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Abstract We study the post-encounter evolution of fictitious small bodies belonging
to the so-called Line of Variations (LoV) in the framework of the analytic theory of
close encounters. We show the consequences of the encounter on the local minimum
of the distance between the orbit of the planet and that of the small body, and get a
global picture of the way in which the planetocentric velocity vector is affected by the
encounter. The analytical results are compared with those of numerical integrations
of the restricted 3-body problem.

Keywords Close encounter · Perturbation

1 Introduction

In the framework of their extension of the analytic theory of close encounters orig-
inally formulated by Öpik (1976), Valsecchi et al. (2003) introduced the so-called
“wire approximation”, a simple analytic description of the Line of Variations (LoV)
in which the orbital uncertainty of a small body encountering a planet is modelled
assuming that its orbital parameters a, e, i, Ω and ω are constant, and all of the un-
certainty is in the timing of the encounter, i.e., in the mean anomaly M.

This rather simplified description differs from other more sophisticated modeli-
sations like those described in Milani (1999) and Milani et al. (2005), implemented
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in the software robots CLOMON21 and Sentry2, which are in charge of determin-
ing whether a given Near-Earth Asteroid (NEA) can impact the Earth in the coming
century. These software robots take into account the uncertainties in all the orbital
elements, and make accurate propagations in time, including all the known perturba-
tions, while in the wire approximation the only uncertainty taken into account is that
on the timing of the encounter, which in turn is computed in a very simplified model.
On the other hand, the simple analytical formulation of the wire approximation allows
one to capture some important features of the problem.

The outcome of a planetary fly-by of a planet-crossing small body strongly de-
pends on its coordinates on the “target plane”, or b-plane, of the encounter (Kizner,
1961; Greenberg et al., 1988; Valsecchi et al., 2018), i.e. the plane centred on the
planet and perpendicular to the planetocentric velocity “at infinity” of the small body.
The uncertainty of the post-encounter trajectory is a function of the uncertainty in the
orbital elements at the time of the encounter, and in most cases of interest is domi-
nated by the uncertainty in the time of closest approach. A suitable choice of the target
plane coordinates is such that one coordinate represents the local minimum distance
between the orbit of the small body and that of the planet, and the other is propor-
tional to the timing of the encounter. In this way, the uncertainty is mostly along a line
parallel to one of the coordinate axes, and can be modelled by the so-called Line of
Variations (LoV). The LoV approach is a crucial ingredient of the Impact Monitoring
software developed at the University of Pisa and at the JPL.

In this paper we show some geometric features of the wire approximation that
are deducible from its analytic formulation and that can be useful to interpret the
outcomes of impact monitoring computations coming from sophisticated, accurate
models of the motion of NEAs on Earth approaching orbits.

The paper is organized as follows: in Section 2 we briefly recall the analytic the-
ory and how the LoV is described by the wire approximation; in Section 3 we discuss
what happens to the LoV at a close encounter. Afterwards, in Section 4 we give the
overall geometric picture of how the planetocentric velocity vectors of the points be-
longing to the LoV are rotated, and in Section 5 we summarize the conclusions.

2 Analytic theory of close encounters

The analytic theory of close encounters has been developed over the years, starting
from Öpik (1976), in a sequence of papers (Greenberg et al., 1988; Carusi et al., 1990;
Valsecchi et al., 2003; Valsecchi, 2006; Valsecchi et al., 2015a,b), to which we refer
the reader.

The basic assumptions are that the small body is massless, and the planet moves
on a circular orbit about the Sun, similarly to what is assumed in the restricted, cir-
cular, 3-dimensional 3-body problem; however, far from the planet, the small body is
assumed to move on an unperturbed heliocentric Keplerian orbit, not being subject
to the perturbation by the planet. Then, when a close encounter with the planet takes
place, the interaction is modelled as an instantaneous transition from the incoming

1 https://newton.spacedys.com/neodys/
2 https://cneos.jpl.nasa.gov/sentry/
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Fig. 1 The planetocentric velocity vector U in the reference frame X-Y -Z; the X-axis points towards the
direction opposite to that of the Sun, and the Y -axis coincides with the direction of the heliocentric motion
of the planet. The angle between the Y -axis and U is θ , and that between the Y -Z plane and the plane
containing the Z-axis and U is φ .

asymptote of the planetocentric hyperbola to the outgoing one, taking place when the
small body crosses the b-plane (Kizner, 1961; Öpik, 1976; Greenberg et al., 1988;
Carusi et al., 1990).

The computation relies on some intermediate variables, the so-called Öpik vari-
ables, constituted by:

– the planetocentric velocity vector U, whose components in a reference frame cen-
tred on the planet, with the X-axis pointing away from the Sun, and the Y -axis in
the direction of the planet motion, are given by Ux =U sinθ sinφ , Uy =U cosθ ,
and Uz =U sinθ cosφ (see Fig. 1);

– the two b-plane coordinates ξ and ζ ;
– the time tb at which the b-plane is crossed.

As a consequence of an encounter the direction of U changes but its modulus U
does not; explicit expressions linking the pre-encounter to the post-encounter orbital
parameters, making use of Öpik variables, are given in Carusi et al. (1990), Valsecchi
et al. (2003) and Valsecchi (2006).

2.1 The b-plane

As was already mentioned, the b-plane of an encounter is the plane containing the
planet and perpendicular to the planetocentric unperturbed velocity U. The vector
from the planet to the point in which U crosses the plane is b, and the coordinates on
the b-plane are ξ and ζ . As defined in Valsecchi et al. (2003) and Valsecchi (2006),
ξ = ξ (a,e, i,ω,sgn fb) is the local MOID (Minimum Orbital Intersection Distance),
and ζ = ζ (a,e, i,Ω ,ω, fb,λp) is related to the timing of the encounter. In these ex-
pressions, a, e, i, Ω , ω are the semimajor axis, eccentricity, inclination, longitude of
node and argument of perihelion of the pre-encounter orbit of the small body, and
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fb, λp are the true anomaly of the small body and the longitude of the planet at the
crossing of the b-plane.

2.2 The wire approximation

In the wire approximation we consider the encounter of a stream of small bodies
spaced in mean anomaly (that is, in true anomaly and therefore in ζ ), all on the same
orbit, with given local MOID ξ0. Then, as previously mentioned, U does not change
as a result of the close encounter and tb does not concern us here.

The encounter changes the angles θ and φ into θ ′ and φ ′. Moreover, we can
consider that for each pair θ ′,φ ′ we can define an “outgoing” b-plane, normal to
post-encounter velocity vector U′3, that is crossed by the small body at coordinates
ξ ′ and ζ ′. We call this plane the “post-encounter b-plane”.

Valsecchi et al. (2003) give the relevant equations to compute the post-encounter
quantities of the small bodies along the wire:

cosθ
′ =

(ξ 2
0 +ζ 2− c2)cosθ +2cζ sinθ

ξ 2
0 +ζ 2 + c2 (1)

sinθ
′ =

√
[(ξ 2

0 +ζ 2− c2)sinθ −2cζ cosθ ]2 +4c2ξ 2
0

ξ 2
0 +ζ 2 + c2 (2)

sinφ
′ =

[(ξ 2
0 +ζ 2− c2)sinθ −2cζ cosθ ]sinφ −2cξ0 cosφ

(ξ 2
0 +ζ 2 + c2)sinθ ′

(3)

cosφ
′ =

[(ξ 2
0 +ζ 2− c2)sinθ −2cζ cosθ ]cosφ +2cξ0 sinφ

(ξ 2
0 +ζ 2 + c2)sinθ ′

(4)

ξ
′ =

ξ0 sinθ

sinθ ′
(5)

ζ
′ =

(ξ 2
0 +ζ 2− c2)ζ sinθ −2(ξ 2

0 +ζ 2)ccosθ

(ξ 2
0 +ζ 2 + c2)sinθ ′

, (6)

with c given by:
c =

m
U2 , (7)

where m is the mass of the planet in units of that of the Sun. Particularly noteworthy
is the expression for ξ ′, which gives the post-encounter local MOID; we discuss its
implications in Sect. 3.

3 Post-encounter local MOID along the wire

On the post-encounter b-plane the size of the post-encounter impact parameter b′must
be the same as that of the pre-encounter one b, due to the conservation of the plan-
etocentric orbital angular momentum; thus, the post-encounter local MOID ξ ′ is

3 The components of U′ in the X-Y -Z reference frame are (U sinθ ′ sinφ ′, U cosθ ′, U sinθ ′ cosφ ′).
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bounded:

0≤ ξ
′ ≤ b =

√
ξ 2 +ζ 2.

Moreover, since θ and θ ′ take values between 0◦ and 180◦ (Carusi et al., 1990), ξ

and ξ ′ have the same sign (we remind the reader that ξ and ξ ′ are coordinates on
different planes).

Let us now discuss the variation in size of the local MOID due to the encounter,
for a wire that has ξ = ξ0. Equations (1) and (2) show that, the larger the value of |ζ |,
the closer θ ′ will be to θ , and thus the closer ξ ′ will be to ξ0.

For smaller values of |ζ |, there must be a minimum and a maximum value of
sinθ ′, that correspond respectively to the maximum and minimum values of ξ ′. To
find them, let us consider the derivative of sinθ ′ with respect to ζ :

∂ sinθ ′

∂ζ
=

∂ sinθ ′

∂ cosθ ′
∂ cosθ ′

∂ζ
=−cosθ ′

sinθ ′
∂ cosθ ′

∂ζ
. (8)

The zeroes of ∂ sinθ ′/∂ζ include those of ∂ cosθ ′/∂ζ , as well as the values of ζ

such that cosθ ′ = 0. As regards the zeroes of ∂ cosθ ′/∂ζ , these can be found by
zeroing the numerator of this derivative, since its denominator cannot be negative:

∂ cosθ ′

∂ζ
=

2c[2cζ cosθ +(ξ 2
0 −ζ 2 + c2)sinθ ]

(ξ 2
0 +ζ 2 + c2)2

ζ± =
ccosθ ±

√
c2 +ξ 2

0 sin2
θ

sinθ
.

Concerning the values of ζ such that cosθ ′ = 0, they are given by the intersections
of the straight line ξ = ξ0 with the circle having coordinates of the centre (0,D) and
radius |R|, given by (Valsecchi et al., 2000, 2003):

D = −csinθ

cosθ

R = − c
cosθ

.

The equation of the circle is:

ξ
2 +ζ

2−2Dζ +D2 = R2.

Its intersections with the straight line ξ = ξ0 are the roots of the equation:

0 = ζ
2 +

2cζ sinθ

cosθ
+ξ

2
0 − c2,

that are:

ζ1,2 =
−csinθ ±

√
c2−ξ 2

0 cos2 θ

cosθ
.
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Summarizing, the zeroes of ∂ sinθ ′/∂ζ are:

ζ± =
ccosθ ±

√
c2 +ξ 2

0 sin2
θ

sinθ
(9)

ζ1,2 =
−csinθ ±

√
c2−ξ 2

0 cos2 θ

cosθ
. (10)

Note that for
|ξ0|> |R|=

c
|cosθ | (11)

there is no intersection of the circle corresponding to cosθ ′ = 0 with the straight line
ξ = ξ0, so that there are no real values for the roots ζ1,2.

The values of ξ ′ corresponding to ζ± are:

ξ
′
± =

ξ0

|ξ0|
·

√
c2 +ξ 2

0 sin2
θ ± ccosθ

sinθ
, (12)

while those of ξ ′ corresponding to ζ1,2, when present, are:

ξ
′
1,2 = ξ0 sinθ . (13)

To see how the above expressions work in practice, let us apply the analytical
theory to the encounter of 2012 TC4 with the Earth that has taken place on 12 Oc-
tober 2017. The geocentric velocity of 2012 TC4 is U = 0.235, relatively low for a
NEA, making this case rather challenging for the analytic theory, that works best for
encounters in which the planetocentric velocity is high.

Figure 2 shows the b-plane relative to this encounter; in it, the black circle centred
in the origin is the gravitational cross-section of the Earth, and the unit adopted for
the axes is the physical radius of our planet r⊕. In the case of 2012 TC4, the effective
radius of the Earth, due to gravitational focussing, is 1.89r⊕. The black dots represent
LoV points for two different values of ξ , namely ξ0 = −4 and ξ0 = −2 Earth radii;
the red dots show the post-encounter values ξ ′,ζ ′ corresponding to each pair ξ0,ζ ,
for ξ0 = −4 Earth radii, and the blue dots do the same for ξ0 = −2 Earth radii. As
already said, to each pair ξ0,ζ corresponds a post-encounter pair ξ ′,ζ ′ defined on a
different post-encounter b-plane; here, however, we plot them on the pre-encounter
b-plane in order to show how the LoV is deformed as a consequence of the close
encounter. It is noteworthy how the variation of the local MOID can be, at least in
this case, comparable to the radius of the Earth.

Figure 3 is similar to Fig. 2, but also shows the relevant b-plane loci (Valsecchi
et al., 2018) whose intersections with the LoVs give origin to specific values of ξ ′.
These loci are:

– the condition ∂ cosθ ′/∂ζ = 0, shown by the cyan hyperbola;
– the condition θ ′ = θ (Valsecchi et al., 2000), implying a′ = a and ξ ′ = ξ , shown

by the black horizontal straight line;
– the condition cosθ ′ = 0 (in this particular case giving a′ = 1.05 au), correspond-

ing to ξ ′ = ξ sinθ , shown by the green circle.
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ξ(r⊕)−4 0 4

ζ(r⊕)

−4

0

4

Fig. 2 The Earth encounter of 2012 TC4 on 12/10/2017; the plot shows the deformation of the LoV for
ξ0 = −4 and ξ0 = −2 Earth radii. The black circle represents the Earth cross-section; the black dots are
the points belonging to the two LoVs. The red dots show the corresponding points in the post-encounter
b-plane for ξ0 =−4; the blue dots do the same for ξ0 =−2.

ξ(r⊕)−4 0 4

ζ(r⊕)

−4

0

4

a′ = 1.05 au

a′ = a

∂a′/∂ζ = 0

∂a′/∂ζ = 0

Fig. 3 Same as Fig. 2, highlighting relevant b-plane loci (Valsecchi et al., 2018). The cyan hyperbola
corresponds to ∂ cosθ ′/∂ζ = 0; the black straight line is the condition for θ ′ = θ (Valsecchi et al., 2000);
the green circle is the condition cosθ ′ = 0.
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Let us examine the LoV with ξ0 = −4 Earth radii, going from positive ζ values
towards negative ones. For large positive values of ζ , as already said, θ ′ tends to θ ,
so the variation of ξ is small.

Going towards ζ = 0, the LoV crosses the hyperbola for ζ = ζ+: this corresponds
to the maximum of cosθ ′, i.e. to the minimum of sinθ ′, and thus to the maximum of
|ξ ′|. The values of θ ′, φ ′ and ξ ′ are given by:

cosθ
′
+ =

√
c2 +ξ 2

0 sin2
θ cosθ + c√

c2 +ξ 2
0 sin2

θ + ccosθ

(14)

sinθ
′
+ =

|ξ0|sin2
θ√

c2 +ξ 2
0 sin2

θ + ccosθ

(15)

sinφ
′
+ =

ξ0

|ξ0|
· ξ0 sinθ sinφ − ccosφ√

c2 +ξ 2
0 sin2

θ

(16)

cosφ
′
+ =

ξ0

|ξ0|
· ξ0 sinθ cosφ + csinφ√

c2 +ξ 2
0 sin2

θ

(17)

ξ
′
+ =

ξ0

|ξ0|
·

√
c2 +ξ 2

0 sin2
θ + ccosθ

sinθ
. (18)

The next locus encountered by the ξ0 =−4 Earth radii LoV is the horizontal straight
line corresponding to cosθ ′ = cosθ . In this case, the local MOID is unchanged, ξ ′ =
ξ0.

Finally, the LoV encounters the other branch of the hyperbola, in ζ−; here, the
values of θ ′, φ ′ and ξ ′ are given by:

cosθ
′
− =

√
c2 +ξ 2

0 sin2
θ cosθ − c√

c2 +ξ 2
0 sin2

θ − ccosθ

(19)

sinθ
′
− =

|ξ0|sin2
θ√

c2 +ξ 2
0 sin2

θ − ccosθ

(20)

sinφ
′
− =

ξ0

|ξ0|
· ξ0 sinθ sinφ − ccosφ√

c2 +ξ 2
0 sin2

θ

(21)

cosφ
′
− =

ξ0

|ξ0|
· ξ0 sinθ cosφ + csinφ√

c2 +ξ 2
0 sin2

θ

(22)

ξ
′
− =

ξ0

|ξ0|
·

√
c2 +ξ 2

0 sin2
θ − ccosθ

sinθ
. (23)
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A noteworthy feature is that φ ′+ = φ ′−, implying that the extrema of the post-encounter
values of θ lie on the same meridian. The difference ∆maxθ ′ between them is:

cos(∆maxθ
′) =

ξ 2
0 − c2

ξ 2
0 + c2 ; (24)

we will return on this issue in Sect. 4.
Coming now to the ξ0 = 2 Earth radii LoV, the crossings of the hyperbola and

of the straight line are as before. he However, this LoV crosses also the green circle
corresponding to cosθ ′ = 0; actually, one of these crossings happens also to take
place at the border of the cross-section of the Earth. Anyway, at these two crossings
we have:

cosθ
′
1,2 = 0

sinθ
′
1,2 = 1

ξ
′
1,2 = ξ0 sinθ .

3.1 Numerical check

To test the validity of the theoretical predictions about the variation of the local MOID
along the LoV, we proceeded as in Section 4 of Valsecchi et al. (2018). That is, we
integrated the equations of the restricted, circular, 3-dimensional 3-body problem
using the RA15 integrator (Everhart, 1985) with initial conditions corresponding to
the 12 October 2017 encounter of 2012 TC4.

By trial-and-error we found the pre-encounter values of ω corresponding to ξ0 =
−4 and ξ0 =−2 Earth radii, and then we integrated sets of initial conditions equally
spaced in ζ , thus reproducing the two LoVs of interest. Then, we determined the
post-encounter values ξ ′,ζ ′ and plotted them in Fig. 4, that has to be compared with
Fig. 2.

The theoretical behaviour of the LoV is very well confirmed by the numerical
integrations.

4 Rotation of U into U′ along the wire

The conservation of U implies that the pre-encounter and post-encounter velocity
vectors U and U′ span a sphere in X-Y -Z space, the U-sphere, of radius U centred in
the origin and on which the angles θ and φ define a system of parallels and meridians:
on the U-sphere θ is the colatitude measured from the Y -axis (the direction of motion
of the planet), and φ is the longitude, counted from the Z-Y plane.

Let us examine the path followed by the tip of U′ on the U-sphere for a given
value of ξ0. The angle γ between the vectors U and U′ is given by:

tan
γ

2
=

c√
ξ 2

0 +ζ 2
; (25)
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ξ(r⊕)−4 0 4

ζ(r⊕)

−4

0

4

Fig. 4 Same as Fig. 2, with the red and blue dots showing the points in the post-encounter b-plane. The
green points, nearly exactly superimposed on the red blue dots, come from the numerical integrations in the
restricted, circular, 3-dimensional 3-body problem, as described in the text; the theory and the integrations
appear to be in very good agreement.

this implies that, for ζ →±∞, γ → 0. On the other hand, γmax, the maximum value
of γ , is reached for ζ = 0, and is given by:

cosγmax =
ξ 2

0 − c2

ξ 2
0 + c2 . (26)

A comparison of (24) and (26) shows that ∆maxθ ′ and γmax are equal; this suggests
the possibility that the path followed by the tip of U′ on the U-sphere for a given value
of ξ0 might be a circle.

To check whether this is true, let us consider meridian φP = φ ′+ = φ ′−. On it lie the
points P+, of coordinates (X+,Y+,Z+), and P−, of coordinates (X−,Y−,Z−), where:

X+ =U sinθ
′
+ sinφ

′
+ Y+ =U cosθ

′
+ Z+ =U sinθ

′
+ cosφ

′
+,

and

X− =U sinθ
′
− sinφ

′
− Y− =U cosθ

′
− Z− =U sinθ

′
− cosφ

′
−.

These two points correspond to the tips of the post-encounter velocity vector for,
respectively, ζ = ζ+ and ζ = ζ−; halfway between them, on the same meridian, we
now consider point P, whose colatitude θP is halfway between θ ′+ and θ ′−, so that:

θP =
θ ′++θ ′−

2
. (27)
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From Eqs. (14), (16), (17) and (19) we can compute θP,φP as functions c,θ ,φ ,ξ0:

cosθP =
|ξ0|cosθ√

ξ 2
0 + c2

(28)

sinθP =

√
ξ 2

0 sin2
θ + c2√

ξ 2
0 + c2

(29)

sinφP =
ξ0

|ξ0|
· ξ0 sinθ sinφ − ccosφ√

ξ 2
0 sin2

θ + c2
(30)

cosφP =
ξ0

|ξ0|
· ξ0 sinθ cosφ + csinφ√

ξ 2
0 sin2

θ + c2
, (31)

In the X-Y -Z frame the coordinates of P are:

PX = U sinθP sinφP =
ξ0

|ξ0|
·U(ξ0 sinθ sinφ − ccosφ)√

ξ 2
0 + c2

(32)

PY = U cosθP =
U |ξ0|cosθ√

ξ 2
0 + c2

(33)

PZ = U sinθP cosφP =
ξ0

|ξ0|
·U(ξ0 sinθ cosφ + csinφ)√

ξ 2
0 + c2

. (34)

On the other hand, the post-encounter values θ ′,φ ′ for a generic initial condition “on
the wire”, of coordinates ξ0,ζ , can be computed using Eqs. (1)-(4). The correspond-
ing point on the U-sphere will have coordinates:

X =U sinθ
′ sinφ

′ Y =U cosθ
′ Z =U sinθ

′ cosφ
′.

From Eqs. (1)-(4), we rewrite the above expressions as follows:

X =
U{[(ξ 2

0 +ζ 2− c2)sinθ −2cζ cosθ ]sinφ −2cξ0 cosφ}
ξ 2

0 +ζ 2 + c2 (35)

Y =
U [(ξ 2

0 +ζ 2− c2)cosθ +2cζ sinθ ]

ξ 2
0 +ζ 2 + c2 (36)

Z =
U{[(ξ 2

0 +ζ 2− c2)sinθ −2cζ cosθ ]cosφ +2cξ0 sinφ}
ξ 2

0 +ζ 2 + c2 . (37)

The square of distance DP from P to a generic point on the U-sphere corresponding
to an initial condition “on the wire” is:

D2
P = (X−PX )

2 +(Y −PY )
2 +(Z−PZ)

2; (38)
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substituting the expressions as functions of U,θ ,φ ,ξ0,ζ , one obtains:

D2
P =

2U2
(√

ξ 2
0 + c2−ξ0

)
√

ξ 2
0 + c2

. (39)

Thus the post-encounter values of θ ′ and φ ′ accessible to a small body encountering
the planet “on the wire” define the circle resulting from the intersection of the cone
of aperture γmax, centred in the centre of the U-sphere, and the sphere itself. The pole
of the spherical cap delimited by the circle is point P.

For ξ 2
0 � c2, i.e. when the MOID is relatively large, and very close encounters

are not possibe, θP,φP become:

cosθP ≈ cosθ

sinθP ≈ sinθ

sinφP ≈ sinφ − ccosφ

ξ0 sinθ

cosφP ≈ cosφ +
csinφ

ξ0 sinθ
,

that is, P tends towards the tip of U. On the other hand, for ξ 2
0 � c2, θP,φP become:

cosθP ≈
|ξ0|cosθ

c
sinθP ≈ 1

sinφP =
|ξ0|sinθ sinφ

c
− ξ0 cosφ

|ξ0|

cosφP =
|ξ0|sinθ cosφ

c
+

ξ0 sinφ

|ξ0|
.

Moreover, it is clear that, the smaller becomes ξ0 relative to c, the larger becomes the
circle spanned by the initial conditions “on the wire” until, for ξ0 = 0, it becomes the
great circle corresponding to the φ -meridian. For ξ0 6= 0 the circle is tangent to the
φ -meridian in the point of spherical coordinates θ ,φ .

For completeness, we now give expressions for the coordinates of the centre and
for the radius RC of the circle. The centre C lies on the axis of the cone, at a distance
U sin(γmax/2) from the origin of axes, while the radius RC is equal to U cos(γmax/2).
Since:

sin
γmax

2
=

c√
ξ 2

0 + c2
cos

γmax

2
=

|ξ0|√
ξ 2

0 + c2
,

the coordinates of the C are:

CX = PX cos
γmax

2
=

Uξ0(ξ0 sinθ sinφ − ccosφ)

ξ 2
0 + c2 (40)

CY = PY cos
γmax

2
=

Uξ 2
0 cosθ

ξ 2
0 + c2 (41)
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CZ = PZ cos
γmax

2
=

Uξ0(ξ0 sinθ cosφ + csinφ)

ξ 2
0 + c2 , (42)

and the radius RC is:

RC =U sin
γmax

2
=

Uc√
ξ 2

0 + c2
. (43)

Fig. 5 The U-sphere relative to the 2017 encounter of 2012 TC4 with the Earth. The red circle is the
intersection of the U-sphere with the ecliptic. The geocentric velocity vector U, as well as the angles θ

and φ , are indicated. The green circle shows the possible directions in which the post-encounter velocity
vector U′ can be deflected. The maximum deflection angle γmax in this case is 56◦.8.

As an application of the above considerations, let us consider the already men-
tioned recent encounter of 2012 TC4 with the Earth. The relevant quantities in this
case are:

U = 0.235
θ = 60◦.2
φ = 265◦.3
c

r⊕
= 1.29
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ξ0

r⊕
= −2.38

cosγmax = 56◦.8,

where r⊕ is the radius of the Earth.
Figure 5 helps to visualize the situation. It shows U in the X-Y -Z frame, as well

as the U-sphere, spanned by U′ for all possible values of ξ ,ζ ; the red circle is the
intersection of the U-sphere with the X-Y plane, and the angles θ ,φ are indicated.
The green circle is spanned by U′ for all possible values of ζ and ξ = −2.38 Earth
radii.

Fig. 6 Same as Fig. 5, for ξ0 =−c, so that γmax = 90◦.

Figure 6 shows the situation for a value of ξ0 =−c; this value is still negative, but
closer to 0, and for it γmax amounts to 90◦. Note that we are showing the behaviour
of U′ also for deflections that would imply a perigee of the real asteroid smaller than
the radius of the Earth, in order to give the overall view of the geometry involved.
Obviously, in a realistic computation, parts of the green circle would be forbidden,
due to the impact.

Finally, Fig. 7 shows what happens when ξ0 changes sign. In the case shown,
ξ0 = 3.65 terrestrial radii, so that γmax = 38◦.9. As already said, for ξ0 = 0 the green
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Fig. 7 Same as Fig. 5, for ξ0 = 3.65 · r⊕, resulting in γmax = 38◦.9.

circle becomes a great circle; afterwards, the green circle starts to shrink on the other
side, as ξ0 starts to increase after having passed through 0.

5 Conclusions

We discussed how a close encounter, in which the local MOID is well determined
and the timing is somewhat uncertain, can be modelled with the wire approximation,
in which the LoV on the b-plane is described by ξ = ξ0 and ζ takes any value within
the uncertainty range.

Explicit expressions can then be given that describe the behaviour of the LoV after
the encounter. In particular, these expressions allow one to describe the variation of
the local MOID, that in some cases can be of the order of the radius of the Earth, and
thus have consequences for the possibility of subsequent impacts.

Numerical integrations in the restricted, circular 3-dimensional 3-body problem
confirm that the theoretical results on the variation of the local MOID are satisfacto-
rily accurate.

Moreover, the theory allows us to give the overall geometrical description of how
the planetocentric velocity vector is deflected at the encounter, as a function of the
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MOID of the orbits described by the LoV in the wire approximation. In fact, for a
LoV of given ξ0, the post-encounter values of θ ′ and φ ′ lead to a circle resulting from
the intersection of the cone of aperture γmax = γmax(ξ0,c), centred in the centre of the
sphere spanned by U′, and the sphere itself.

Comparisons of these results with those that can be obtained in realistic situations,
for real asteroids possibly impacting the Earth, will be the subject of future work.
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