genera. Environmental
DNA accounted for 28.46% (SD=14.71) unique biotic indicators not de-
tected by traditional methods and 64.01% (SD = 17.27) genera not de-
tected by traditional methods. Conversely, 23.71% (SD = 17.17) of the
macroinvertebrate biotic indicators were only detected with traditional
methods and 20.44% (SD=17.30) ofmacroinvertebrate genera. Diatom
TDI4 was 44.671 (SD = 11.976) for eDNA derived and 35.290 (SD =
19.596) for traditional surveying. Mean overlap in eDNA versus tradi-
tional diatom indicators was 10.97% (SD = 6.85) and 33.44% (SD =
11.95) for genera. Environmental DNA accounted for 63.15% (SD =
16.36) unique diatom indicators and 49.33% (SD = 16.90) unique dia-
tom genera. Traditional sampling accounted for 25.87% (SD = 17.01)
unique diatom indicators and 17.23% (SD = 15.53) unique diatom
genera.

ASPT significantly correlated (positive) between eDNA and tradi-
tional survey methods (p b 0.001, R2 = 0.645). TDI4 was also signifi-
cantly correlated (positive) between eDNA and traditional
biomonitoring methods (p = 0.015, R2 = 0.222) (Fig. 2).

3.4. Indicator genera assessment and co-occurrence networks

Indicator genera were identified from 18S, COI and rbcL assigned
genera; however, no 12S assigned taxa were significantly associated
with environmental variation among sites, andwere excluded from fur-
ther analyses. We found 214 indicator genera for 18S, 26 genera for COI
and 12 for rbcL (Fig. 3). Main networks derived from the indicator gen-
era varied in linkage across the threshold values ranging from 6 vertices
at 80% co-occurrence to 249 at 0.1% (mean = 197, SD = 77). Network
degree (the average connections per network vertex) ranged from
1.7 at 80% co-occurrence to 221.6 at 0.1% (mean79.2, SD=70.6). Across
all networks, vertices (i.e. genera) with similar environmental sensitiv-
ity (Fig. 3) consistently clustered with genera of similar environmental
sensitivity (Fig. 4).

Subnetwork properties (i.e. sites) varied across threshold values for
modularity, transitivity, linkage density and cohesion (Fig. 5). Modular-
ity was not significantly (p N 0.05) associated with HMS or HQA for any
of the co-occurrence thresholds and remained close to 0 for most sub-
networks (mean across threshold= 0.139, SD=0.066), indicating ran-
dom network associations. We found significant (p b 0.05) positive
associations between transitivity and HMS for all levels between 17
and 50% as well as thresholds between 66 and 80%. Transitivity was
not consistently associated with HQA but was significantly negatively
associated with HQA for thresholds of 59 to 63% (Fig. 5). Transitivity
ranged from 0.1 to 1 across all subnetworks and threshold with mean
transitivity across the thresholds being 0.791 (SD = 0.146). Linkage
density was not associated with HQA, but did correlate significantly
(negatively) with HMS between thresholds of 24–66%. Linkage density
ranged from 0.07 to 1 across all subnetworks and thresholds with
means across the thresholdswas 0.554 (SD=0.315). Cohesionwas sig-
nificantly (p b 0.05) negatively associated with HMS sporadically be-
tween thresholds of 7% to 79% and was not associated with HQA for
any threshold values. Cohesion ranged from 0 to 144 with a mean of
19.08 (SD = 30.28).
4. Discussion

We have shown that eDNA based biomonitoring reveals similar
trends at a national scale to those produced via traditional methods
for benthic macroinvertebrate and diatom biomonitoring metrics. We
also show that 18S-derived biodiversity holds greater potential as an
eDNA biomonitoring marker compared to COI or rbcL and that eDNA
in general capturedmore biodiversity compared to traditional sampling
methods. Lastly, we show that multiple levels of eDNA-based biomoni-
toring data can be screened for environmental sensitivity and, when
combined with co-occurrence networks, distill additional community
based environmental assessment that incorporates environmental



Fig. 3. Environmental DNA derived indicator taxa (genera) utilizing universal 18S primers
(top), COI (middle), rbcL (bottom). Each panel shows all Genera (x-axis) and their
environmental standard deviation (y-axis).
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filtering and indicator taxa interactions, whichwill undoubtedly impact
future regulatory protocols.

Traditional biomonitoring metric scores such as WHPT and BMWP,
from which ASPT are derived, and TDI are based on indicator taxa like-
lihood occurrence for sites along pollution or stressor gradients. The
exact measures used for benthic macroinvertebrates are rather cryptic
in the corresponding government reports, but have been distilled to re-
late to testing of macroinvertebrate group persistence for two sites for
the UK and the broader EU (Hawkes, 1998; Water Framework
Directive, 2014b). Diatom biometric scores are more transparent and
are based on individual species occurrences across a set of environmen-
tal conditions using weighted averages; however the individual metric
scores are not accessible in the corresponding report and need to be
obtained as part of a software program called DARLEQ2 (Kelly et al.,
2008). Comparisons between eDNA and traditional metrics show posi-
tive covariation between approaches for both diatoms and inverte-
brates, with diatom metrics calculated from eDNA data showing
higher values compared to values calculated using traditional methods,
whereas the macroinvertebrate eDNA metric was slightly lower than
the traditional metric. Taxa assignment overlap between eDNA and tra-
ditional methods, and was 47.83% for macroinvertebrate indicator
groups versus 15.57% for genera, with eDNA generally yielding higher
diversity than traditional methods for each set of metrics, though not
for all sites. The disparity in overlapbetween indicator group and genera
between eDNA and traditional assignment is largely due to the mixed
class identification that is utilized for traditional invertebrate biomoni-
toring, and is often limited to family level (Morse et al., 2007), therefore
many indicator taxa are not identified to the genus level. Diatom over-
lap was 11% for indicator groups versus 33% for genera, which may re-
flect the extensive disparity of diatom taxonomy names between
existingdiatom studies anddatabases (Mann, 1999). Of notewas the in-
ability of eDNA to adequately sample macroinvertebrates from 2 sites,
which led to poor eDNA assessment. As such, the poor eDNA taxonomic
coverage was not noticeable until after sequencing, while a poor kick
net sample can be identified during the field sampling itself. Overall,
the few studies that have assessed eDNA biomonitoring, including the
present study, show that eDNA based methods generally produce
higher diversity, but do vary in the taxonomic groups they identify,
which can be linked to disparity in the sampling methods used
(Gibson et al., 2015; Elbrecht et al., 2017; Hajibabaei et al., 2019).

Taxonomic annotation for any method (e.g. traditional or eDNA) is
inherently linked to the sequence database or identification key used
to assign the final taxonomic designation, and is expected to fall short
of fully cataloging the biodiversity of any given site. For traditional
kick-net sampling, taxonomic assignment is often limited to family or
genera level assignments and often omits/simplifies small or difficult
to distinguish groups that are key environmental indicators, such as Ro-
tifers, Oligochaeta or Chironomidae (Furse et al., 2009; Elbrecht et al.,
2017). With regards to efficiency, standard kick-net sampling is esti-
mated to return between 40 and 60% of the expected biodiversity for a
given sample (Bradley and Ormerod, 2002; Furse et al., 2009), with an
estimated 30% routinely misidentified due to human error (Haase
et al., 2010). For metabarcoding based taxonomic assignment, taxo-
nomic identification is linked to the utilized marker and the reference
database. This study utilized four unique markers and three unique
databased, COI and 12S utilized NCBI, whereas 18S relied on Silva and
rbcL utilized the Diat.barcode database. Currently, the coverage of the
existing databases are estimated at 14.6% for diatoms (rbcL) 64.5% for
freshwater macroinvertebrates (COI), 87.9% for freshwater fish (12S)
(Weigand et al., 2019) and 40% for prokaryotes (18S) (Louca et al.,
2019). Taxonomic assignment for high throughput sequence data is ex-
pected to improve with the ongoing research efforts steadily improving
sequence database catalogues, with current assignments still being
highly valuable for assessing general ecological trends, including
among site environmental assessment (Bista et al., 2017; Cordier et al.,
2017).

Environmental filtering/selection of genera (Fig. 2) for the networks
found 214 18S genera, associated with environmental variation across
the sampling sites, compared to 26 COI (macroinvertebrate) and 12
rbcL (diatom) genera, with no environmental filtering present across
the 12S dataset (fish). The reasons behind the disparity in observed in-
dicator groups partially stems from the increased diversity in the 18S
derived data whereby 29,948 unique genera were detected across all
sites, compared to 171, 138 and 9 for COI, rbcL and 12S respectively. Ad-
ditionally, the increased phylogenetic depth represented in the 18S de-
rived data allows for increased ecological and evolutionary breadth,
potentially making this a better marker for eDNA-based biomonitoring.
The finding that 18S provides a better eDNA based biomonitoring
marker is in-line with recent findings of other highly diverse molecular



Fig. 4. Subset of themain co-occurrence networks constructed. Each node is a unique genus and the color represents themean gradient value for the node (genera) across the study sites
(yellow = low, blue = high). Here we show four of the constructed networks (N = 157) for A) 10% co-occurrence B) 30% C) 50% D) 70%.
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markers, including 16S, which offer a more powerful assessment of
communities across environmental conditions (Pawlowski et al.,
2016). Additionally, the COI marker, while widely used for eDNA stud-
ies, is not optimal for eDNA based identification likely due to the loss
of reads through sequencing of non-target taxa (Collins et al., 2019).

Our co-occurrence analyses found strong associations between gen-
era that co-occurred across sites as descriptors of environmental varia-
tion across the network. The high connectivity and degree values
associated with a few key genera within the network also highlights
the importance of observing not only those taxa associated with a par-
ticular environment, but the expected associations of the taxa to other
indicator taxa as a means to determine whether an environment is
experiencing environmental change (Germain et al., 2018). The net-
work properties associated with community complexity and network
connectivity were significantly positively relatedwith habitat modifica-
tion score (HMS), which relates to highly modified sites having subnet-
works that aremore centralized in thenetwork, thereby increasing their
connectivity properties. This is most evident in the transitivity scores,
with the probability that the connecting genera in a network are also
connected ecologically. Likewise, the greater linkage density, which is
the proportion of realized vs. potential links in the subnetworks is in-
trinsically higher at more centralized subnetworks (Kantarci and
Labatut, 2013). Both these measures highlight the importance of un-
modified habitat in protecting not only unique species, but unique com-
munities (Muotka et al., 2002). Additionally, both co-occurrence
analyses highlight the potential importance of key individual indicator
taxa within their respective networks via cohesion, which indicates
the number of vertices that can be removed prior to the network
collapsing (White and Harary, 2001). The resulting networks also pro-
vide information regarding which key indicator interactions could pro-
vide a better indication of change in environmental condition of a site,
rather than only presence/absence of the indicator taxa themselves,
which may occur stochastically across a range of environmental condi-
tions (Beauchard et al., 2017).

Overall, this study shows the application of eDNA metabarcoding as
a viable surrogate for traditional biomonitoring methods and also
shows the ability to incorporate a wide range of taxa that have been
overlooked using traditional sampling and biomonitoring protocols.
We emphasize the need for future studies to evaluate communities for
co-occurrence to ensure that false positives from random associations
between indicators and local random/stochastic factors are not associ-
ated with co-occurring indicator groups. This approach should provide
a more sensitive assessment of community response to environmental
variation.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.138801.
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Fig. 5. Sensitivity analyses of the co-occurrence network threshold (x-axis) and their associated subnetworks (i.e. sampling site) properties (top: modularity, 2nd row: transitivity, 3rd
row: linkage density, bottom: cohesion) tested against HQA (first column) and HMS (second column). The red line indicates the 0.05 significance value of the x-axis (p-value for the
respective test). Points on or below the line signify a significant association between the network property and the ecological assessment metric (HQA or HMS).

8 M. Seymour et al. / Science of the Total Environment 729 (2020) 138801



9M. Seymour et al. / Science of the Total Environment 729 (2020) 138801
Declaration of competing interest

None.

Acknowledgements

Genomics center at University of Birmingham for sequencing ser-
vices and initial bioinformatics pipelines. P. Scarlet for field sampling.
FredricWindsor for discussions and advice regarding the network anal-
yses. The project was supported by a Natural Environment Research
Council (NERC) Highlight Topic grant (grant numbers NE/N006216/1,
NE/N005724/1 and NE/N005716/1 United Kingdom). We also thank
two anonymous reviewers and Anders Lanzén for their comments on
the manuscript.

Data availability

The data associated with the manucript is available on Mendeley
Data (DOI: 10.17632/zcfywkyr7j.2)

References

Alberdi, A., Aizpurua, O., Gilbert, M.T.P., Bohmann, K., 2018. Scrutinizing key steps for re-
liable metabarcoding of environmental samples. Methods Ecol. Evol. 9 (1), 134–147.
https://doi.org/10.1111/2041-210X.12849.

Araújo, M.B., Rozenfeld, A., Rahbek, C., Marquet, P.A., 2011. Using species co-occurrence
networks to assess the impacts of climate change. Ecography 34 (6), 897–908.
https://doi.org/10.1111/j.1600-0587.2011.06919.x.

Baird, D.J., Hajibabaei, M., 2012. Biomonitoring 2.0: a new paradigm in ecosystem assess-
ment made possible by next-generation DNA sequencing. Mol. Ecol. 21 (8),
2039–2044. https://doi.org/10.1111/j.1365-294X.2012.05519.x.

Beauchard, O., Veríssimo, H., Queirós, A.M., Herman, P.M.J., 2017. The use of multiple
biological traits in marine community ecology and its potential in ecological indi-
cator development. Ecol. Indic. 76, 81–96. https://doi.org/10.1016/j.
ecolind.2017.01.011.

Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R.A., ... Dunn, F., 2015.
Using eDNA to develop a national citizen science-based monitoring programme for
the great crested newt (Triturus cristatus). Biological Conservation 183, 19–28.
https://doi.org/10.1016/j.biocon.2014.11.029.

Bista, I., Carvalho, G.R., Walsh, K., Seymour, M., Hajibabaei, M., Lallias, D., Creer, S., 2017.
Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics
of lake ecosystem biodiversity. Nat. Commun. 8, 14087. https://doi.org/10.1038/
ncomms14087.

Bohmann, K., Evans, A., Gilbert, M.T.P., Carvalho, G.R., Creer, S., Knapp, M., ... de Bruyn, M.,
2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in
Ecology &amp; Evolution 29 (6), 358–367. https://doi.org/10.1016/j.
tree.2014.04.003.

Bradley, D.C., Ormerod, S.J., 2002. Evaluating the precision of kick-sampling in upland
streams for assessments of long-term change: the effects of sampling effort, habitat
and rarity fig: 5 tab: 5. Arch. Hydrobiol. 199–221.

Cadotte, M.W., Tucker, C.M., 2017. Should environmental filtering be abandoned? Trends
Ecol. Evol. 32 (6), 429–437. https://doi.org/10.1016/j.tree.2017.03.004.

Carvalho, L., Mackay, E.B., Cardoso, A.C., Baattrup-Pedersen, A., Birk, S., Blackstock, K.L., ...
Solheim, A.L., 2019. Protecting and restoring Europe’s waters: An analysis of the fu-
ture development needs of the Water Framework Directive. Science of The Total En-
vironment 658, 1228–1238. https://doi.org/10.1016/j.scitotenv.2018.12.255.

Collins, R.A., Bakker, J., Wangensteen, O.S., Soto, A.Z., Corrigan, L., Sims, D.W., ... Mariani, S.,
2019. Non-specific amplification compromises environmental DNA metabarcoding
with COI. Methods in Ecology and Evolution 0 (0). https://doi.org/10.1111/2041-
210X.13276.

Cordier, T., Esling, P., Lejzerowicz, F., Visco, J., Ouadahi, A., Martins, C., Pawlowski, J., 2017.
Predicting the ecological quality status of marine environments from eDNA
metabarcoding data using supervised machine learning. Environmental Science &
Technology 51 (16), 9118–9126. https://doi.org/10.1021/acs.est.7b01518.

Cox, M.P., Peterson, D.A., Biggs, P.J., 2010. SolexaQA: at-a-glance quality assessment of
Illumina second-generation sequencing data. BMC Bioinformatics 11 (1), 485.

Csardi, G., Nepusz, T., 2006. The igraph software package for complex network research.
InterJournal, Complex Systems 1695 (5), 1–9.

Edgar, R.C., 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon
sequencing. BioRxiv, 81257 https://doi.org/10.1101/081257.

Elbrecht, V., Vamos, E.E., Meissner, K., Aroviita, J., Leese, F., 2017. Assessing strengths and
weaknesses of DNA metabarcoding-based macroinvertebrate identification for rou-
tine stream monitoring. Methods Ecol. Evol. 8 (10), 1265–1275. https://doi.org/
10.1111/2041-210X.12789.

Emmett, B.E., Abdalla, M., Anthony, S., Astbury, S., August, T., Barrett, G., ... Bradley, D.,
2017. Glastir Monitoring & Evaluation Programme. Final report.

Furse, M.T., Hering, D., Brabec, K., Buffagni, A., Sandin, L., Verdonschot, P.F.M., 2009. The
Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment
Methods. 188. Springer Science & Business Media.
Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F., 2015. Emerging pollutants
in the environment: present and future challenges in biomonitoring, ecological risks
and bioremediation. New Biotechnol. 32 (1), 147–156. https://doi.org/10.1016/j.
nbt.2014.01.001.

Germain, R.M.,Mayfield,M.M., Gilbert, B., 2018. The ‘filtering’metaphor revisited: compe-
tition and environment jointly structure invasibility and coexistence. Biol. Lett. 14
(8), 20180460. https://doi.org/10.1098/rsbl.2018.0460.

Gibson, J.F., Shokralla, S., Curry, C., Baird, D.J., Monk, W.A., King, I., Hajibabaei, M., 2015.
Large-scale biomonitoring of remote and threatened ecosystems via high-
throughput sequencing. PLoS One 10 (10), e0138432 Retrieved from. https://doi.
org/10.1371/journal.pone.0138432.

Glover, R., 2019. Biomonitoring and Surveillance with Short-and Long-Read
Metabarcoding.

Haase, P., Pauls, S.U., Schindehütte, K., Sundermann, A., 2010. First audit of macroinverte-
brate samples from an EU Water Framework Directive monitoring program: human
error greatly lowers precision of assessment results. J. N. Am. Benthol. Soc. 29 (4),
1279–1291. https://doi.org/10.1899/09-183.1.

Hajibabaei, M., Porter, T.M., Robinson, C.V., Baird, D.J., Shokralla, S., Wright, M.T.G., 2019.
Watered-down biodiversity? A comparison of metabarcoding results from DNA ex-
tracted from matched water and bulk tissue biomonitoring samples. PLoS One 14
(12), e0225409 Retrieved from. https://doi.org/10.1371/journal.pone.0225409.

Hawkes, H.A., 1998. Origin and development of the biological monitoring working party
score system. Water Res. 32 (3), 964–968. https://doi.org/10.1016/S0043-1354(97)
00275-3.

Jerde, C.L., Chadderton, W.L., Mahon, A.R., Renshaw, M.A., Corush, J., Budny, M.L., ... Lodge,
D.M., 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveil-
lance program. Canadian Journal of Fisheries and Aquatic Sciences 70 (4), 522–526.
https://doi.org/10.1139/cjfas-2012-0478.

Kantarci, B., Labatut, V., 2013. Classification of complex networks based on topological
properties. 2013 International Conference on Cloud and Green Computing,
pp. 297–304. https://doi.org/10.1109/CGC.2013.54.

Karimi, B., Maron, P.A., Chemidlin-Prevost Boure, N., Bernard, N., Gilbert, D., Ranjard, L.,
2017. Microbial diversity and ecological networks as indicators of environmental
quality. Environ. Chem. Lett. 15 (2), 265–281. https://doi.org/10.1007/s10311-017-
0614-6.

Kelly, M., 1998. Use of the trophic diatom index to monitor eutrophication in rivers.
Water Res. 32 (1), 236–242. https://doi.org/10.1016/S0043-1354(97)00157-7.

Kelly, M., Juggins, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., Yallop, M., 2008. As-
sessment of ecological status in U.K. rivers using diatoms. Freshw. Biol. 53 (2),
403–422. https://doi.org/10.1111/j.1365-2427.2007.01903.x.

King, G., Zeng, L., 2001. Logistic regression in rare events data. Polit. Anal. 9 (2), 137–163.
https://doi.org/10.1093/oxfordjournals.pan.a004868.

Lampert, A., 2019. Over-exploitation of natural resources is followed by inevitable de-
clines in economic growth and discount rate. Nat. Commun. 10 (1), 1419. https://
doi.org/10.1038/s41467-019-09246-2.

Leray, M., Yang, J.Y., Meyer, C.P., Mills, S.C., Agudelo, N., Ranwez, V., Machida, R.J., 2013. A
new versatile primer set targeting a short fragment of the mitochondrial COI region
for metabarcoding metazoan diversity: application for characterizing coral reef fish
gut contents. Front. Zool. 10 (1), 34. https://doi.org/10.1186/1742-9994-10-34.

Louca, S., Mazel, F., Doebeli, M., Parfrey, L.W., 2019. A census-based estimate of Earth’s
bacterial and archaeal diversity. PLoS Biol. 17 (2), e3000106. https://doi.org/
10.1371/journal.pbio.3000106.

Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve
genome assemblies. Bioinformatics 27 (21), 2957–2963.

Mandaville, S.M., 2002. Benthic Macroinvertebrates in Freshwaters: Taxa Tolerance
Values, Metrics, and Protocols. Soil & Water Conservation Society of Metro Halifax,
Halifax, Canada Retrieved from. http://lakes.chebucto.org/H-1/tolerance.pdf.

Mann, D.G., 1999. The species concept in diatoms. Phycologia 38 (6), 437–495. https://
doi.org/10.2216/i0031-8884-38-6-437.1.

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., … Iwasaki, W. (2015).
MiFish, a set of universal PCR primers for metabarcoding environmental DNA
from fishes: detection of more than 230 subtropical marine species. Open Sci-
ence, 2(7). Retrieved from http://rsos.royalsocietypublishing.org/content/2/7/
150088.abstract.

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J.Y., Sato, K., ... Iwasaki, W., 2020. MiFish,
a set of universal PCR primers for metabarcoding environmental DNA from fishes:
detection of more than 230 subtropical marine species. Royal Society Open Science
2 (7), 150088. https://doi.org/10.1098/rsos.150088.

Morse, J.C., Bae, Y.J., Munkhjargal, G., Sangpradub, N., Tanida, K., Vshivkova, T.S., ... Yule,
C.M., 2007. Freshwater biomonitoring with macroinvertebrates in East Asia. Frontiers
in Ecology and the Environment 5 (1), 33–42. https://doi.org/10.1890/1540-9295
(2007)5[33:FBWMIE]2.0.CO;2.

Muotka, T., Paavola, R., Haapala, A., Novikmec, M., Laasonen, P., 2002. Long-term recovery
of stream habitat structure and benthic invertebrate communities from in-stream
restoration. Biol. Conserv. 105 (2), 243–253. https://doi.org/10.1016/S0006-3207
(01)00202-6.

Pawlowski, J., Lejzerowicz, F., Apotheloz-Perret-Gentil, L., Visco, J., Esling, P., 2016. Protist
metabarcoding and environmental biomonitoring: time for change. Eur. J. Protistol.
55, 12–25. https://doi.org/10.1016/j.ejop.2016.02.003.

Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero,
A., ... Kahlert, M., 2018. The future of biotic indices in the ecogenomic era: Integrating
(e)DNA metabarcoding in biological assessment of aquatic ecosystems. Science of
The Total Environment 637–638, 1295–1310. https://doi.org/10.1016/j.
scitotenv.2018.05.002.

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Glöckner, F.O., 2013. The
SILVA ribosomal RNA gene database project: improved data processing and web-

https://doi.org/10.1111/2041-210X.12849
https://doi.org/10.1111/j.1600-0587.2011.06919.x
https://doi.org/10.1111/j.1365-294X.2012.05519.x
https://doi.org/10.1016/j.ecolind.2017.01.011
https://doi.org/10.1016/j.ecolind.2017.01.011
https://doi.org/10.1016/j.biocon.2014.11.029
https://doi.org/10.1038/ncomms14087
https://doi.org/10.1038/ncomms14087
https://doi.org/10.1016/j.tree.2014.04.003
https://doi.org/10.1016/j.tree.2014.04.003
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0040
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0040
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0040
https://doi.org/10.1016/j.tree.2017.03.004
https://doi.org/10.1016/j.scitotenv.2018.12.255
https://doi.org/10.1111/2041-210X.13276
https://doi.org/10.1111/2041-210X.13276
https://doi.org/10.1021/acs.est.7b01518
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0065
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0065
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0070
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0070
https://doi.org/10.1101/081257
https://doi.org/10.1111/2041-210X.12789
https://doi.org/10.1111/2041-210X.12789
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0085
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0090
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0090
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0090
https://doi.org/10.1016/j.nbt.2014.01.001
https://doi.org/10.1016/j.nbt.2014.01.001
https://doi.org/10.1098/rsbl.2018.0460
https://doi.org/10.1371/journal.pone.0138432
https://doi.org/10.1371/journal.pone.0138432
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0110
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0110
https://doi.org/10.1899/09-183.1
https://doi.org/10.1371/journal.pone.0225409
https://doi.org/10.1016/S0043-1354(97)00275-3
https://doi.org/10.1016/S0043-1354(97)00275-3
https://doi.org/10.1139/cjfas-2012-0478
https://doi.org/10.1109/CGC.2013.54
https://doi.org/10.1007/s10311-017-0614-6
https://doi.org/10.1007/s10311-017-0614-6
https://doi.org/10.1016/S0043-1354(97)00157-7
https://doi.org/10.1111/j.1365-2427.2007.01903.x
https://doi.org/10.1093/oxfordjournals.pan.a004868
https://doi.org/10.1038/s41467-019-09246-2
https://doi.org/10.1038/s41467-019-09246-2
https://doi.org/10.1186/1742-9994-10-34
https://doi.org/10.1371/journal.pbio.3000106
https://doi.org/10.1371/journal.pbio.3000106
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0175
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0175
http://lakes.chebucto.org/H-1/tolerance.pdf
https://doi.org/10.2216/i0031-8884-38-6-437.1
https://doi.org/10.2216/i0031-8884-38-6-437.1
http://rsos.royalsocietypublishing.org/content/2/7/150088.abstract
http://rsos.royalsocietypublishing.org/content/2/7/150088.abstract
https://doi.org/10.1098/rsos.150088
https://doi.org/10.1890/1540-9295(2007)5<33:FBWMIE>2.0.CO;2
https://doi.org/10.1890/1540-9295(2007)5<33:FBWMIE>2.0.CO;2
https://doi.org/10.1016/S0006-3207(01)00202-6
https://doi.org/10.1016/S0006-3207(01)00202-6
https://doi.org/10.1016/j.ejop.2016.02.003
https://doi.org/10.1016/j.scitotenv.2018.05.002
https://doi.org/10.1016/j.scitotenv.2018.05.002


10 M. Seymour et al. / Science of the Total Environment 729 (2020) 138801
based tools. Nucleic Acids Res. 41 (D1), D590–D596. https://doi.org/10.1093/nar/
gks1219.

R Core Team, 2019. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna Retrieved from. http://www.r-project.org.

Rimet, F., Gusev, E., Kahlert, M., Kelly, M.G., Kulikovskiy, M., Maltsev, Y., ... Bouchez, A.,
2019. Diat.barcode, an open-access curated barcode library for diatoms. Scientific Re-
ports 9 (1), 15116. https://doi.org/10.1038/s41598-019-51500-6.

Schmieder, R., Lim, Y.W., Rohwer, F., Edwards, R., 2010. TagCleaner: identification and re-
moval of tag sequences from genomic and metagenomic datasets. BMC Bioinformat-
ics 11 (1), 341.

Seymour, M., 2019. Rapid progression and future of environmental DNA research. Com-
munications Biology 2 (1), 80. https://doi.org/10.1038/s42003-019-0330-9.

Seymour, M., Durance, I., Cosby, B.J., Ransom-Jones, E., Deiner, K., Ormerod, S.J., ... Creer, S.,
2018. Acidity promotes degradation of multi-species environmental DNA in lotic
mesocosms. Communications Biology 1 (1), 4. https://doi.org/10.1038/s42003-017-
0005-3.

Simboura, N., Panayotidis, P., Papathanassiou, E., 2005. A synthesis of the biological qual-
ity elements for the implementation of the European Water Framework Directive in
the Mediterranean ecoregion: the case of Saronikos Gulf. Ecol. Indic. 5 (3), 253–266.
https://doi.org/10.1016/j.ecolind.2005.03.006.

Spens, J., Evans, A.R., Halfmaerten, D., Knudsen, S.W., Sengupta, M.E., Mak, S.S.T., ...
Hellström, M., 2017. Comparison of capture and storage methods for aqueous
macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter.
Methods in Ecology and Evolution 8 (5), 635–645. https://doi.org/10.1111/2041-
210X.12683.
Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D.M., Breiner, H.-W., Richards, T.A.,
2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly
complex eukaryotic community in marine anoxic water. Mol. Ecol. 19 (s1), 21–31.
https://doi.org/10.1111/j.1365-294X.2009.04480.x.

Vasselon, V., Bouchez, A., Rimet, F., Jacquet, S., Trobajo, R., Corniquel, M., Domaizon, I.,
2018. Avoiding quantification bias in metabarcoding: application of a cell biovolume
correction factor in diatom molecular biomonitoring. Methods Ecol. Evol. 9 (4),
1060–1069. https://doi.org/10.1111/2041-210X.12960.

Water Framework Directive, 2014a. UKTAG River Assessment Method Macrophytes and
Phytobenthos.

Water Framework Directive, 2014b. Water Framework Directive, United Kingdom Advi-
sory Group, 2014. Invertebrates (General Degradation) Whalley, Hawkes, Paisley &
Trigg (WHPT) Metric in River Invertebrate Classification Tool (RICT), UKTAG River
Assessment Method. Benthic Invertebrate Fauna ReportUKTAG.

Weigand, H., Beermann, A.J., Čiampor, F., Costa, F.O., Csabai, Z., Duarte, S., Ekrem, T., 2019.
DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-
analysis and recommendations for future work. Sci. Total Environ. 678, 499–524.
https://doi.org/10.1016/j.scitotenv.2019.04.247.

White, D.R., Harary, F., 2001. The cohesiveness of blocks in social networks: node connec-
tivity and conditional density. Sociol. Methodol. 31 (1), 305–359. https://doi.org/
10.1111/0081-1750.00098.

https://doi.org/10.1093/nar/gks1219
https://doi.org/10.1093/nar/gks1219
http://www.r-project.org
https://doi.org/10.1038/s41598-019-51500-6
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0230
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0230
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0230
https://doi.org/10.1038/s42003-019-0330-9
https://doi.org/10.1038/s42003-017-0005-3
https://doi.org/10.1038/s42003-017-0005-3
https://doi.org/10.1016/j.ecolind.2005.03.006
https://doi.org/10.1111/2041-210X.12683
https://doi.org/10.1111/2041-210X.12683
https://doi.org/10.1111/j.1365-294X.2009.04480.x
https://doi.org/10.1111/2041-210X.12960
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0265
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0265
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0270
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0270
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0270
http://refhub.elsevier.com/S0048-9697(20)32318-4/rf0270
https://doi.org/10.1016/j.scitotenv.2019.04.247
https://doi.org/10.1111/0081-1750.00098
https://doi.org/10.1111/0081-1750.00098

	Executing multi-�taxa eDNA ecological assessment via traditional metrics and interactive networks
	1. Introduction
	2. Methods
	2.1. Sampling
	2.2. Extraction and sequencing
	2.3. Bioinformatics
	2.4. Statistics
	2.5. Networks

	3. Results
	3.1. Environmental variation
	3.2. Biodiversity
	3.3. Bioscores
	3.4. Indicator genera assessment and co-occurrence networks

	4. Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


