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Abstract  

Objectives: Central and peripheral chemosensitivity i.e. ventilatory response to CO2 and O2 are 

thought to be decisive for ventilatory control instability in obstructive sleep apnoea (OSA). Obesity is 

associated with chronic low level inflammation. Whether body mass related inflammatory and anti-

inflammatory factors influencing peripheral and central chemosensitivity differentially is unclear. 

Methods: Ventilatory response to hypercapnic-hyperoxic and hypercapnic-hypoxic gas mixtures in 

patients with OSA (n=46) and healthy individuals (n=45) was measured. C-reactive protein (CRP), 

leptin, adiponectin, and endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) 

were measured in blood samples. Results: Mediation analysis revealed that association of 

chemoresponse to CO2 with apnoea hypopnea index (AHI) was fully mediated by body mass index 

(BMI). Regression analysis showed that CRP and leptin levels explained ~25% and ~15% of the 

variance in central CO2 response, while 2-AG explained ~42% of the variance in peripheral response 

to hypoxia. Conclusion: Inflammatory and anti-inflammatory factors could explain differential 

alterations in peripheral and central ventilatory chemoresponse in patients with OSA.  
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1. Introduction 

Obstructive sleep apnoea (OSA) is a breathing disorder characterized by cyclical pharyngeal collapse 

to the point of ventilatory constraint accompanied by hypopnoea and apnoea periods during sleep. 

OSA is suggested to promote hypertension, stroke, myocardial infarction and has a high risk of all-

cause mortality (Marshall et al., 2008). Obesity, hypertension and male gender are strongly associated 

with OSA prevalence (Young et al., 2004).  

In OSA, oversensitive ventilatory response to apnoeic events and the instability of breathing during 

sleep has been suggested to be caused by an elevation of loop gain (Wellman et al., 2008). High loop 

gain, which is connected to the resulting large increase in ventilation after a former reduction in 

ventilation below the eucapnic status due to obstruction, is shown to be critically dependent on 

chemosensitivity (part of the controller gain) (Dempsey and Smith, 2014).  

The ventilatory response to hypoxia and hypercapnia has been investigated in OSA patients with 

various techniques and outcomes in wakefulness and during sleep. Outcomes of ventilatory response 

to carbon dioxide in wakefulness have been very variable: decreased (Osanai et al., 1999) or similar 

(Sin et al., 2000) (Narkiewicz et al., 1999; Verbraecken et al., 2000), while ventilatory responses to 

hypoxia were lower (Osanai et al., 1999) or higher (Narkiewicz et al., 1999) compared with healthy 

individuals. However, most studies did not use mixed hyperoxic/hypercapnic and 

hypoxic/hypercapnic gases for differentiation of peripheral and central response to carbon dioxide 

(Duffin, 2007). Chemosensitivity during sleep has been more consistently showing an elevation of 

ventilatory response to hypoxic/hypercapnic gas mixtures (Edwards et al., 2012; Salloum et al., 2010; 

Xie et al., 2001; Younes et al., 2007). However, only in about ~30% of OSA patients an elevated 

controller gain is detected, and other factors, like altered plant gain, arousal threshold, and dilator 

muscle recruitment of airways seem to be relevant producing a more complex picture (Dempsey et al., 

2014). It is clear from models based on experimental data, peripheral and central chemosensitivity 

should be of substantial influence on OSA symptoms (Francis et al., 2000). OSA is strongly 

associated with obesity, and often patients develop obesity hypoventilation syndrome (OHS) in 

addition to OSA (Shetty and Parthasarathy, 2015). The prevalence of OHS is about 20% to 30% in 
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OSA and even higher in BMI>50 patients (Mokhlesi et al., 2007). OHS is characterized by BMI>30 

with awake arterial blood pCO2 > 45mmHg unexplained by other disorders (Shetty and Parthasarathy, 

2015); the ventilatory response to carbon dioxide and hypoxia is reduced in OHS (Piper and 

Grunstein, 2010). However, many OSA patients may share similar changes in chemosensitivity 

without reaching levels of daytime hypercapnia.  

This opens the question, how obesity is able to influence chemosensitivity resulting in such different 

outcomes in ventilatory responses to hypoxia and hypercapnia in connection with OSA and OHS? In 

obesity, mechanical factors may play a role with oxygen cost of breathing increased in combination 

with reduced forced vital capacity (FVC) (Rochester and Enson, 1974). However, the variability of 

the ventilatory response to hypoxia and hypocapnia in OSA suggests more complex mechanisms, 

which might involve changes of central and peripheral chemosensitivity.  

Biochemical factors associated with obesity are known in great detail and are often related to poor 

health outcome like cardiovascular disease, type 2 diabetes, cancer etc. (Kahn et al., 2006; Van Gaal 

et al., 2006). Some of the factors are reported to influence, or being associated, with ventilatory drive 

and chemosensitivity. The adipokine leptin has been shown to be an important regulator of central 

respiratory drive and leptin resistance is suggested to be an important contributor to reduced 

ventilatory drive in obesity and OHS (Bassi et al., 2015; Cundrle et al., 2014; Malli et al., 2010) but 

also adiponectin, which is reduced in obesity, is reported to be associated with AHI in OSA 

(Lacedonia et al., 2016). Moreover, systemic low level inflammation is connected with obesity; 

inflammatory factors like CRP, IL6 and TNF alpha are known to be associated with cardiovascular 

disease (Van Gaal et al., 2006), but also shown to be connected with pulmonary diseases like chronic 

obstructive pulmonary disease (COPD) (Gan et al., 2004) and OSA (Guilleminault et al., 2004). In 

theory, peripheral chemosensitivity could be by influenced by inflammatory cytokines as it is shown 

that hypoxia leads to increased immune cell invasion and cytokine expression in carotid body in rats 

(Liu et al., 2009). Furthermore, an activation of the peripheral endocannabinoid system is known in 

obesity (Engeli et al., 2005); the action of endocannabinoids anandamide (AEA) and 2-

arachidonoylglyceraol (2-AG) are mainly recognized in energy homeostasis and metabolism (Di 
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Marzo, 2008) but also have anti-inflammatory properties (de Lago et al., 2012). Indeed, recent 

findings show additional effects of endocannabinoids on chemosensitivity of the carotid body (Kim et 

al., 2009) extending their possible role for breathing disorders.  

Consequently, our study had the objective to investigate the association of obesity related body 

characteristics and biochemical factors with alterations of peripheral and central chemosensitivity in 

OSA patients. Firstly, we measured the ventilatory response to hypercapnia and hypoxia in 

wakefulness with gas mixtures, enabling a better differentiation between central and peripheral 

chemosensitivity (Duffin, 2007; Earing et al., 2014), body characteristics and pulmonary function in 

newly diagnosed OSA patients and ‘healthy’ individuals. Secondly, we measured obesity related 

biochemical factors leptin, adiponectin, CRP, AEA, and 2-AG to investigate their possible interaction 

with changes of peripheral and central chemosensitivity and apnoea hyponoea index (AHI) in OSA 

patients. 

We hypothesized that OSA patients reveal a reduced ventilatory response to carbon dioxide and 

hypoxia in wakefulness compared with healthy individuals. We expected that BMI would contribute 

most to central ventilatory hypercapnic response in regression models and that distinct BMI 

associated biochemical factors, related to inflammatory and anti-inflammatory responses, would 

explain a significant proportions in the variance of peripheral and central chemosensitivity, i.e. 

ventilatory responses to hypercapnia and hypoxia. 
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2. Methods 

2.1 Participants 

The study was approved by the North Wales Research Ethics Committee (No. 11/WNO: 01/02) and 

the departmental research ethics committee, Bangor University, UK, according to the Declaration of 

Helsinki for research on human subjects.  

Participants were adult males diagnosed with obstructive sleep apnoea (OSA) (N=48) and healthy 

adult male individuals (HI) (N=49). Participants with OSA were recruited from newly diagnosed 

patients from the Pulmonary Department and Sleep Clinic at Ysbyty Gwynedd, Bangor. Patients were 

diagnosed using an unattended home sleep study (respiratory polygraphy; Embletta®Gold, Embla 

Systems, USA). Measures of pulse oximetry, nasal airflow, thoracic and abdominal movements were 

analysed using RemLogic software. Diagnosis of OSA was performed by either an experienced 

registered Clinical Physiologist, or experienced Sleep Technologist. OSA patients’ medical records 

were reviewed and patients with documented respiratory disease or with FEV1/FVC < 70%, or taking 

medications known to affect their ventilatory drive (i.e. opioid-analgetics) were excluded. 

Additionally, potential participants were excluded if they had a body mass index (BMI) ≥ 50 kg/m2 to 

avoid inclusion of individuals with predominately obesity hypoventilation syndrome. Written 

informed consent was obtained from all participants prior to testing and participants with OSA were 

tested within two weeks prior to their treatment with Continuous Positive Airway Pressure (CPAP). 

Healthy individuals were recruited from general population from the Bangor area, North Wales, who 

reported no medical conditions, BMI < 50, taking no medication suppressing ventilation, and reported 

no sleep problems according to the Epworth Sleepiness Scale (<10) (ESS) and Pittsburgh Sleep 

Quality Index (<5) (PSQI). Epworth Sleepiness Scale is widely used for pre-screening purposes for 

OSA; however, validation in targeted OSA patient populations is lacking (Gamaldo et al., 2018). We 

used both questionnaires to exclude participants from the ‘healthy’ group with potential sleep 

disorders such as OSA. 
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2.2 General procedures 

2.2.1 Body Characteristics 

Participants’ height was measured using a stadiometer (Bodycare Products, Southam, United 

Kingdom). A digital scale (Seca; Vogel & Halke, Hamburg, Germany) was used to measure body 

weight. Participants were weighed in a non-fasting state while they wore minimal clothing. 

Circumferences were measured using a tape measure; waist circumference was measures after normal 

expiration at noticeable waist narrowing. Hip circumference measured at the level of symphysis pubis 

and largest guteal protuberance, and neck circumference taken three inches above the collarbone and 

in line with where the shoulder meets the neck. 

 

2.2.2 Pulmonary Function 

Pulmonary function of OSA patients was assessed during diagnostic examination in the Pulmonary 

Department of Ysbyty Gwynedd hospital using standard clinical equipment for spirometry. A trained 

physiologist at Bangor University assessed healthy participants’ pulmonary function data; a 

MicroLoop spirometer (Micro Medical Ltd., Basingstoke, UK) was used following ATS/ERS 

guidelines (Miller et al., 2005). 

2.2.3 Ventilatory response to gas mixtures 

Measurements of the ventilatory response to carbon dioxide and oxygen mixtures were performed 

according to the method by Earing et al. (Earing et al., 2014). In brief, the gas mixtures were ambient 

air, 25% O2 /6% CO2, 13% O2, and 13% O2 / 6% CO2; all gas mixtures were balanced with N2 (BOC 

Ltd., England). Ambient air was used to assess baseline minute ventilation. The volume transducer 

and gas sampling port of the metabolic cart (MetaMax®3B, Cortex Biophysik, Germany) were 

attached to a two-way valve allowing gas to be inspired from a 250 l Douglas bag and expired into the 

atmosphere. All measurement were performed with the metabolic cart calibrated prior to each testing 

session. Participants were blinded to the order of tests, however, the order of gas mixtures were the 

same for all participants (see above). Seated participants were breathing each gas mixture until a 
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plateau in minute ventilation was achieved (up to 5 min), while focussing on a non-dramatic video to 

avoid conscious control of ventilation (Eynan et al., 2003). Expired gas concentrations and minute 

ventilation data were averaged over 5 sec periods. Data of minute ventilation at ambient air over 2 

minutes were used for baseline. For the gas mixtures, the plateau of minute ventilation was detected 

using a moving average filter and the maximal ventilation over a period of 30 seconds was selected 

from the plateau and averaged excluding any outliers. Ambient air minute ventilation results were 

subtracted from minute ventilation data at plateau for the specific gas mixtures to calculate minute 

ventilation changes for the specific gas mixtures (Δ�̇� X% CO2 / Y% O2). All minute ventilation data 

were normalized on body surface area (BSA) to cater for mass related individual differences 

(Menitove et al., 1984). BSA was estimated using the Mostellers equation as previously 

recommended as the most valid for use with obese individuals (Verbraecken et al., 2006). 

2.2.4 Blood samples 

Venous blood samples were only taken from patients with OSA. 10 ml of venous blood was drawn by 

antecubital venepuncture into two 6 ml Vacutainer® EDTA- plasma tubes after overnight fast. Plasma 

was produced by centrifugation (4000 rpm at 4°C (Universal 320R, Hettich Centrifuge, Germany) for 

ten minutes) within five minutes after blood drawing to avoid contamination of blood plasma with 

endocannabinoids produced after drawing of blood (Engeli et al., 2012). Plasma was immediately 

snap frozen in liquid nitrogen and stored at -80°C for batch analysis.  

Endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) were measured in plasma 

samples at the Department of Clinical Pharmacology, Medical School Hanover, Germany, according 

to a method by Zoerner et al. (Zoerner et al., 2012) using  a Waters ACQUITY UPLC–MS/MS 

system consisting of a solvent delivery device, an autosampler, a column thermostat and the tandem 

quadrupole mass spectrometer XEVO TQ MS (Waters, Milford, MA, USA). Further, adiponectin, 

CRP, and leptin were measured by enzyme-linked immunosorbent assay (ELISA) (Biovendor, Czech 

Republic). Adiponectin: intra- and interassay coefficient of variation of 5.4% and 19.7%, respectively; 
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leptin: with intra- and interassay coefficient of variation of 6.4% and 4.2%; CRP: intra- and interassay 

coefficient of variation of 10.0% and 16.8%.  

2.2.5 Data Analysis 

Pulmonary and ventilatory response measurements are expressed in body temperature and pressure 

saturated units (BTPS) with mean ± standard deviation (SD). Several outcome variables were not 

normally distributed, therefore for comparison between groups a non-parametric Mann & Whitney U-

test was used. Parameters which were normal distributed were used in Student’s t test. Correlation 

analysis was performed using bivariate Spearman’s analysis. Linear regression, multiple linear 

regression (backward method). Additionally, mediation analysis using PROCESS 3.0 with SPSS was 

conducted. Mediation analysis is a sequential regression analysis to test a potential indirect 

association between two variables, which may be caused by a third variable (mediator) (MacKinnon 

et al., 2007). Non-normal parameters (i.e. FVC, BMI, end-tidal PCO2, AHI, CRP, leptin) were 

successfully log-transformed for the former analyses. Non-parametric data are displayed with Tukey’s 

hinges (25, 50, and 75 percentiles) and mean and SD. Data were analysed using Statistical Package 

for the Social Science (IBM SPSS) version 24. Significance levels were reported if lower than p<0.05. 

For reduction of type I errors due to multiple comparisons, False Discovery Rate (FDR) procedure by 

Benjamini & Hochberg (Benjamini and Hochberg, 2000) was performed with a false discovery rate of 

0.10, and significant comparisons marked by *. 

 

3. Results 

Body characteristics of patients with obstructive sleep apnoea (OSA) (n=46) and healthy individuals 

(n=45) are shown in Table 1; groups were significantly different in their body measures. OSA patients 

were older and had larger weight, BMI, neck, waist. Based on means, OSA patients belonged to the 

obese category (BMI>29.9), while healthy individuals to the overweight category (BMI>24.9).  

TABLE 1 
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As expected, pulmonary function parameters for OSA patients were lower than for HI, although 

patients’ values were comparable with age-, sex- and height-predictions (Table 2). FEV1/FVC of 

OSA patients’ group were in the age, sex, and height predicted range (Roca et al., 1998), and seemed 

not pathologically altered. However, FVC was negatively correlated with BMI (rho=-0.374, p=0.032) 

in the OSA group, as expected. OSA patients had a wide range of apnoea hypopnoea index (AHI), 

with most of the patients having moderate to severe symptoms (Table 2). No significant difference in 

end-tidal PCO2 was reported between OSA patients and HI. Moreover, HI were asymptomatic for 

daytime sleepiness (Epworth Sleepiness Score = 4.43 ± 2.94) and sleep quality scores (Pittsburgh 

Sleep Quality Index = 4.13 ± 2.31).  

Measurements of the ventilatory responses to carbon dioxide and oxygen mixtures indicated that OSA 

patients had significant lower ventilatory responses to hypercapnic and hypoxic gas mixtures than HI 

(Table 2). However, the percentage alteration of the ventilatory response to 6% carbon dioxide 

between hyperoxic and hypoxic gas mixtures was not different between groups. 

TABLE 2  

Correlation analysis of AHI with pulmonary function parameters and ventilatory responses to gas 

mixtures showed that AHI was significantly negatively correlated with the ventilatory response to 

hyperoxic carbon dioxide gas mixture (Δ�̇� 6% CO2 / 25% O2) (Table 3). Patients with higher OSA 

severity were centrally less sensitive to carbon dioxide than patients with mild OSA. In contrast, AHI 

did not correlate with responses to hypoxic-hypercapnic gas mixture. Additionally, end-tidal PCO2 was 

not associated with AHI; however, Δ�̇� 6% CO2 / 25% O2 and Δ�̇� 6% CO2 / 13% O2 were negatively 

correlated with end-tidal PCO2; rho=-0.620, p<0.001 and rho=-0.515, p=0.001, respectively. Patients 

with reduced sensitivity to carbon dioxide had higher end-tidal carbon dioxide values during ambient 

air breathing.  Δ�̇� 6% CO2 / 25% O2 and Δ�̇� 6% CO2 / 13% O2 were also significantly correlated with 

end-tidal PCO2 for the combined groups (OSA plus HI) (n=85), rho=-0.414, p<0.001, and rho=-0.361, 

p=0.001, respectively. No association between end-tidal PCO2 with ventilator response to hypoxic gas 

was found. 
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Body characteristics were positively correlated with AHI in the OSA group, in particularly with neck 

and waist circumference, as well as with BMI (Table 3), as expected.  

 

TABLE 3 

To further investigate the influence of body characteristic parameters on the ventilatory response to 

hypercapnic and hypoxic gas mixtures, we analysed the ventilatory response data from OSA and HI 

together (Table 4). Correlation analysis revealed that the response to hypercapnic gasses was 

negatively correlated with body characteristics; with increasing BMI and body circumferences the 

response to carbon dioxide declined. Results with hypoxic gas showed very low association with body 

characteristics for the collapsed groups’ data; however, for OSA patients, significant low positive 

correlation were found with BMI and waist.  

In the combined group of male participants, multiple regression analysis, using body and age 

characteristics as predictor variables, showed that BMI was the most significant predictor explaining 

about 28% of the variance in ventilatory response to carbon dioxide (i.e. Δ�̇� 6% CO2 / 25% O2, 

R2=0.276, F (1/85) = 32.0, p<0.0001); participants with higher BMI revealed a lower Δ�̇� 6% CO2 / 

25% O2 (β = -0.525). Lower values were reported with neck circumference as predictor (not shown). 

Moreover, within the OSA group, multiple regression analysis confirmed the importance of BMI for 

the prediction of Δ�̇� 6% CO2 / 25% O2 ; about 30% of the variance of the central carbon dioxide 

response was explained by BMI (R2=0.308, F(1/45) = 18.247, p<0.0001; β = -0.555).  

TABLE 4 

To investigate the connection between AHI and the observed reduced ventilatory response to carbon 

dioxide, as well as their association with body characteristics in OSA patients, we performed a 

mediation analysis using regression with bootstrapping (5000 samples); we entered Δ�̇� 6% CO2 / 25% 

O2 as the outcome variable, AHI as predictor variable, and BMI as the mediator (Figure 1). 

Confirming a possible direct effect, AHI was a significant predictor of Δ�̇� 6% CO2 / 25% O2, b = -



12 
 

2.2871, SE = 0.8955, 95% LLCI: -4.0956, UPCI: -0.4786. However, AHI was no longer a significant 

predictor of Δ�̇� 6% CO2 / 25% O2 after controlling for BMI, b = -0.9201, SE = 0.8999, 95% LLCI: -

2.7389, UPCI: 0.8987, ns, consistent with full mediation. Additionally, BMI was a significant 

predictor of Δ�̇� 6% CO2 / 25% O2, b = -15.648, SE = 3.108, 95% LLCI: -21.490, ULCI: -9.291, and 

AHI was a significantly regressed on BMI, b =0.0995, SE = 0.0305, 95% LLCI: 0.0380, ULCI: 

0.1610. Approximately 33% of the variance in Δ�̇� 6% CO2 / 25% O2 was accounted for by the 

predictors (R2 = 0.326, p<0.001). Bootstrap estimation of the indirect effect indicated the indirect 

coefficient was significant, b = -1.3670, SE = 0.569, 95% LLCI = -2.6881, ULCI = -0.4763. These 

results reveal that the effect of AHI on ventilatory response to carbon dioxide was fully mediated by 

BMI.  

 

FIGURE 1 

 

TABLE 5 

 

To further explore reasons for the dual influence of BMI on AHI and ventilatory responses to the 

various gas mixtures in OSA patients, we investigated a possible involvement of cytokines and 

adipokines, which are known to be typically associated with high body mass. We assessed leptin, 

adiponectin, CRP and the two endocannabinoids, 2-arachidonoylglycerol (2-AG) and anandamide 

(AEA), in venous blood samples (Table 5). Correlation analysis showed that neither of the factors was 

significantly associated with AHI. However, Δ�̇� 6% CO2 / 25% O2 was negatively correlated with 

CRP and leptin, however, not significant after FDR procedure for multiple comparisons (Table 5); no 

correlations were found with Δ�̇� 6% CO2 / 13% O2. Linear regression analysis showed that about 

25% of Δ�̇� 6% CO2 / 25% O2 variance could be explained by CRP levels in OSA patients (R2 = 

0.263, p = 0.017; β = -0.513), while leptin explained about 15% (R2 = 0.156, p = 0.038; β = -0.395).  

Consequently, a considerable proportion of the effect of BMI on Δ�̇� 6% CO2 / 25% O2 can be 

explained by CRP and leptin but no contribution was found for AHI. 
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Ventilatory response to hypoxia, Δ�̇� 13% O2, was positively correlated with CRP and 2-AG (Table 5). 

Particularly, 2-AG was strongly correlated and regression showed that it could explain 42% of the Δ�̇� 

13% O2 (R2 = 0.418, p < 0.001), while CRP could explain 19% of the ventilatory response to 13% 

oxygen (R2 = 0.190, p=0.048).  

Moreover, biochemical factors were associated with body characteristics. In particular, leptin and 

CRP were positively correlated with BMI, while CRP and 2-AG were negatively correlated with 

pulmonary function FVC and FEV1. In particular, high associations between pulmonary function 

parameters and ventilatory response to hypoxia were apparent for 2-AG.  

Based on the former finding that 2-AG explained the largest proportion of variance in Δ�̇� 13% O2 and 

CRP lost its significance in a multiple regression model with 2-AG as predictor variables of hypoxic 

ventilatory response (not shown), we focused on 2-AG in relation to hypoxic response.  

To interpret the importance of 2-AG for the connection between increased ventilatory response to 

hypoxia with lower FVC (rho=-0.359, p=0.021), we performed an additional mediation analysis using 

regression with bootstrapping (5000 samples); we entered Δ�̇� 13% O2 as the outcome variable, FVC 

as predictor variable, and 2-AG as the mediator (Figure 2). Results indicated that FVC was a 

significant predictor of 2-AG, b =-8.246, SE = 1.941, 95% LLCI: -12.303, ULCI:  -5.564. 

Additionally, 2-AG was a significant predictor of Δ�̇� 13% O2, b = 0.281, SE = 0.077, 95% LLCI: 

0.150, ULCI: 0.456. Confirming a possible direct effect, FVC was a significant predictor of Δ�̇� 13% 

O2, b = -3.877, SE = 1.295, 95% LLCI: -6.570, UPCI: -1.184. However, FVC was no longer a 

significant predictor of Δ�̇� 13% O2 after controlling for 2-AG, b = -1.074, SE = 1.514, 95% LLCI: -

4.232, UPCI: 2.084, ns, consistent with full mediation. Approximately 49% of the variance of Δ�̇� 

13% O2 was accounted for by the predictors (R2 = 0.494, p<0.001). Bootstrap estimation of the 

indirect effect indicated the indirect coefficient was significant, b = -2.802, SE = 1.625, 95% LLCI =  

-6.265, ULCI = -0.190. These results reveal that the effect of FVC on ventilatory response to hypoxia 

was fully mediated by 2-AG. Further, mediation analysis revealed that the association of CRP with 
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Δ�̇� 13% O2 was not significant in a mediation model (not shown). Consequently, higher 2-AG levels 

contributed strongly to the enhancement of hypoxic response in OSA patients. 

 

FIGURE 2 

 

 

4. Discussion 

In the first part of this study, we measured the ventilatory response to carbon dioxide and oxygen 

mixtures to investigate central and peripheral chemosensitivity during wakefulness in obstructive 

sleep apnoea patients and healthy individuals and their connection with body characteristics. 

Importantly, we selected newly diagnosed, untreated OSA patients, due to the reported influence of 

continuous positive airway pressure (CPAP) treatment on chemosensitivity (Loewen et al., 2009; 

Salloum et al., 2010). Our results show that patients with OSA possess a reduced ventilatory response 

to hypercapnia and hypoxia in wakefulness in comparison with healthy individuals, suggesting that 

central and peripheral chemosensitivity is reduced in OSA patients. In agreement with our findings, 

former studies with OSA patients revealed reduced ventilator response to carbon dioxide (Gold et al., 

1993; Javaheri et al., 1994; Littner et al., 1984), which was more often found in patients with elevated 

PaCO2 (Ayappa et al., 2002; Han et al., 2001). Additionally, Osanai et al. (Osanai et al., 1999) found a 

reduction of peripheral chemosensitivity in OSA patients compared with controls. However, former 

studies did not use the combination of CO2 gasses with different oxygen concentrations in an attempt 

to differentiate central and peripheral responses as recommended by Duffin (Duffin, 2007).  

A very consistent finding in former studies is the association of higher BMI for OSA patients with 

reduced response to carbon dioxide (Han et al., 2001; Javaheri et al., 1994), which was even stronger 

in patients with daytime hypercapnia (Resta et al., 2000). In contrast, in a study comparing OSA 

patients with BMI matched controls, the ventilatory response to carbon dioxide was still significantly 

reduced compared with controls but not the hypoxic response (Gold et al., 1993) suggesting that a 



15 
 

reduced response to carbon dioxide may be independent of BMI in OSA. However, in our study, 

within patients with OSA, as well as in the combined data with healthy individuals, a negative 

association of carbon dioxide response with BMI was found (about 30% variance of hypercapnic 

response explained by BMI in regression analyses). 

Interestingly, the severity of OSA, i.e. AHI scores, was negatively associated with the ventilatory 

response to carbon dioxide (hyperoxic gas mixture) but not with the hypoxic response in OSA 

patients, suggesting that this association was mainly driven by central chemoresponse. Other 

polysomnography parameters (not shown), like average oxygen saturation and frequency below 85% 

saturation were highly correlated with AHI and did not show stronger associations with 

chemosensitivity parameters. Therefore, AHI was used throughout the manuscript. 

An early hypothesis in relation to the mechanisms responsible for OSA was that nocturnal 

hypercapnia and hypoxia would lead to gradual adaptation of central and peripheral chemoreceptors 

(Dempsey and Forster, 1982). Conversely, our mediation analysis showed that the effect of AHI 

scores on carbon dioxide response was not direct, but fully mediated by BMI. This suggests that BMI 

related mechanisms, possibly via biochemical and mechanical factors may be more relevant for the 

observed decline in CO2 response in OSA patients than the frequency of apnoea-hypopnoea periods. 

Indeed, findings of reduced ventilator response to carbon dioxide are known in patients with obesity 

hypoventilation syndrome (OHS) (Shetty and Parthasarathy, 2015). It is reported that 90% of OHS 

patients have been suggested to have some degree of OSA (Cooksey and Mokhlesi, 2016). While the 

OSA patients in our study were not diagnosed with OHS, not meeting the clinical criteria (Al Dabal 

and BaHammam, 2009), the endtidal pCO2 was not significantly different compared to the HI group. 

However, significant negative correlation of ventilatory hypercapnic response with endtidal pCO2 was 

found. Additionally, endtidal pCO2 was also positively correlated with BMI in OSA patients, as well 

as in the collapsed data of both groups. Undoubtedly, endtidal pCO2 is not as strong as arterial blood 

pCO2 for indication of hypercapnia in OHS; however, its clinical validity is supported by studies even 

with patients with increased dead space (Donald and Paterson, 2006; McSwain et al., 2010). 

Consequently, our data supports a crucial importance of high BMI for the reduction of the ventilatory 
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response to CO2 in OSA patients in wakefulness. Considering our observed association of mainly 

central ventilatory CO2 response with AHI, it was the question what importance this finding may have 

as a contributing factor for obstructive sleep apnoea together with peripheral chemosensitivity.  

According to Dempsey et al. (Dempsey et al., 2014), two sleep-induced changes are significant in 

OSA: the changes in the mechanics of the upper airways and the importance of chemosensitivity for 

the control of respiratory motor output. In particular, differences in the involvement of peripheral and 

central chemoreceptors balance are suggested in OSA (Dempsey, 2005). Indeed, peripheral 

chemoreflex was stronger in OSA patients without comorbidities (Narkiewicz et al., 1999) and was 

particularly elevated below eupnea during sleep (Salloum et al., 2010). Work by Xie et al (Xie et al., 

2013) highlighted the importance of the peripheral chemoreceptor by showing that hyperoxia 

prolonged the apnoea length in OSA patient during sleep, while supplemental oxygen could reduce 

AHI in OSA patients with high loop gain (Wellman et al., 2008). A shifted importance of 

chemosensitivity from central during wakefulness to the periphery might explain that reduced 

chemosensitivity in wakefulness can coexist with elevated controller gain during sleep.  

In the second part of this study, we investigated biochemical factors, which could explain the strong 

associations of OSA and alterations in chemosensitivity with BMI. Measuring BMI associated 

biochemical factors suggested to be influencing ventilatory chemosensitivity, we found that a 

significant proportion of the variance of ventilatory CO2 response could be explained by leptin (15%) 

and CRP (25%). Indeed, OSA patients with higher leptin and CRP had a stronger reduction of 

ventilatory response to CO2 than patients with lower levels. Earlier, CRP was shown to be positively 

associated with AHI in OSA patients (Shamsuzzaman et al., 2002), which was independent of visceral 

obesity (Lui et al., 2009). CRP was shown to be linked with IL-6 in inflammatory processes seen in 

cardiovascular diseases (Van Gaal et al., 2006) and COPD (Gan et al., 2004). Indeed, influence of 

inflammatory factors like IL6 and TNF alpha has been shown to influence chemoreceptor sensitivity 

in the carotid bodies of rats linking these factors to adaptation to chronic hypoxia (Liu et al., 2009). 

Moreover, inflammatory factors are linked to sleep disordered breathing in OHS and OSA (Al Dabal 

and BaHammam, 2009; Ryan, 2017; Zamarron et al., 2008).  
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A positive association of leptin with suppression of CO2 response in OSA patients is reported in 

connection with OSA and OHS (Malli et al., 2010). Reduced leptin sensitivity is known to be strongly 

associated with obesity and elevated leptin levels were associated with reduced respiratory drive and 

hypercapnic response (Campo et al., 2007; O'Donnell et al., 1999). Possible mechanisms between 

leptin and breathing disorders have been recently investigated in animal models, showing that leptin 

acts on central chemosensitivity areas via the brain melanocortin system (Bassi et al., 2015). Indeed, 

our finding of the association of CRP and leptin with reduced ventilator response to CO2 could be 

linked; inflammatory factors can acerbate leptin resistance (Chen et al., 2006; Hribal et al., 2014) and 

would therefore lead to the association of CRP with CO2 response without directly influencing 

chemosensitivity.  

Further factors which could be relevant for the regulation of chemosensitivity are endocannabinoids 

(Kim et al., 2009) and are also known to be potent anti-inflammatory factors (de Lago et al., 2012). 

Indeed, our data show a strong positive correlation between ventilatory response to hypoxia and 2-

AG, which was also negatively correlated with FVC. OSA patients with higher levels of 2-AG had a 

stronger ventilator response to hypoxia. Mediation analysis revealed that the association between FVC 

and hypoxic response was fully mediated by 2-AG. Moreover, 2-AG levels were positively correlated 

with CRP levels in our OSA patient group, suggesting that the elevation of 2-AG could be partly a 

response to the systemic low-level inflammation seen in obesity. In support of an involvement of 

endocannabinoids in the up-regulation of hypoxic response seen in our OSA patients, it was recently 

shown that endocannabinoids can increase chemosensitivity in carotid body glomus cells (Kim et al., 

2009). Relevant for this response seems to be TASK-like potassium channels shown to play a central 

role in oxygen sensing of the carotid body (Buckler, 2007); various endocannabinoids can block 

TASK-like potassium channels relevant for neuronal response to chemical stimuli (Kim et al., 2009; 

Maingret et al., 2001). In this respect, AEA has been more investigated than 2-AG; however, we 

could not find strong association between AEA and the ventilatory response to hypoxia in our OSA 

patient group. Nonetheless, further target receptors are reported to be involved in endocannabinoid 

response of the carotid bodies (Roy et al., 2012). AEA and 2-AG have been shown to increase 
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pulmonary arterial pressure via CB1 receptors in rat lungs and lung tissue seems to be also involved in 

endocannabinoid metabolism (Wahn et al., 2005). Consequently, an involvement of endocannabinoids 

in the upregulation of peripheral chemosensitivity in OSA seems likely. 

Summarized, we found inflammatory factor CRP and leptin negatively associated with ventilatory 

hypercapnic response and anti-inflammatory factor 2-AG positively associated with ventilatory 

response to hypoxia in OSA patients.  To interpret our findings in connection with a mechanistic link 

between obesity related biochemical factors and chemosensitivity in wakefulness for OSA, it could be 

hypothesized, that high adipocyte mass increases levels of adipokines and mediates chronic low-level 

inflammation. Inflammatory factors could contribute to leptin resistance and would reduce central 

chemosensitivity. Accordingly, anti-inflammatory response i.e. endocannabinoids, which might be 

more elevated if pulmonary function is reduced, would lead to an upregulation of peripheral 

chemosensitivity in the carotid bodies.  In wakefulness, this shift towards higher oxygen and CO2 

sensitivity of carotid bodies in face of a reduced CO2 response in the centre might be a beneficial 

alteration. However, during sleep, where the responsibility for the respiratory drive shifts more to the 

periphery, the imbalance in the regulatory systems might lead to increased breathing instability and 

exaggerated compensatory response after apnoeic periods, in particular connected to loop gain. Both 

OSA and OHS would therefore share mechanisms, which are ultimately connected with obesity. 

Indeed, weight loss has been shown to have beneficial effects on both, OSA and OHS (Foster et al., 

2009; Piper and Grunstein, 2010) and the involvement of the above mentioned biochemical factors 

might also open a novel pharmaceutical approach for OSA and OHS treatment.  

Our study has several limitations, we have only measured the ventilatory response to hypercapnia and 

hypoxia in wakefulness, the additional measurement in sleep would have strengthened the 

interpretation of our data. Moreover, ‘healthy’ individuals where assessed by ESS and PSQI and not 

by polysomnography for exclusion of participants with OSA, which adds a risk of inclusion of 

undiagnosed participants with mild OSA in this group.  

This study is correlative and therefore interpretations of causative relationships between parameters 

need to be taken as a starting point. However, our study suggests connections between biochemical 
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factors related to obesity, central and peripheral chemosensitivity in wakefulness, and AHI in OSA 

patients, which could explain some of the overlapping and divergent findings in the literature 

regarding the involvement of chemosensitivity in wakefulness and sleep in OSA. 

5. Conclusion  

Our outcomes show that the reduced central chemoresponse to carbon dioxide in OSA patients could 

be partially explained by obesity related inflammatory factors. Anti-inflammatory factors, being 

strongly positively associated with an elevation of ventilatory response to hypoxia, suggest a shift of 

ventilatory regulation towards the periphery. A shift of balance in the ventilatory regulation towards 

the periphery is suggested to contribute to the exacerbation of OSA. 
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Legends for Figures: 

 

Figure 1: Mediation Analysis for the effect of AHI on chemosensititvity to carbon dioxide with BMI 

as mediator. Beta values (b) and standard errors (SE), and standardized beta values (β) from 

regression analysis next to solid lines between variables shown in boxes; values below dashed line 

depicts beta value (b)and standard error (SE) after controlling for indirect effects. *, p<0.05; ns, not 

significant. 

 

Figure 2: Mediation Analysis for the effect of FVC on chemosensitivity to hypoxia with 2-AG as 

mediator. Beta values (b) and standard errors (SE), and standardized beta values (β) from regression 

analysis next to solid lines between variables shown in boxes; values below dashed line depicts beta 

value (b)and standard error (SE) after controlling for indirect effects. *, p<0.05; ns, not significant. 
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Table 1 - Body characteristics of patients with OSA and healthy individuals (HI)  

Parameter: OSA HI Mann & Whitney U 

P value 

N 46 45  

Age (yrs.) 53.2 ± 10.9      

(45.5|54.5|63.5) 

33.1 ± 9.0 

(26.0|34.0|41.0) 

<0.0001* 

Height (cm) 174.5 ± 7.1 

(169.3|174.4|181.0) 

178.8 ± 7.0 

(174.0|179.4|183.3) 

0.001* 

Mass (kg) 106.0 ± 21.1    

(90.0|100.5|119.5) 

80.2 ± 13.5 

(72.5|77.0|83.8) 

<0.0001* 

Neck (cm) 44.3 ± 3.8        

(41.8|43.5|47.0) 

38.7 ± 2.4 

(37.4|38.5|40.0) 

<0.0001* 

Waist (cm) 114.0 ± 14.7 

(103.0|109.3|126.0) 

87.4 ± 9.5 

(81.0|86.3|90.0) 

<0.0001* 

BMI (kg/m2) 35.0 ± 6.5 

(29.8|33.7|39.6) 

25.0 ± 3.4 

(22.5|24.2|25.9) 

<0.0001* 

Values represented mean ± standard deviation, Tukey’s Hinges in brackets. *, significant using 

Benjamini-Hochberg procedure for multiple comparisons with false discovery rate of 0.10. 
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Table 2 - Pulmonary function data, ventilatory response to carbon dioxide and hypoxia in OSA 

patients (OSA) and healthy individuals (HI)  

Parameter: OSA  HI P value   

N 46 45  

AHI 34.64 ± 25.50 

(13.30|29.7|49.45) 

N/A N/A 

ESS N/A 4.43 ± 2.94 

(2.0|5.0|6.0) 

N/A 

PSQI N/A 4.13 ± 2.31 

(2.0|3.0|6.0) 

N/A 

FEV1 (l) 3.30 ± 0.58 4.38 ± 0.77 <0.0001* 

FVC (l) 4.22 ± 0.75 5.16 ± 0.84 <0.0001* 

FEV1/FVC (%) 78.53 ± 7.14 85.78 ± 15.60 <0.0001* 

End-tidal PCO2 

(mmHg) 

43.60 ± 7.81 

(36.89|43.25|51.18) 

41.89 ± 4.26 

(39.60|41.00|44.02) 

0.724 

Ambient air; 

minute ventilation 

(l/min) per BSA 

(m2) 

4.66 ± 1.24 

 

5.86 ± 0.73 <0.0001* 

Δ�̇� 6% CO2 / 25% 

O2 

4.79 ± 2.17 

 

6.99 ± 2.75 <0.0001* t 

Δ�̇� 13 % O2  

 

0.93 ± 0.76  

 

1.73 ± 0.98 <0.0001* t 

Δ�̇� 6% CO2 / 13 % 

O2  

5.76 ± 2.54 

 

8.49 ± 2.93 <0.0001* t 

Percentage change 

in Δ�̇� 6% CO2 

from 25% O2 to 13 

% O2  

37.34 ± 73.21 

(-1.47|19.62|78.54) 

36.05 ± 67.18 

(-1.53|22.42|49.87) 

0.881 

Values represented mean ± standard deviation, Tukey’s Hinges in brackets. P values are according to 

Mann & Whitney U tests with exception of t labeled data tested with Student’s t test. *, significant 

using Benjamini-Hochberg procedure for multiple comparisons with false discovery rate of 0.10. 
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Table 3 - Correlation of pulmonary function, ventilatory response to carbon dioxide and oxygen gas 

mixtures, and body characteristics within OSA patients  

Parameter:   Parameter:   

(N=46)   (N=46)   

 AHI P value  AHI P value 

Δ�̇� 6% CO2 / 25% 

O2  

-0.329* 0.026 Neck (cm) 0.555* <0.0001 

Δ�̇� 13 % O2   0.013  Waist (cm) 0.456* 0.001 

Δ�̇� 6% CO2 / 13 % 

O2  

-0.155  BMI (kg/m2) 0.483* 0.001 

Data represents bivariate Spearman’s rho; P values < 0.05 are listed. *, significant using Benjamini-

Hochberg procedure for multiple comparisons with false discovery rate of 0.10. 
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Table 4 - Correlation of body characteristics with change in minute ventilation to hypercapnic and 

hypoxic gas mixtures from ambient air levels (OSA plus HI) and OSA  

Parameter:      

OSA plus HI (N=86) 

 Age (yrs.) Neck (cm) Waist (cm) BMI (kg/m2) 

Δ�̇� 6% CO2 / 

25% O2 

 -0.303* 

(0.005) 

 -0.491* 

(<0.0001) 

 -0.496* 

(0.0001) 

 -0.482* 

(<0.0001) 

Δ�̇� 13 % O2 
 -0.154 

 

 -0.203 

 

 -0.248* 

(0.021) 

-0.238* 

(0.027) 

Δ�̇� 6% CO2 / 

13 % O2 

 -0.273* 

(0.011) 

 -0.482* 

(<0.0001) 

 -0.519* 

(<0.0001) 

 -0.498* 

(<0.0001) 

OSA (N=46)     

Δ�̇� 6% CO2 / 

25% O2 

 -0.096 

 

 -0.395* 

(0.0009) 

 -0.354 

 

 -0.516* 

(0.0004) 

Δ�̇� 13 % O2 
 0.299 

 

 0.265 

 

 0.254 

 

 0.259 

 

Δ�̇� 6% CO2 / 

13 % O2 

 0.083 

 

 -0.185 

 

 -0.310 

(0.043) 

 -0.374* 

(0.013) 

Data represents bivariate Spearman’s rho; P values < 0.05 in brackets. *, significant using Benjamini-

Hochberg procedure for multiple comparisons with false discovery rate of 0.10. 
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Table 5 - Cytokine and hormone levels and their correlations with respiratory characteristics in 

patients with OSA 

Parameter: 

Mean ± SD 

(Tukey’s 

Hinges) 

Leptin 

(ng/ml) 

(N=31) 

31.41 ± 21.51 

(13.5|21.2|40.4) 

Adiponectin 

(ng/ml) 

(N=32)  

8.87 ± 3.92 

CRP 

(µg/ml) 

(N=24)  

4.61 ± 3.29 

(2.0|4.0|5.6) 

AEA (nM) 

(N=30)  

 

0.95 ± 0.27 

2-AG (nM) 

(N=30)  

 

3.51 ± 1.47 

 

 Leptin Adiponectin CRP AEA 2-AG 

Adiponectin  -0.118 

 

       

CRP  0.553* 

(0.008) 

 -0.092 

 

    

AEA   0.111 

 

0.156 

 

 0.237 

 

   

2-AG  0.197 

 

 -0.178 

 

 0.471 

(0.027) 

 0.159 

 

 

AHI  0.243 

 

0.001 

 

-0.019 

 

0.136 

 

-0.034 

 

Δ�̇� 6% CO2 / 

25% O2 

-0.354 

 

 -0.074 

 

 -0.434 

(0.046) 

 -0.088 

 

 0.076 

 

Δ�̇� 13 % O2  0.153 

 

-0.035 

 

 0.474 

(0.030) 

 0.036 

 

0.626* 

(0.0005) 

Δ�̇� 6% CO2 / 

13 % O2 

 -0.184 

 

 -0.222 

 

 -0.501 

(0.021) 

 -0.263 

 

 0.053 

 

BMI 0.822* 

(<0.0001) 

 -0.172 

 

 0.652* 

(0.001) 

 0.186 

 

 0.318 

 

FVC  -0.124 

 

 0.029 

 

-0.366 

 

-0.107 

 

 -0.657* 

(0.0004) 

FEV1  -0.301 

 

 -0.088 

 

 -0.437 

 

 -0.143 

 

 -0.609* 

(0.001) 

Data represents bivariate Spearman’s rho; P values < 0.05 in brackets. *, significant using Benjamini-

Hochberg procedure for multiple comparisons with false discovery rate of 0.10. 


