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financial crisis. The reported stochastic volatility exhibits a rising trend as early as 

2003-2004 and could act as an early warning of future crisis.  
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1. INTRODUCTION 

Assessment over fund managers’ performance has received considerable attention since 

the seminal paper of Jensen (1968) with mixed findings, as it is openly challenged 

whether funds would outperform their passive benchmark (Gruber 1996, Carhart 1997; 

Lunde, et al. 1999; Fama and French 2010; Basak and Makarov, 2014; Cullen et al., 

2012; Cabello et al. 2014; Utz et al. 2015; Vidal-García et al. 2018; Giuzio Kay et al. 

2018).  

 

At the core of the dispute is accurately measuring the performance of funds. Traditional 

performance measures compare the returns of the examined portfolio to the returns of 

an unmanaged portfolio of comparable risk. A number of measures of funds’ 

performance such as the net return ratio, the abnormal return using panel data set 

(Khorana and Servaes, 2012; Blake, et al. 2014 & 2017). The abnormal return is the 

difference between fund’s return and the return of a portfolio which share the same risk 

characteristics as the fund in consideration. Other measures include: a dummy that 

equals to 1 if a particular family of funds has at least one fund operating in the top 5% 

best performing funds of a given category in a given year (Khorana and Servaes, 2012); 

the Sharpe ratio (Daraio and Simar, 2006), whereas risk is computed as the standard 

deviation of monthly returns (Huang et al., 2007).1 Ferson and Lin (2014) using panel 

data focus on alphas and argue that there should be some bounds that depend on cross 

sectional investor heterogeneity with the flow response to past fund alphas. This strand 

of research picks earlier findings (see Clode, 2011; and Busse 2001) arguing that alphas 

might not be without issues when it comes to select a fund. The underlying 

 
1 However, several drawbacks of these metrics such as their inability to incorporate funds’ transaction 

costs or the issue of selecting the proper benchmark have fuelled the introduction of performance 

measures that rely on frontier analysis in the spirit of Koopmans (1951) and Farrell (1957). 

file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_34
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_34
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autocorrelation could explain results whist the hypothesis of funds being cross-

sectionally independent might not be valid (Goriaev et al. 2005).2  

 

Beyond issues related with accurately measuring finds’ performance, there is an open 

discussion regarding what are the important covariates of funds’ performance. As 

expected, focus has been for some time on the role of risk. Most studies show that, 

indeed, risk is important for funds’ performance (Giuzio Kay et al. 2018; Vidal-García 

et al. 2018; Utz et al. 2015; Basak and Makarov, 2014; Brown et al., 1996; Cullen et 

al., 2012; Goriaev et al., 2005; Koski and Pontiff, 1999).3 Brown et al. (2001) examine 

both competition and risk in the hedge fund, reporting similar results as in Brown et al., 

(1996). Busse (2001) show that poorly performing fund managers alter their risk to be 

able to catch up with interim winners at the end of the year. Basak and Makarov (2014) 

focus on the manager’s portfolio choice with respect to the strategic interactions among 

managers competing for fund flows. Their model builds on the strategic behaviours of 

two risk-averse managers, revealing that a manager either wins or loses, and never opts 

for a draw.4  

 

Other studies (Prather et al., 2004; Vidal-García et al. 2018; Giuzio Kay et al. 2018) 

report the link between fund performance and various operational characteristics such 

 
2 Kempf and Ruenzi (2008) study the competition between fund managers across funds’ family. They 

argue that an optimal policy of fund managers is to alter their risk-taking. Studying US equity mutual 

funds between 1993 and 2001, they report the presence of the family tournament, which is more 

pronounced in large families. 

3 Brown et al. (1996) identify that interim losers who underperform the benchmark in the first half of the 

year are likely to increase their risk relative to mid-year winners. Funds are ranked according to their 

cumulative return, while risk is measured by the ratio of fund’s standard deviation after the interim 

performance assessment to its standard deviation before that date. Another proxy for risk is the tracking 

error variance, which is the variance of the difference between fund’s return and the value-weighted 

market index (Chevalier and Ellison, 1997). 

4 Basak and Makarov (2014) show that, even when a manager is significantly ahead in the tournament, 

her investment behaviour and thus portfolio volatility is still influenced by the tournament incentives. 

In addition, Sato (2015) show the importance of flow-performance relationship and asset bubbles. 
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as expenses, size, past performance. This type of information could be rather beneficial 

to investors who decide among offered funds should a reliable relation exists between 

a fund’s performance and some of its observable characteristics. Ferson and Mo (2016) 

argue that a well-specified performance measure should be based on the sum of 

covariance between the portfolio holdings and the subsequent abnormal, or risk-

adjusted returns, with an underlying stochastic discount factor (see also Cabello et al. 

2014). Their modelling has certain appeal, but it still does not address issues related to 

time-varying covariance where the evidence shows that indeed this is the case (Cabello 

et al. 2014; Utz et al. 2015; Ferson and Mo 2016; Basak and Makarov 2014; Blake et 

al. 2014 & 2017).  

 

From the above literature becomes apparent that to date there is no silver bullet 

regarding an appropriate modelling of mutual fund performance and its underlying 

determinants across funds and over time. This paper bridges a gap in the literature by 

providing a novel way modelling mutual funds’ performance, relaxing some of the 

strong assumptions in the literature. Moreover, we argue that time-varying 

heteroskedasticity and time-varying covariances (in line with Ferson and Mo 2016; 

Blake, D., et al. 2014 & 2017) are of importance for measuring mutual fund 

performance without resorting to strong assumptions regarding the unobservable 

underlying idiosyncratic characteristics of the fund managers. To this end, the purpose 

of our study is fourfold. First, we propose a new Bayesian panel model that captures 

time-varying heteroskedasticity and time-varying covariances in funds’ performance as 

well as general autocorrelation and the underlying stochastic volatility. Second, this 

model allows measuring persistence and it takes also into account errors in the 

variables. This is commonly acknowledged (Annaert et al. 2003; Barber 2012; Ferson 
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and Mo 2016; Basak and Makarov 2014; Blake, D., et al. 2014 & 2017), but we are not 

aware of any previous studies that have dealt with the issue. Our modelling departs 

from prior strong assumptions, for example that error terms across funds are 

independent (Ferson and Mo 2016; Basak and Makarov 2014; Blake, et al. 2014,  2017; 

Casarin and Marin, 2009). Third, as the estimation of this new model is cumbersome, 

we apply Bayesian techniques that facilitate the robustness of the estimation (Annaert 

et al. 2003; Barber 2012). Bayesian analysis is implemented using state-of-the-art 

Sequential Monte Carlo / Particle-Filtering (SMC/PF) techniques. Fourth, we broaden 

the findings of the relatively few studies measuring fund performance for an up to date 

set concerning US mutual funds for which we demonstrate that results remain stable 

across different priors as reported from the mapping of the prior to the posterior.  

 

A preliminary review of our results reveals that risk asserts a positive and significant 

impact on US mutual finds’ performance across different specifications, whilst all Fama 

and French five factors also show strong positive and significant effect on funds’ 

performance. There has been striking variability in terms of performance and 

persistence across funds categories and over time, and in particular through the financial 

crisis. The reported stochastic volatility exhibits a rising trend as early as 2003-2004 

and could act as an early warning of future crisis. We show that our results are stable 

across different priors as reported from the mapping of the prior to the posterior of the 

Bayesian baseline model with the adoption of different priors. Using likelihood-based 

techniques, especially Bayesian methods organized around Sequential Monte Carlo, we 

avoid the need for asymptotically-based inferences which can be misleading in finite 

samples and in general models which consider almost all features of commonly 

employed panel data sets. 
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The rest of the paper is organized as follows: Section 2 presents the new performance 

model for funds, whilst section 3 reports the data set. Section 4 discusses empirical 

results. Finally, Section 5 provides some concluding remarks and policy implications. 

2. METHODOLOGY 

2. 1 Fund’s performance and persistence model  

So far in the literature performance is characterised by a number of measures, such as 

net return ratio, abnormal return, Sharpe ratio (Daraio and Simar, 2006; Khorana and 

Servaes, 2012; Blake, et al. 2014, 2017; Ferson and Mo 2016; Ferson and Lin 2014; 

Casarin and Marin, 2009). Moreover, we build on the earlier research by Blake, et al. 

(2014, 2017) suggest that an efficient way of measuring mutual funds’ performance is 

to apply bootstrap methods. The authors effectively pool observations over time, 

whereas some cross-correlation of fund returns is allowed. We argue that such 

modelling is too restrictive in the underlying assumptions as heteroskedasticity, errors 

in variables, covariance across funds, and volatility are not effectively captured. In 

addition, we augment Ferson and Mo (2016) by allowing time varying 

heteroskedasticity and covariance of fund performance.  

 

At this point it is, perhaps, of interest to explain why we use a Bayesian approach: (a) 

we have a number of latent variables in our model so, from the practical point of view, 

the Bayesian approach is preferable; (b) in the Bayesian approach it is possible to test 

the effect of various prior assumptions on the results; (c) Bayesian inference provides 

exact (as opposed to asymptotically—based) results for the given data. In the case of 

mutual funds, we find this last point as particularly important. The frequentist 

framework (particularly for t-statistics of selectivity) rely on fund performance that 

file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_15
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_34
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_34
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could have been observed but it was not actually observed.  It is possible to obtain 

Bayesian results conditional on the fact that certain parameters are (or are not) 

statistically “significant” (which, again, depends on the universe of data that could have 

been observed but they never actually did).  

 

In dynamic panel data (DPD) the situation is even more critical as existing method of 

moment techniques (Chen et al., 2004; Ferreira et al., 2012; Chen et al., 2013;  Khorana 

and Servaes, 2012) may behave erratically in finite samples and depend on the use of 

instruments whose validity has to be tested, although there is no satisfactory testing 

procedure for valid instruments to the best of our knowledge. The only successful 

Bayesian study on which we rely, for the most part, is Hsiao, et al. (1999) which has 

not diffused much into the literature on DPD and mutual funds, in particular. 

We propose the following model: 

  ,  1,..., ,  1,..., ,it it it ity x v i n t T = + + = =                         (1) 

where the dependent variable, , is the return of mutual fund i at date t,  is a kx1  

vector of covariates (such variables are fund-specific like loads, fee, turnover, expenses, 

risk and turnover ratio, but also we include Fama-French 5 factors),  captures fund- 

and time-specific effects, that in the context of the present analysis captures 

‘generalized Jensen’s alphas’, while  is an error term. We intend to propose a general 

model for panel data to allow for structure in returns.  

The first novelty that we introduce is that error terms across funds cannot be 

independent:   ( )1 ,... ~ 0, ,  1,..., .
iid

t t nT nv v v N t T=  =  Later on we intend to modify the 

iid assumption. Secondly, we intend to model the g it  in a non-parametric way. This is 



 8 

of importance and complements previous research by Blake, et al. (2014, 2017) that 

apply bootstrap methods to measure g it  with some strong underlying assumptions.  

Herein we build on Koop and Poirier (2004), arguing that ( )2

, 1 ~ 0,it i t N  −−  which 

is equivalent to a spline model5. It is important to emphasize that this is a Bayesian 

interpretation of standard non-parametric procedures because it imposes a prior notion 

about smoothness in the sense that, as a function of time, the it s are likely to behave 

smoothly. 

We extend such model as follows: 

   ( )2

, 1 ~ , ,it i t i iN   −−                           (2) 

where i  is a ‘persistence effect’ across funds and we allow wi  to be also fund-specific. 

This effect denotes persistence over time in the mutual fund “skill” as it is commonly 

referred to. 

Moreover, we extend below to a model where first derivatives are likely to be smooth 

as well. Parameters  are of major importance here, as we are interested in the 

performance of mutual funds. Moreover,  measure average difference of performance 

for a mutual fund when all covariates  have been set to given values (their means, 

say). 

This perspective allows modelling volatility across funds whilst we also account for 

persistence in funds’ performance at the fund level. Moreover, if we take first 

differences, we have: ,  1,..., ,  2,..., ,it i it it ity x v i n t T   = +  + + = =                        (3), 

 
5 Initial conditions are treated as unknown parameters. 
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where ( )2~ 0,it iN   and itv follows an MA(1) process with a unit coefficient (if  is 

diagonal). This, in fact, shows that persistence can be measured using the model in first 

differences while performance can be measured using directly the g it s. 

Finally, we address another important problem that has not received enough attention 

in the mutual fund evaluation literature. This is the problem of errors in the variables. 

In addition, we also allow the β’s to be time varying. Therefore, we modify the model 

as6: 

                    * ,  1,..., ,  1,..., ,it it it t ity x v i n t T = + + = =                                  (4) 

where   denotes the actual data, and                                        

where  denotes measurement error.7  

Given the formulation in (2) it is clear that even if we estimate (4) in first-differences 

(which we do not) then the time-invariant or persistent effects  still appear in the 

model. 

We assume:                 ( )1 ,..., ~ 0, .t t nt nN   =                                                      (5) 

To determine a prior for   we use the decomposition 'C C=  where C  is an upper 

triangular matrix. Let ( )c vec C= , where vec vectorizes the elements in the upper 

diagonal. Our prior is:  

 
6 It is easy to show that the interpretation of γ and α goes through even when βs are time-varying. 

7 Given the model of equation (4) the following applies: i) we can allow for different temporal 

coefficients, bt , and ii) we can allow for arbitrary patterns of autocorrelation, since we can assume:

( )  ,  , 1,..., .s t stE v v s t T =    In addition, we allow for arbitrary autocorrelation and arbitrary forms of 

heteroskedasticity as well. This comes at the cost of allowing for 
( 1)

2

T T +
 matrices of the form st  each 

of which is n n .   
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                           ~ ( , ).cc N c V                                                                                        (6) 

 

For simplifying the notation for a given time period the model in equation (4) can be 

written as:  

, 1,..., ,t t t t ty X v t T = + + =               (7) 

where  1 ,..., ,t t nty y y =  
1 ,..., ,t t ntX x x

  =
 

  1 ,..., ,t t nt   = and  1 ,..., .t t ntv v v =   

If we modify tX  to include an identity matrix with dimension n n  and expand bt  

with a vector of g it  with dimension 1n , the model can be written without loss of 

generality as:                 , 1,..., .t t t ty X v t T= + =             (8) 

 

If we define  1,..., TX diag X X=  we can write the model in compact form as: 

,y X v= + +                  (9) 

where   1,..., Tv v v  = , Γ denotes the stacked vector of  conformably with  and  

( )

11 12 1

12 22 2

1 2

     ... 

     ... 
( )

         

     ... 

T

T

nT nT

T T nT

E vv


   
 
  
  =  =
 
 
   

.  (10) 

This is the general form of our model in (7), (8), (9) or (4) in more “accessible” form. 

The form is useful in that it allows us to define more easily the covariance matrices 

between errors of different mutual funds but in other respects one can still stick with 

the simpler form (2) where vector  does not appear in (vector) form. 
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As there are 
( 1)

2

nT nT +
 free elements in  , there is a huge number of parameters to 

estimate. We intend to place priors on   which tend to favour lack of autocorrelation 

but allow for heteroskedasticity. This means that st  should be ‘close’ to a zero n´n  

matrix (  1,...,s t T  ), say 
( )n n

O


.8  If we leave tt  (  1,...,t T ) unrestricted, this 

means that we have 
( 1)

2

n n +
 parameters for each ones of the T  matrices, which is still 

excessive.9  

From our previous discussion on g it s it is clear that a spline or smoothness prior will 

essentially result in a non-parametric model. Thus, for the elements of t , the 

smoothness prior is of the form: 

   ( ) 2 2

1 1~ , ,  [ ,..., ],t t nN diag    −−   =                   (11) 

or ( ) 2 2

1 2 12 ~ , ,  [ ,..., ].t t t nN diag     − −− +   =     (12) 

 

 

8 Regarding the elements of ,ts t s  , since the prior belief is that these are all zero matrices, we can 

adopt a ‘model selection prior’ (see Koop 2013) of the form: ,

, ,

0,  with probability ,

,  with probability 1- .

ij t

ii t jj t

p

p



 


= 


                           

In this prior we set 1
2

p =  and we treat ρ as unknown parameter with a flat prior. 

9 Regarding Stt  the diagonal elements, say ,ii tt , allow for arbitrary time-varying heteroskedasticity 

while s ij,tt
 allows for contemporaneous correlation of returns. The matrix has received a great deal of 

attention in DCC and similar models. Suppose that: ,tt t tH H  =  where 
tH  is an n n  upper diagonal 

elements and its non-zero elements can be vectorized as:
 

( 1)

, 2
, , 1,..., .n n

t ij th vec h i j + = = 
 We proceed 

with a prior assuming that:
1 ,t t th a Ah u−= + +  where α and Α have dimension 

( 1)

2
1n n+   and 

( 1) ( 1)

2 2

n n n n+ +

, respectively, and the error term ( )~ 0, .tu N   To determine a prior for Ψ we use the decomposition 

C C 
 =  where C

 is an upper triangular matrix. Let ( )c vec C = . Our prior is: ~ ( , ).c N c V  
 In 

effect, we place a multivariate stochastic volatility prior. Although we have high dimensional objects α 

and Α, we can proceed with priors to resolve the curse of dimensionality:

( )~ ( , ), ( ) ~ , .a Aa N a V vec A N A V   
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We call these models spline-I and spline-II, respectively and our underlying priors 

are: 

 ~ ( , ),N V                                                                (13) 

( )2log ~ , ,  1,..., .i N V i n  =                                     (14) 

Before proceeding we need to mention that the issue of measurement errors has been 

studied and addressed within a GMM framework (see, for example, BiØrn, 2015). 

Therefore, we do not wish to claim superiority of the Bayesian approach here. Second, 

the issue of mis-measurement of regressors can be certainly addressed properly within 

a frequentist framework (Hayakawa and Qi, 2019) so, the issue of the “false" 

significance can be solved. To conclude, we do not view the Bayesian approach as 

inherently superior given the relevance and strengthens of the frequentist approach. The 

Bayesian approach is used here mainly because it is computationally convenient and 

also because it allows one to examine sensitivity to prior assumptions. This issue does 

not arise in the frequentist approach but then there are well known issues with use of p-

values which are documented in the literature (see for example American Statistical 

Association Statement on p-values) but are beyond the scope of the paper. 

Computational convenience arises because of the smoothness model in (11) and / or 

(12). Such models are estimated typically using a Bayesian approach (see, for example 

the software implementation in BayesX). 

 

2.2 Specification of the baseline prior and its variations 

In (7) we have ~ ( , )cc N c V  and we set 0, c cc V h I= =  for 1ch = . Similarly we have 

~ ( , )c N c V    (see footnote 6) and we set 0,c V h I  = =  for 1h =  and set 

0, a aa V h I= =  with 1ah =  and A AV h I=  with 1Ah = .  Thus, for A  we adopt a 

Minnesota-like prior where the elements corresponding to the diagonal are ~ (0,1)
A

d  

and the others are zero. We start by setting 1
2

p =  (see footnote 6) and we treat r  as 
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unknown parameter. The prior of r  is taken to be ( )( 1,1)~ 0, ,  1N h h  − = . In (14) we 

have ~ ( , ),N V   where d = 0  and V h I = for 1h = .  

Finally, in (15) we have ( )2log ~ , ,  1,..., .i N V i n  =
 
We set j = 0  and V h I =  

where 1h = . In the baseline prior, there are many parameters that we can vary to 

perform sensitivity analysis. To facilitate the analysis, we present the variations of 

baseline priors in Table 1. 

INSERT TABLE 1 HERE 

In the empirical application, our intention is to run the baseline model and then adopt 

different priors as in Table 1 to examine how the results change so that we have some 

sense of the mapping from the prior to the posterior. To explore the posterior, we use 

SMC/PF techniques (see Technical Appendix I). 

3. DATA 

3.1. Sample description 

We obtain mutual fund data from Morningstar database for the 2000-2014 period. There 

are 10,391 funds (94,670 observations), 459 families (5,689 observations), and 25 

Morningstar categories (366 observations). Table 2 provides the descriptive statistics 

at the fund family level for every five years in the sample. Our sample includes US 

funds in different categories available during the observed period. There are 1623 

funds, which charge redemption fee, 1875 funds charging front load, and 260 funds 

charging both types of fees. Some studies of mutual funds exclude load funds to avoid 

the problem of addressing different sales fees in the fund’s operating costs (Babalos et 

al., 2015; Gil‐Bazo and Ruiz‐Verdú, 2009). Our study, in contrast, accounts for both 

load and no-load funds, and use the information on front-end and back-end loads as 

file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_4
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_4
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_23
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fund’s characteristic variables as in Daraio and Simar (2006). As indicated in Ferris and 

Chance (1987) funds’ expenses do not comprise load charges. While front-end loads 

are sales charges paid to brokers or financial advisors for selling the fund, back-end 

loads are levied on customers for redeeming their shares (Daraio and Simar, 2006; 

Khorana and Servaes, 2012). The fact that redemption fee exists could inhibit families’ 

competitiveness as investors could be hindered from leaving the funds, especially when 

funds appear to be underperforming (Khorana and Servaes, 2012). As a result, one may 

presume that no-load funds attract more investors. However, for those who would need 

professional advice for their investment choices, front-end load could be a reasonable 

premium they are willing to compensate for financial advisors (Ferris and Chance, 

1987). Additionally, there could be the probability of no-load funds imposing higher 

other fees on their investors (Tran-Dieu, 2015) or incurring higher expense ratio 

compared to their load peers (Ferris and Chance, 1987). Hence, analysing this 

comprehensive sample would produce inclusive results on the competitiveness of 

different types of funds in the US mutual fund industry.  

INSERT TABLE 2 HERE 

Based on Morningstar classification, there are 25 fund categories in our sample after 

being reviewed for errors and outliers. More specifically, according to size, these types 

consist of large blend, mid-cap blend, small blend, foreign large blend, large growth, 

mid-cap growth, small growth, foreign large growth, foreign small/mid growth, large 

value, mid-cap value, and small value. In terms of sector, these categories include real 

estate, global real estate, technology, equity energy, financial, consumer cyclical, 

health, utilities, natural resources, communications, consumer defensive, industrials, 

and world stock. 

file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_15
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_18
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_18
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_15
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_33
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_33
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_18
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_18
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_50
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_18
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Regarding variable selection for mutual fund, there is not a universal accepted 

approach, apart from the return variable that is rather basic. To account for the impact 

of various determinants we include in addition variables such as loads, fee and turnover. 

In particular, 12b-1 fee refers to marketing and distribution fee related to money paid 

to selling agents (Collins and Mack, 1997) and marketing expenses (Khorana and 

Servaes, 2012). In our sample, there are 7958 funds having a 12b-1 plan. As 12b-1 fee 

is supposed to be a driving factor in raising fund’s assets, there could be two 

possibilities. On the one hand, economies of scale may exist, which provides funds with 

the benefit of passing on the fee to both existing and new investors (Khorana and 

Servaes, 2012). On the other hand, 12b-1 fee can raise expenses as it is a component of 

a fund’s expense (Ferris and Chance, 1987; Latzko, 1999). Front-end load and back-

end load have also attracted research interests in their impact on funds’ expenses 

(Daraio and Simar, 2006; Khorana and Servaes, 2012; Latzko, 1999). Front-end loads 

are an initially one-off sales charge as a reduction to the investment to the fund and are 

used to incur the cost of financial advisors in attracting new investors. Back-end loads, 

often known as deferred loads or redemption fee are levied when investors redeem their 

shares. When redemption fee is high, it may also hinder fund shareholders from leaving 

the fund, especially underperforming ones. 

In subsequent analyses, we also include variables such as total expenses (including 

loads), risk (measured as the weighted average standard deviation of monthly return), 

turnover ratio, and number of funds. The literature has suggested that family’s 

diversification across investment styles would benefit investors in terms of fewer 

restrictions imposed on their asset allocation (Mamaysky and Spiegel, 2002). This 

would also denote the presence of risk hedging improvement in contrast to the 

economies of scale arising from ‘learning-by-doing externality’, which exists in more 
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focused families (Massa, 2000). Furthermore, risk is more likely to affect fund family’s 

market share through its relationship with competition and performance (Basak and 

Makarov, 2012; Huang et al., 2011; Huang et al., 2007; Spiegel and Zhang, 2013; 

Vidal-García and Vidal, 2014). 

The number of funds offered by the fund family is also included to observe whether 

there is a presence of cost sharing between funds. Put differently, a fund family may 

enjoy greater economies of scale as the expenses could be reduced for a group of funds 

(Malhotra et al., 2007). As indicated in Khorana and Servaes (2012), the number of 

fund started could signify additional business lines, product differentiation, or simply 

the incentive to increase the likelihood of having funds on the top 5% best-performing 

classification. It squared value gives an indication for the outstanding impact (if any) 

in case there is a considerable number of new funds. 

Based on Morningstar’s definition, turnover ratio conveys the fund’s trading activity. 

Funds report this figure by taking the lesser of purchases or sales of all securities with 

maturities from one year and dividing by average monthly net assets. The lower the 

turnover ratio, the more the fund is in favour of the buy-and-hold strategy. Stated 

differently, high turnover ratio indicates active portfolio management strategies (Daraio 

and Simar, 2006; Khorana and Servaes, 2012). As a result, active fund managers 

classified based on high turnover ratios may impose more transaction costs on fund 

shareholders, in turn raising the fund total expenses.  

We also include the Fama-French 5 factors. Moreover the factors are: factor 1 the SMB 

(Small Minus Big) defined as the average return on the nine small stock portfolios 

minus the average return on the nine big stock portfolios, factor 2 the HML (High 

Minus Low) that is the average return on the two value portfolios minus the average 
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return on the two growth portfolios, factor 3 the RMW (Robust Minus Weak) the 

average return on the two robust operating profitability portfolios minus the average 

return on the two weak operating profitability portfolios, factor 4 the CMA 

(Conservative Minus Aggressive) the average return on the two conservative 

investment portfolios minus the average return on the two aggressive investment 

portfolios, and the last factor Rm-Rf, the excess return on the market (see Fama and 

French, 2014).10 

 

4. EMPIRICAL RESULTS 

In this section, we run the baseline model and then adopt different priors as in Table 1 

to examine how the results change so that we have some sense of the mapping from the 

prior to the posterior.  We do not report results for autocorrelation or correlation across 

funds and statistics related to errors-in-variables to save space but these are available 

on request. 

For prior sensitivity analysis, we simulate 10,000 priors from the last column of Table 

1 and we repeat posterior analysis using SMC/PF techniques (Appendix I). 

4.1 Selecting the model  

 
10 Moreover, the 5 factors come from Fama and French (2014) and defined as SMB(B/M) = 1/3 (Small 

Value + Small Neutral + Small Growth) - 1/3 (Big Value + Big Neutral + Big Growth), SMB(OP) =  1/3 

(Small Robust + Small Neutral + Small Weak)  - 1/3 (Big Robust + Big Neutral + Big Weak), SMB(INV) 

=  1/3 (Small Conservative + Small Neutral + Small Aggressive)  - 1/3 (Big Conservative + Big Neutral 

+ Big Aggressive) and thus SMB = 1/3 ( SMB(B/M) + SMB(OP) + SMB(INV)). HML =1/2 (Small 

Value + Big Value) - 1/2 (Small Growth + Big Growth). RMW = 1/2 (Small Robust + Big Robust) - 1/2 

(Small Weak + Big Weak). CMA =1/2 (Small Conservative + Big Conservative) - 1/2 (Small Aggressive 

+ Big Aggressive). Data include all NYSE, AMEX, and NASDAQ firms.   
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To get an idea of what is a ‘good’ model we use the baseline prior and we present in 

Table 3 values of the marginal likelihood (converted into Bayes factors, BF). For a 

posterior distribution:11 

                                                             ( )
( ; ) ( )

| ,
( )

L Y p
p Y

p Y

 
 =         (16) 

 

the denominator is the marginal likelihood, ( ) ( ; ) ( )p Y L Y p d  =               (17). 

 

 

INSERT TABLE 3 HERE 

Clearly, no simplification is possible, at least using the baseline prior as the Bayes 

factors for alternative models are inferior to the model without restrictions. It also turns 

out that spline-II behaves much better compared to spline-I. 

Our fundamental objective is to evaluate the performance of the mutual funds. From 

(7) the elements of γt are the ‘generalized Jensen’s alphas’ for all funds for date t. From 

(2) coefficients αi denote the persistence. To take off, we would like first of all to present 

a measure of overall performance, which is 

1

1
,

n

t iti
PERF n −

=
=                                                  (18) 

that is the average performance in the fund industry for a given date.  

As the measure depends on all other parameters, in standard Bayesian fashion we take 

an average across all Monte Carlo draws. Table 4a reports results for model selection, 

reporting means and standard deviations, including the five factors of Fama and French 

across specifications. It is perhaps important to point out that our likelihood-based 

 
11 θ denotes the parameter vector, Y the data and L is the likelihood. Also, p(θ) is the prior. 
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procedures avoid resorting to asymptotic inferences, which are questionable in finite 

samples, especially when the econometric model is complicated. Since we use Bayesian 

techniques we examine thoroughly sensitivity to the prior assumptions as we mentioned 

before in connection to Table 1. 

Table 4a reports that risk asserts a positive and significant impact on performance 

across specifications, but the model without time-varying βt. The positive sign comes 

in line with Basak and Makarov, (2012), Huang et al., (2011), Vidal-García and Vidal, 

(2014). The convex flow-performance nexus (Chevalier and Ellison, 1997) implies the 

incentives for fund managers to increase the underlying risk of their funds over time. 

However, in the model specification where there are no time-varying effects the impact 

of risk turns negative. Similar results are reported for the third moment, insinuating the 

importance of allowing for time varying βt for correctly identifying the impact of 

underlying moments on performance. Fama and French five factors show strong 

positive and significant effect on performance. The exception is the RMW factor where 

negative, but not significant, effects are reported. 

In addition, we proceed to a benchmark comparison of model selection (see Table 4a), 

employing Arellano-Bond-Bover estimator (one step). Indeed, the specification in 

Table 4a considers the persistence of the dependent variable. Table 4a also reports that 

expense ratio asserts a significant negative impact on performance across 

specifications. This is line with Ferreira et al. (2012).  Carhart (1997) finds also a 

negative relationship between fees and net-fee performance. Gil‐Bazo and Ruiz‐Verdú 

(2009) opt for pooled ordinary least squares to estimate the effect of funds’ expense 

ratio on before-fee risk-adjusted performance. The results report that before-fee 

performance is inversely related to fees. According to fund’s strategic behaviour, they 

set fees based on past or expected performance. One underlying rationale is that 
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underperforming funds could have investors who are less sensitive to performance 

(Christoffersen and Musto, 2002). Therefore, if money does not flow from worse 

performing funds to the better counterparts, the remained investors would be charged 

more. Another explanation is that those performance-insensitive investors are target 

clients of funds with low expected performance (Gil-Bazo and Ruiz-Verdú, 2008). By 

doing so they are able to charge higher fees, also to compensate for their inability to 

compete with better performing funds.  

INSERT TABLE 4A HERE 

 

Table 4b reports results from the Arellano- Bond-Bover GMM one-step estimator  

using the internal instruments of first-differenced GMM estimator that consider errors 

in variables and stochastic volatility. Since the method does not provide SD of returns, 

first (see first column) we estimate the model without this variable. In a second 

estimation of the model (see second column), we take variables, including SD of 

returns, as posterior means from Bayesian estimation and include them as endogenous 

regressors. The reported results are in line with the ones reported in Table 4a. 

 

INSERT TABLE 4B HERE 

Whether size matters for fund performance has attracted much research interest (Chen 

et al., 2004; Ferreira et al., 2012; Chen et al., 2013;  Khorana and Servaes, 2012). Large 

funds may benefit from economies of scale which they can pass on to investors 

(Khorana and Servaes, 2012), from investment opportunities which may not be 

available for small funds, and from better spreads thanks to large positions and trading 

file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_12
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_21
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_9
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_9
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_18
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_10
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_34
file:///N:/RESEARCH/TSIONAS/funds/draft%201.docx%23_ENREF_34


 21 

volumes (Ferreira et al., 2012). 12 This advantage and economies of scope may also be 

present at the family level (Chen et al., 2004; Chen et al., 2013). Herein we provide 

statistical significant evidence, under the full model, that size, indeed, matters.13 The 

coefficient of fund size takes a positive sign for the full model and the model without 

cross sectional variation in line with Pollet and Wilson (2008) and Jordan and Riley 

(2015). However, note that there is variability as results for the models without 

measurement errors and without time-varying  report a negative parameter estimate for 

fund size, though without significance.  

Regarding the turnover ratio, we find that it asserts a positive impact on performance 

across specification. As turnover ratio indicates the fund family’s trading activities, 

increasing turnover would imply active underlying portfolio management tactics that 

would also increase performance (Daraio and Simar, 2006; Khorana and Servaes, 

2012).14 Similarly, 12b-1 fees also have a positive and significant effect on performance 

across specification. 12b-1 fees convey information regarding fund’s assets. In this 

respect, higher fees would imply larger funds that, in turn, we report that have higher 

performance. In line with economies of scale we show that funds would pass fees to 

 
12 However, large funds may encounter some disadvantages in terms of liquidity and management (Chen 

et al., 2004; Pollet and Wilson, 2008). According to the organisational diseconomies hypothesis (Chen 

et al., 2004), fund size is inversely related to performance. This could be because of hierarchical costs, 

or management dilution when the fund expands. One manager can easily manage small assets, but it 

needs a team to manage a large asset base. Large funds would eventually trade large volumes, which 

may cause difficulties for them in opening and closing their positions. Hence, this liquidity constraint 

also explains why large funds could be associated with lower performance. 
13 Empirical findings for the size-performance relationship are somewhat mixed. While Chen et al. 

(2004), Huang et al. (2011) and Ferreira et al. (2012) find a presence of diseconomies of scale, Pollet and 

Wilson (2008) report that large funds tend to diversify their portfolios which in turn increases their 

performance. Jordan and Riley (2015) report a positive effect of small size on fund’s future alpha. 

Regressing future alpha on past alpha and size, Elton et al. (2012) do not find a statistically significant 

predictability of size on future alpha. However, they document that as size increases, expense ratios and 

management fees decrease. 
14 Funds report turnover ratio by taking the lesser of purchases or sales of all securities with maturities 

from one year and dividing it by the average monthly net assets. The lower the turnover ratio, the more 

the fund is in favor of the buy-and-hold strategy. Stated differently, high turnover ratio indicates active 

portfolio management strategies (Daraio and Simar, 2006; Khorana and Servaes, 2012). As a result, 

active fund managers classified based on high turnover ratios may induce higher performance. 
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both existing and new investors as performance rises in line with Khorana and Servaes 

(2012).15  

4.2 Funds Performance 

The performance results are drawn in Figure 1, based on the full model specification as 

selected by the results presented in Table 3, along with plus or minus two posterior 

standard deviations. Clearly, there is a dive in performance during the financial crisis, 

though the starting point of the downfall is reported as early as in 2006. Thereafter, 

there is a pick in recovery up till 2012, but that is short lived as a drop is next detected 

for the remaining of the sample period up till 2014. In this Figure, we detect that funds’ 

performance are following a quite long financial cycle, over ten years period. The slow 

performance starts as early as in 2001 with the recovery being recorded in 2012. The 

financial crisis made aggravate things, yet it is evident that funds’ financial cycle is 

elongated. Persistence, therefore, might be of importance here. Next, we report 

persistence.  

INSERT FIGURE 1 HERE 

Table 5 reports the average performance indicator across funds categories over the 

whole sample period. It is striking that some 12 funds report negative performance. The 

highest performer appears funds in utilities with the lowest performer the real estate 

funds. Overall performance, as identified also in Figure 1, has been rather subdued 

during the sample period. There is a dive reported during the financial crisis, but 

worryingly despite some recovery up till 2012, there is a further decline in recent years.  

 

INSERT TABLE 5 HERE 

 
15 However, there is some evidence that shows that 12b-1 fee can raise expenses that would eventually 

compromise performance. 
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The corresponding marginal posterior density function of persistence according to 

parameter αi is shown in Figure 2a. Parameters αi are fund-specific but time-invariant 

so we present the posterior distribution of (averaged across Monte Carlo draws) 

estimates of these parameters. As expected, we have fat tails to the left of the density 

towards negative values. This is of some interest, as negative performance would 

persist.16 

INSERT FIGURE 2A HERE 

Funds’ posterior mean volatility for 50 different priors, overtime, is presented in Figure 

2b. These are filtered estimates from equation (14). In line with the performance results 

volatility picks in 2009 at the height of the financial crisis and stabilises thereafter. The 

striking characteristic of our measure of volatility is that is starts picking up as early as 

2003-2004, well before the financial crisis. Effectively, our modelling allows 

measuring risk in early stages and as such could act as early warning. 

 

INSERT FIGURE 2B HERE 

In Figure 2c we present marginal posterior densities of  corresponding to cross-

sectional correlation for 20 different priors. Evidently, these marginal posteriors are 

relatively robust and show that  ranges between, roughly, between 0.42 and 0.58 with 

an average near 0.50. 

 

INSERT FIGURE 2C HERE 

 

 
16 Figure of the posterior distribution of αis conditional on a ‘significant’ γit, that is the ratio of posterior 

mean to posterior standard deviation exceeds 2 in absolute value shows that persistence predominantly 

leans towards negative values (Figure available under request). 
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To further explore persistence over time, Table 6 reports the average persistence over 

time. Note that persistence is negative over the whole sample. However during the 

financial crisis, that is from 2007 to 2009, there was a regime change in funds’ 

performance as reflected by the persistence parameter, which takes positive values. 

Effectively, we find evidence of a strong negative spiral that further lowers levels of 

performance during the financial crisis due to strong persistence, though since 2010 

persistence is subdued. 

 

INSERT TABLE 6 HERE 

 
 

Table 7 further reports the average persistence across categories. Once more the 

dominant fund refers to the utilities with a positive persistence of 0.031 compared to 

small blend of -0.032. 

An interesting question is what happens at the tails of the distribution. A valid but messy 

way would be to produce posteriors for each fund across all Monte Carlo draws. Instead 

we provide posterior distributions of posterior mean persistence parameters αi  at 

different values of the right or left tail (see Figures A1a, A1b and A1c in Appendix II). 

Fixing, for example, the posterior mean at a = 0.01 we take all posterior draws in excess 

of this value and present the posteriors averaged across all Monte Carlo draws. On the 

other hand, fixing the posterior mean at a = -0.01 we take all posterior draws below this 

value. Once more, we observe that for negative persistence the densities lean towards 

negative values while there characterized as leptokurtic compared to positive values for 

persistence. 

 

4.3 Best and worst fund performers. 
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Having derived the performance over time and across the main funds categories we turn 

to the ten best and worst fund performers for an equally weighted portfolio. In   a recent 

Rossello (2015) provide a ranking of investment funds using nonparametric modelling. 

The results herein complemented previous rankings and extend the modelling 

techniques.   

 

Moreover, Table 8 reports the ten best and worst performance indicators over the 

sample period.17 During the financial crisis even, the best performers turn to negative 

values, and this lasted till 2011. Since then there is a remarkable recovery, beyond the 

previous pick of the highest performance in 2005. Similarly, the 10 worst performers 

were hit by the financial crisis, much more harshly compared to the best 10 performers. 

However, when it comes to the worst performers, it appears that the recovery in 2014 

is much stronger than the best performers though for the former volatility is clearly an 

issue. 

INSERT TABLE 8 HERE 

On average, see Table 8, performance is close to zero for best performers but its 

posterior range is, roughly, between -4% and 8%. For the worst performers, the average 

is close to -4% but ranges, roughly, from -12% to 5% and is clearly shifted to the left 

compared to the posterior density of best performers.  

 
17 For completeness we present in Table A1 in Appendix II the performance of ten average funds. In 

addition, in Appendix II we provide figures for posterior distributions for 10 best/worst funds as well as 

10 average funds. Note that we also include figure A2d that reports posterior distributions of  for the 

best-performing fund for years 2000, 2008, 2012 and 2014 
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In Figure 3 we present the posterior distribution of g it  for an equally weighted portfolio 

of the ten best and ten worst funds (in terms of simple average returns in the sample).18 

Clearly the worst performers are shifted to the left of the density of the best performers.  

INSERT FIGURE 3 HERE 

4.4 The fund of funds portfolio 

Following from Basak and Makarov (2014) on the manager’s portfolio choice where 

they argue that managers either win or lose we propose to model a fund of funds 

portfolio as robustness for the above findings. Moreover, we propose to solve a simple 

quadratic programming problem a la Markowitz: 

                     (18) 

where, in familiar notation,   and   are taken from parameter estimates in (9).  

We consider a fund-of-funds portfolio P  that is formed by using the optimal weights 

w  assuming that A= 3. Table 8 presents the performance and persistence of the 

optimal portfolio P.19 It is striking that performance in a la Markowitz portfolio (see 

Table 9) is well below the ten best fund performers, whilst persistence is also subdued 

compared to above results.20 

INSERT TABLE 9 HERE 

 
18 In addition, results are available under request of posterior distributions obtained through 20 different 

priors from the last column in Table 1 to examine prior sensitivity. These results provide evidence of the 

performance for the ten best (worst) funds and are in line with the evidence herein. 
19 The posterior distribution of optimal portfolio P is presented in Figure A3a and the posterior 

distribution of average persistence of its component returns is presented in Figure A3b, for 50 different 

priors from the last column in Table 1. In Figure A3c, we report the posterior distribution of its 

persistence only when average persistence of its component returns is ‘significant’ (viz. the ratio of 

posterior mean to posterior S.D. exceeds 2 in absolute value).  
20 In Figure A4 in Appendix II we report the posterior distributions of αi for each fund only when its 

average γi turns out significant, which is an analogue of Figure A2b but on a fund basis this time. 
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5. PRIOR SENSITIVITY ANALYSIS  

An interesting question is what different priors imply about the funds’ ability to perform 

better than the market. In Figure 4, we consider all 10,000 prior distribution 

assumptions reported in the last column of Table 1, and we present posterior estimates 

of temporal averages of g it  whose 
( )
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,  
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i itt

i
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−

=
= =   exceeds 2 or is lower 

than -2, for at least ten funds. This presents direct evidence as to whether there are 

priors, which support the idea that funds perform better than the market. 

INSERT FIGURE 4 HERE 

Overall, the empirical results show that the baseline model and the adoption of different 

priors from Table 1 show that results are stable as reported from the mapping of the 

prior to the posterior. 

In this paper we shed new light into the performance of funds while robustness and 

sensitivity analysis show that results are valid through a plethora of alternative 

specifications/models and priors. Given the robustness of our findings we perceive that 

there are policy implications for all participants in fund industry such as shareholders, 

fund managers and financial regulators. In some detail, results show  that fund’s size 

would enhance performance, though there is some evidence of variability across 

models. Shareholders and investors should note that larger funds would benefit from 

economies of scale type of effects and would drive to higher returns. This result is in 

line with Pollet and Wilson (2008). Another significant finding refers to the positive 

impact of risk on performance across most specifications/model (Basak and Makarov, 

2012; Huang et al., 2011; Vidal-García and Vidal, 2014). A novel characteristic of our 

analysis is that examines whether the underlying relationship between risk and 
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performance is subject to variability as indeed we report it is the case. We show that 

shocks due to risk is key for understanding the underlying reasons for periods of 

financial turbulence. Regulators and policy makers alike should take note of this 

finding. In particular, our measure of volatility was picking up the financial crisis as 

early as in 2004. This measure of volatility could act as an early warning that could be 

useful for regulators and supervisory authorities, aiming to  intervene in the case of  

excessive risk that would dwindle financial stability. 

7.  CONCLUSIONS 

This paper proposes a novel panel data model so as to capture time-varying 

heteroskedasticity, time-varying covariances of performance of US funds. Such 

modelling also permits general autocorrelation plus errors in underlying variables. Our 

results show that there has been striking variability across funds categories in terms of 

performance and persistence.  Risk asserts a positive and significant impact on 

performance across different specifications. All Fama and French five factors show 

strong positive and significant effect on funds’ performance. The exception is the RMW 

factor that turns negative, but it is not significant. There has been striking variability in 

terms of performance and persistence across funds categories and over time, and in 

particular through the financial crisis. Persistence in performance during the financial 

crisis is strong, insinuating a negative spiral to further lower levels of performance. The 

reported stochastic volatility exhibits a rising trend as early as 2003-2004 and could act 

as an early warning of future crisis. Finally, we show that our results are stable across 

different priors as reported from the mapping of the prior to the posterior of the 

Bayesian baseline model with the adoption of different priors. 



 29 

The reported results have some implications for investors, professional managers and 

regulators. The revealed relationships could be part of investors’ information set when 

select a fund whereas fund managers could benefit from the knowledge of components 

that enhance their portfolio performance.  Finally, regulators and supervisory 

authorities whose task is to safeguard a secure and well-functioning financial system 

may consider that risk improves performance. 
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Table 1: Variations of the baseline prior.  

Parameters and baseline priors Reference values  

~ ( , )cc N c V ,  

0,  c cc V h I= =  for 1ch = . 

( )~ ( 5,5), ~ 0.1,10cc U h U−    

( )~ ( , ), ( ) ~ , .a Aa N a V vec A N A V  

0,
a a

a V h I= =   with 1ah = .  

A AV h I=  with 1Ah = .  

( )~ ( 5,5),  , ~ 0.1,10a Aa U h h U−  

A  Minnesota-like prior,   

diagonal elements (0,1]
A

d   otherwise zero.  

~ (0,1)
A

d U  

1
2
,p =  ( )( 1,1)~ 0, , 1N h h  − =  ( )~ (0,1), ~ 0.1,10p U h U

  

~ ( , ),N V    

d = 0   

 V h I = for 1h
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( )2log ~ , ,  1,..., .i N V i n  =  

j = 0   

V h I =  where 1h = .  

( )~ ( 5,5), ~ 0.1,10U h U −  

Notes: c =vec(C), where vec vectorizes the elements in the upper diagonal C from the equation of 

measurement errors (6). ( )~ ( , ), ( ) ~ , .a Aa N a V vec A N A V captures the persistence effect as in 

equation (2). ρ is unknown parameter explained in footnote 8. ~ ( , ),N V   notes underlying priors in 

equation (3) and ( )2log ~ , ,  1,..., .i N V i n  = notes underlying priors in equation (15), while A  is 

a Minnesota-like prior. ( , )U a b  denotes the uniform distribution in the interval ( ),a b , b a .   
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Table 2: Summary statistics for funds.  

  2000-2004 2005-2009 2010-2014 

Total assets (mil USD) 4860  7220  9670 

No of families 459  459  459 

No of funds per family 23.876  26.792  21.663 

Number of funds started 5.710  4.241  4.550 

Number of categories 2.617  2.998  2.501 

Gross expense ratio  1.308  1.712  1.089 

Gross return  5.373  4.649  11.736 

Turnover ratio 0.514  0.749  0.505 

Risk   4.336  4.215  3.265 

12b-1 fee  0.362  0.362  0.362 

Max front load  5.145  5.145  5.145 

Redemption fee  1.640  1.640  1.640 
Notes: This Table reports the mean of variables over five years intervals. Number of funds started is the 

number of new funds started in a given year. Number of categories represents the different investment 

objectives within a family. Turnover is the weighted average turnover across all funds in a family. Risk 

is measured as the weighted average standard deviation of monthly return. Gross expense ratio, gross 

return, turnover ratio, risk, 12b-1 fee, max front load, and redemption fee are the weighted average values 

across all funds in a family.  

Table 3: The model comparison: Bayes factors. 

 Bayes Factors 

Formulation in (12), spline-I 

No restrictions 1.000 

bt = bo  are the same 0.0061 

0A= , no stochastic volatility  0.0056 

bt = bo  and 0A=  0.0011 

No cross-sectional correlation 0.0003 

No measurement error 0.0001 

Formulation in (13), spline-II 

No restrictions 7.3221 

bt = bo  are the same 0.0414 

0A= , no stochastic volatility  0.0032 

bt = bo  and 0A =  0.0017 

No cross-sectional correlation 0.0002 

No measurement error 0.0000 

Note: The table presents Bayes factors relative to the full model without any restrictions. The 

Bayes factors are computed using the marginal likelihood from the Sequential Monte Carlo 

(particle filtering) approach described in Appendix I. 
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Table 4a: Model selection, posterior means and posterior standard deviations. 
 full model without 

measurement error 

without time-

varying bt  
without cross-

sectional 

correlation  

 Post. 

mean 

Post.  

SD 

Post. 

mean 

Post. 

SD 

Post. 

mean 

Post. 

SD 

Post. 

mean 

Post.  

SD 

SD of 

returns 

0.0171 0.0015 0.0031 0.0021 -0.0022 0.0010 0.0134 0.0019 

Skewness  0.0043 0.0035 -0.0030 0.0011 -0.0044 0.0014 0.0035 0.0023 

Kurtosis  0.0031 0.00012 0.00132 0.0254 0.00441 0.0165 0.012 0.00024 

Expense 

ratio 

-0.0014 0.00032 -0.0133 0.0043 -0.0033 0.0017 -0.0144 0.00017 

Loads & 

Turnover 

-0.0015 0.00013 -0.0126 0.0032 -0.013 0.0083 -0.0033 0.00012 

12b-1 fees 0.0045 0.00017 0.0023 0.0020 0.0033 0.0432 0.0011 0.00044 

Net asset 

value 

0.0032 0.00021 0.0011 0.0017 0.0025 0.0019 0.0015 0.00035 

Fund size 0.0015 0.00017 -0.0013 0.0015 -0.0022 0.0017 0.0036 0.00026 

Net-exp. 

ratio 

-0.0033 0.00024 0.0045 0.0032 0.00210 0.0013 0.0032 0.00323 

Turnover 

ratio 

0.0017 0.00015 0.0045 0.0033 0.0037 0.0022 0.0034 0.00021 

F&F 1 0.281 0.032 0.171 0.0117 0.128 0.035 0.155 0.054 

F&F 2 0.048 0.032 0.023 0.024 0.032 0.0156 0.0245 0.0272 

F&F 3 -0.015 0.011 0.0056 0.0137 0.0044 0.0031 -0.0221 0.0217 

F&F 4 0.129 0.0522 0.0171 0.0081 0.0225 0.0152 0.2513 0.0351 

F&F 5 0.083 0.0714 0.0331 0.0266 0.0742 0.0553 0.0484 0.0493 

Bayes R2 0.9345 0.0454 0.8716 0.0325 0.8652 0.0352 0.8751 0.0255 

Note: We have used the prior that out of 10,000 alternative priors in the last column of Table 3 yields the 

highest value for the marginal likelihood. So, we use the prior that best ‘fits’ the data. The five Fama-

French (F&F) factors are also included: F&F 1 the SMB (Small Minus Big), F&F 2 the HML (High 

Minus Low), F&F 3 the RMW (Robust Minus Weak), F&F 4 the CMA (Conservative Minus 

Aggressive), and F&F 5 Rm-Rf. We also compute a Bayesian variant of R2, which is computed, using the 

correlation of actual and predicted values, averaged over all posterior draws. SD implies standard 

deviation. Post. implies posterior. We have used 15000 iterations of the Sequential Monte Carlo (particle 

filtering) approach discarding the first 5000 to mitigate possible start up effects. We used 10000 particles 

per iteration. 
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Table 4b: Model selection: Arellano- Bond-Bover GMM one-step estimator.  
 Without SD of returns With SD of returns 
 Post. mean Post. SD Post. mean Post. SD 

SD of returns   0.0015 0.0002 

Skewness  0.0032 0.0024 0.0021 0.0040 

Kurtosis  -0.0014 0.0132 0.0014 0.0133 

Expense ratio 0.0012 0.0014 -0.0017 0.0012 

Loads & Turnover 0.022 0.017 0.0156 0.0044 

12b-1 fees 0.032 0.011 0.0010 0.0002 

Net asset value 0.014 0.0003 0.0151 0.003 

Fund size 0.0019 0.0011 -0.0032 0.0012 

Net-exp. ratio -0.0012 0.0007 0.0051 0.0010 

Turnover ratio 0.0021 0.00013 0.0144 0.0012 

F&F 1 0.017 0.0030 0.007 0.007 

F&F 2 0.020 0.007 0.005 0.003 

F&F 3 -0.015 0.004 0.0149 0.0156 

F&F 4 0.013 0.002 0.0221 0.0130 

F&F 5 0.023 0.002 0.0087 0.0066 

R2 0.217  0.298  
Note: Arellano- Bond-Bover GMM one-step estimator. The five Fama-French (F&F) factors are: F&F 1 

the SMB (Small Minus Big), F&F 2 the HML (High Minus Low), F&F 3 the RMW (Robust Minus 

Weak), F&F 4 the CMA (Conservative Minus Aggressive), and F&F 5 Rm-Rf. SD implies standard 

deviation. Post. implies posterior.  
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Table 5: Average performance indicator across funds’ categories. 
Category        Performance Category Performance 

 Large Blend 0.007 (0.034)  Technology -0.003 (0.005) 

 Mid-Cap Blend 0.001 (0.021)  Financial -0.004 (0.002) 

 Small Blend -0.003 (0.012)  Consumer Cyclical -0.007 (0.012) 

 Large Growth 0.005 (0.013)  Equity Energy 0.005 (0.012) 

 Mid-Cap Growth 0.002 (0.007)  World Stock -0.003 (0.003) 

 Small Growth -0.003 (0.004)  Global Real Estate -0.075 (0.120) 

 Foreign Large Growth 0.005 (0.002)  Consumer Defensive 0.003 (0.004) 

 Foreign Small/Mid Growth -0.003 (0.001)  Real Estate -0.082 (0.118) 

 Foreign Large Blend 0.002 (0.004)  Communications -0.005 (0.017) 

 Large Value 0.009 (0.012)  Health 0.003 (0.002) 

 Mid-Cap Value 0.004 (0.08)  Industrials 0.005 (0.015) 

 Small Value -0.001 (0.02)  Natural Resources -0.003 (0.002) 

 Utilities 0.0151 (0.01)   

Notes: For each category, the Sequential Monte Carlo / Particle Filtering draws for the performance 

indicator (PERF) are averaged. We have used 15,000 draws the first 5,000 of which are discarded to 

mitigate possible start up effects. We use 10,000 particles per Monte Carlo iteration. Posterior standard 

deviations appear in parentheses. 
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Table 6: The yearly average persistence over time. 

Year Mean S.D. Min Max 

2000 -0.042 0.017 -0.064 0.0032 

2001 -0.051 0.022 -0.071 0.0049 

2002 -0.055 0.021 -0.075 0.0083 

2003 -0.042 0.025 -0.077 0.015 

2004 -0.038 0.020 -0.082 0.017 

2005 -0.021 0.019 -0.079 0.025 

2006 -0.035 0.017 -0.081 0.027 

2007 0.032 0.021 -0.087 0.012 

2008 0.043 0.025 -0.091 0.007 

2009 0.023 0.027 -0.088 0.003 

2010 -0.032 0.031 -0.085 0.019 

2011 -0.036 0.034 -0.082 0.022 

2012 -0.039 0.035 -0.077 0.025 

2013 -0.041 0.031 -0.078 0.021 

2014 -0.043 0.027 -0.081 0.019 

Average -0.0251 0.0248 -0.0799 0.0152 
Note: The persistence parameters αi are fund-specific but time-invariant so we present the posterior 

distribution of (averaged across Monte Carlo draws) estimates of these parameters. 
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Table 7: The average persistence indicator across funds categories. 

Category       Persistence Category    Persistence 

 Large Blend 0.017 (0.009)  Technology 0.022 (0.017) 

 Mid-Cap Blend 0.005 (0.002)  Financial -0.032 (0.011) 

 Small Blend -0.032 (0.014)  Consumer Cyclical 0.006 (0.003) 

 Large Growth 0.012 (0.008)  Equity Energy -0.005 (0.008) 

 Mid-Cap Growth -0.005 (0.003)  World Stock -0.004 (0.031) 

 Small Growth -0.009 (0.002)  Global Real Estate -0.017 (0.003) 

 Foreign Large Growth 0.017 (0.003)  Consumer Defensive 0.007 (0.004) 

 Foreign Small/Mid Growth 0.005 (0.003)  Real Estate -0.015 (0.005) 

 Foreign Large Blend 0.017 (0.008)  Communications -0.043 (0.032) 

 Large Value 0.012 (0.007)  Health 0.005 (0.004) 

 Mid-Cap Value 0.005 (0.004)  Industrials -0.032 (0.025) 

 Small Value 0.001 (0.001)  Natural Resources 0.005 (0.004) 

 Utilities 0.031 (0.017)   

Notes: For each category, the Sequential Monte Carlo / Particle Filtering draws for the persistence 

indicator (αi) are averaged. We have used 15,000 draws the first 5,000 of which are discarded to mitigate 

possible start up effects. We use 10,000 particles per Monte Carlo iteration. Posterior standard deviations 

appear in parentheses. 
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Table 8: The Yearly average 10 best and worst performance indicators over 

time. 

 Best                       Worst 

Year Mean S.D. Min Max Mean S.D. Min Max 

2000 0.085 0.077 -0.062 0.251 0.003 0.127 -0.241 0.192 

2001 0.072 0.055 -0.031 0.182 0.005 0.125 -0.239 0.233 

2002 0.079 0.082 -0.071 0.191 0.007 0.119 -0.255 0.241 

2003 0.081 0.093 -0.115 0.257 0.0155 0.118 -0.217 0.255 

2004 0.067 0.085 -0.101 0.229 0.0221 0.121 -0.221 0.26 

2005 0.083 0.079 -0.082 0.212 0.0203 0.031 -0.052 0.087 

2006 0.081 0.072 -0.061 0.225 0.0151 0.029 -0.036 0.019 

2007 0.065 0.082 -0.105 0.203 -0.0915 0.103 -0.331 0.085 

2008 -0.055 0.095 -0.132 0.103 -0.127 0.155 -0.567 0.061 

2009 -0.062 0.084 -0.135 0.102 -0.0941 0.161 -0.515 0.211 

2010 -0.032 0.065 -0.126 0.082 -0.0833 0.165 -0.485 0.174 

2011 -0.005 0.032 -0.045 0.061 -0.104 0.132 -0.101 0.155 

2012 0.0121 0.044 -0.072 0.06 0.005 0.144 -0.252 0.254 

2013 0.0125 0.039 -0.065 0.065 0.009 0.152 -0.303 0.281 

2014 0.0313 0.03 -0.031 0.0414 0.101 0.177 -0.241 0.211 

Average 0.0343 0.0676 -0.0823 0.151 -0.0198 0.1239 -0.2704 0.1813 

Notes: The table present the yearly PERF measures as in equation (25). Performance is 

derived from Sequential Monte Carlo / Particle Filtering draws. We have used 15,000 

draws the first 5,000 of which are discarded to mitigate possible start up effects. We use 

10,000 particles per Monte Carlo iteration.  
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Table 9: The yearly average Markowitz performance and persistence indicators 

over time. 

 Performance                       Persistence 

Year Mean S.D. Min Max Mean S.D. Min Max 

2000 0.017 0.011 -0.0051 0.022 -0.005 0.012 -0.032 0.014 

2001 0.005 0.013 -0.0049 0.021 -0.007 0.011 -0.035 0.021 

2002 0.009 0.011 -0.0061 0.024 -0.006 0.01 -0.036 0.023 

2003 0.005 0.012 -0.0044 0.026 -0.002 0.009 -0.038 0.018 

2004 0.007 0.013 -0.0032 0.032 -0.004 0.015 -0.034 0.028 

2005 0.012 0.011 -0.0055 0.029 -0.005 0.019 -0.033 0.036 

2006 0.013 0.012 -0.0071 0.029 -0.003 0.021 -0.027 0.039 

2007 -0.015 0.013 -0.0265 0.035 -0.002 0.023 -0.038 0.042 

2008 -0.022 0.022 -0.0277 0.021 -0.12 0.035 -0.226 0.085 

2009 -0.008 0.035 -0.0414 0.009 -0.132 0.042 -0.185 0.072 

2010 0.007 0.027 -0.0303 0.013 -0.181 0.037 -0.255 0.072 

2011 0.009 0.025 -0.005 0.016 0.004 0.015 -0.044 0.022 

2012 0.011 0.022 -0.007 0.015 0.003 0.014 -0.032 0.019 

2013 0.012 0.025 -0.006 0.017 0.002 0.012 -0.033 0.015 

2014 0.012 0.024 -0.006 0.019 -0.001 0.011 -0.025 0.013 

Average 0.0049 0.0184 -0.0124 0.0219 -0.0306 0.0191 -0.0715 0.0346 

Note: The table presents yearly average Markowitz performance and persistence indicators over time. 

The posterior distribution is drawn with Sequential Monte Carlo / Particle Filtering draws. We have used 

15,000 draws the first 5,000 of which are discarded to mitigate possible start up effects.  
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Figure 1: The posterior average overall funds’ performance over time. 

 
Notes: The figure presents the posterior mean of the overall performance as in equation (25) over time. 

We have used Sequential Monte Carlo / Particle Filtering draws. We have used 15,000 draws the first 

5,000 of which are discarded to mitigate possible start up effects. We use 10,000 particles per Monte 

Carlo iteration. Posterior standard deviations appear dashed lines. 

 

Figure 2a: The sample distribution of posterior means of parameters αi, 

persistence parameters. 

 
Notes: The figure shows sample distribution of posterior means of parameters αi, see equation 

(2). We have used Sequential Monte Carlo / Particle Filtering draws. We have used 15,000 

draws the first 5,000 of which are discarded to mitigate possible start up effects. We use 10,000 

particles per Monte Carlo iteration. Posterior standard deviations appear dashed lines. 
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Figure 2b: The posterior mean funds’ volatility ωi over time average across all 

funds for 50 different priors. 

 

Note: The figure presents the posterior mean funds’ volatility ωi over time average across all funds, see 

equation (2) for 50 different priors. We have used Sequential Monte Carlo / Particle Filtering draws. We 

have used 15,000 draws the first 5,000 of which are discarded to mitigate possible start up effects. We 

use 10,000 particles per Monte Carlo iteration. Posterior standard deviations appear in dashed lines. 

 

Figure 2c: The posterior densities of  corresponding to cross-sectional 

correlation for 20 different priors. 

 
Note: The figure presents the marginal posterior densities of ρ corresponding to cross-sectional 

correlation for 20 different priors. We have used Sequential Monte Carlo / Particle Filtering draws. We 

have used 15,000 draws the first 5,000 of which are discarded to mitigate possible start up effects. We 

use 10,000 particles per Monte Carlo iteration. Posterior standard deviations appear in dashed lines. 
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Figure 3: Marginal posterior distribution of g it s 

 

Notes: The figure presents the posterior distribution of g it  for the best and the worst performers 

in the sample. The posterior distribution is drawn with Sequential Monte Carlo / Particle 

Filtering draws. We have used 15,000 draws the first 5,000 of which are discarded to mitigate 

possible start up effects.  

 

Figure 4: funds’ performance with all priors. 

Note: all 10,000 different priors reported in the last column of Table 1. 
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APPENDIX I: Sequential Monte Carlo / Particle-Filtering (SMC/PF) techniques. 

Chopin (2002) proposed a sequential PF for static models. Given a target posterior 

1( ) ( )Tp Y p Y   =   a particle system is a sequence j j{ w }   such that 

1

1

( )

( ( ) ) ( ) ( ) lim
J

j jj

J

jj

w h

J
w

E h Y h p Y d


    =

=

→


 =  


 , almost surely, for any measurable 

function h , provided the expectation exists. We consider the sequence of posterior 

distributions ( )t tp p Y=  . The PF algorithm is as follows.  

Step 1. Reweight: update the weights 1( )

( )
1t j

t j

p

j j p
w w j J




+  =  .  

Step 2: Resampling: resample 
1 11H r J

j j j j j{ w J { } = = →  .  

Step 3. Move: draw 
1( ) 1m r

j t jK j J +  =  , where 1tK +  is any transition kernel whose 

stationary distribution is 1tp +    

Step 4. Loop: 
1 11 1J m J

j j j j jt t { w } { } = = +      and return to Step 1.  

Chopin (2002) recommends the independence Metropolis algorithm to select the 

kernel, which requires a source distribution. A possible choice, if we sampled from np  

( )n T , with respect to n sp +  is ˆˆ( )
n s n s

N VE + +
  where  

 1 1

1 1

ˆˆ

J J

j j j j n p j n pj j

n s n sJ J

j jj j

w w E E
VE

w w

     
   + += =    

+ +

= =

− −
=  = 
 

 
 

The strategy can be parallelized easily. If K  processors are available, we can partition 

the particle system into K  subsets, say 1 )kS k K =  , and implement computations 

for particles of kS  in processor k . The algorithm can deal with new data at a nearly 
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geometric rate and therefore the frequency of exchanging information between 

processors (after reweighting) decreases at a rate exponential to n , which is highly 

efficient.  

Resampling according to ( )m r

j t jK    reduces particle degeneracy (Gilks and 

Berzuini, 2001) since identical replicates of a single particle are replaced by new ones 

without altering the stationary distribution. For this application using 
122J =  particles 

gave a mean squared error in posterior means of 
510−
 over 100 runs.  

Chopin (2004) introduces a variation of MSC in which the observation dates at which 

each cycle terminates (say 1 )Lt t  and the parameters involved in specifying the 

Metropolis updates (say 1 )L   are specified. Therefore, 0 10 Lt t t T=     =  and 

we have the following scheme (we rely heavily on Durham and Geweke, 2013).  

Step 1. Initialize 0l =  and ( ) ( )l

jn p  , j J n N   .  

Step 2. For 1l L=  :  

(a) Correction phase:  

(i) 1( ) 1jn lw t j J n N− =       

(ii) For 1 1l ls t t−= +    

 ( 1)

1 1( ) ( 1) ( )l

jn jn s s jnw s w s p y y j J n N −

 −= −         

 (iii) ( 1) ( )l

jn jn lw w t j J n N− =        
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(b) Selection phase, applied independently to each group j J  : Using multinomial or 

residual sampling based on  ( )l

jnw n N  , select  

 ( 0)l

jn{ n N}     

from ( 1)l

jn{ n N} −   .  

(c) Mutation phase, applied independently across j J n N    :  

 ( ) (0)

1( )l

jn t jn lp y       (A1) 

where the drawings are independent and the pdf above satisfies the invariance 

condition:  

 1 1 1( ) ( ) ( ) ( )
l l lt l t tp y p y d p y        

  


    =    (A2) 

Step 3. ( )l

jn jn j J n N =        

At the end of every cycle, the particles ( )l

jn  have the same distribution 1( )
lt

p y    The 

amount of dependence within each group depends upon the success of the Mutation 

phase which avoids degeneracy.  
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APPENDIX II: 

Figure A1a Posterior distributions at different values for αi≥0. 

 
Note: The posterior distribution is obtained with Sequential Monte Carlo / Particle Filtering 

draws. We have used 15,000 draws the first 5,000 of which are discarded to mitigate possible 

start up effects.  

 

Figure A1b Marginal posterior distributions at different values for αi ≤0. 

 

Note: The posterior distribution is obtained with Sequential Monte Carlo / Particle Filtering 

draws. We have used 15,000 draws the first 5,000 of which are discarded to mitigate possible 

start up effects.  
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Figure A1c: Sample distribution of posterior mean of  conditional on 

‘significant’   

 
Notes: The figure presents the sample distribution of posterior mean of αi conditional on a 

‘significant’ . The persistence figure is drawn with Sequential Monte Carlo / Particle Filtering 

draws. We have used 15,000 draws the first 5,000 of which are discarded to mitigate possible 

start up effects. We use 10,000 particles per Monte Carlo iteration. Posterior standard deviations 

appear dashed lines. 

 

Table A1: Yearly 10 average performance indicators over time. 

Year Mean Standard deviation Min Max 

2000 0.035 0.041 -0.047 0.120 

2001 0.031 0.037 -0.035 0.117 

2002 0.033 0.027 -0.048 0.091 

2003 0.029 0.032 -0.033 0.097 

2004 0.015 0.025 -0.047 0.065 

2005 0.019 0.031 -0.032 0.078 

2006 0.022 0.035 -0.054 0.094 

2007 0.020 0.037 -0.061 0.071 

2008 -0.041 0.041 -0.125 0.035 

2009 -0.055 0.053 -0.155 0.042 

2010 -0.034 0.061 -0.127 0.085 

2011 0.012 0.065 -0.110 0.110 

2012 0.013 0.075 -0.055 0.118 

2013 0.007 0.044 -0.071 0.075 

2014 0.011 0.039 -0.075 0.092 

Average 0.0078 0.0429 -0.0717 0.0860 

Notes: Performance is derived from Sequential Monte Carlo / Particle Filtering 

draws. We have used 15,000 draws the first 5,000 of which are discarded to 

mitigate possible start up effects. We use 10,000 particles per Monte Carlo 

iteration.  
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Figure A2a: Posterior distributions of s (performance)  : 10 best funds. 

 
Figure A2b: Posterior distributions of s (performance)  : 10 worst funds.

 
Figure A2c: Posterior distributions of of s (performance ): 10 average funds. 
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Figure A2d: posterior distributions of   for the best-performing fund for years 

2000, 2008, 2012 and 2014. 

 

Note: The posterior distributions are obtained with Sequential Monte Carlo / Particle Filtering 

draws. We have used 15,000 draws the first 5,000 of which are discarded to mitigate possible 

start up effects.  

 

 

Figure A3a: The posterior distribution of optimal portfolio. 
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Note: The diagram presents results for 20 different priors from the last column in Table 

1. 

Figure A3b: Marginal posterior distribution of average persistence ( ) of its 

component returns. 

 

Note: 50 different priors from the last column in Table 1. 

Figure A3c: Marginal posterior distribution of persistence when average 

persistence is ‘significant’. 

 

Note: 50 different priors from the last column in Table 1. 

Figure A4: Marginal posterior distributions of αi for each fund only when its 

average  turns out ‘significant’. 
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Note: 50 different priors from the last column in Table 1. 
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