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Highlights 

 As, Cd, Pb and Zn were present in high concentrations at abandoned mine (Gorno). 

 Oral bioaccessibility of potentially toxic elements was highly variable. 

 Calcareous geology, weathering and soil forming process influenced bioaccessibility. 

 Oral bioaccessibility inclusion avoids over-conservative human health risk assessment. 

Abstract 

The waste rock, tailings and soil around an abandoned mine site in Gorno (northwest Italy) contain 

elevated concentrations of potentially toxic elements (PTE) exceeding the permissible limits for 

residential uses. Specifically, the maximum concentrations of As, Cd, Pb, and Zn were 107 mg/kg, 

340 mg/kg, 1064 mg/kg and 148 433 mg/kg, respectively. A site-specific human health risk 

assessment (HHRA) was conducted for residential and recreational exposure scenarios, using an 

approach based on Risk Based Corrective Action (RBCA) method, refined by incorporating oral 

bioaccessibility data. 
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Oral bioaccessibility analyses were performed by simulating the human digestion process in vitro

(Unified BARGE Method). Detailed analysis of the oral bioaccessible fraction (BAF i.e. ratio of 

bioaccessible concentrations to total concentrations on <250 μm fraction) indicated BAF of As (5-

33%), Cd (72-98%), Co (24-42%), Cr (3-11%), Cu (25-90%), Ni (17-60%), Pb (16-88%), and Zn 

(73-94%). The solid phase distribution and mineralogical analyses showed that the variation of BAF 

is attributed to presence of alkaline calcareous rocks and association of PTE with a variety of 

minerals. The HHRA for ingestion pathway, suggested that bioaccessibility-corrected cancer risk 

reached up to 2.7 × 10-5 and 0.55 × 10-5 for residential and recreational senarios respectively 

(acceptable level is 1 ×10-5). The hazard index (HI) recalculated after incorporation of the oral 

bioaccessible concentrations for a residential scenario ranged from 0.02 to 17.9. This was above the 

acceptable level (> 1) for 50% samples, indicating potential health risks to local inhabitants. This 

study provides information for site-specific risk assessments and planning future research. 

Keywords: Abandoned mine site; Bioaccessibility; Risk assessment; Solid phase distribution; 

Potentially toxic elements (PTE); Triassic western southern Alps (Italy) 

1 Introduction 

Mining contributes to the contamination of ecosystems by generating extractive waste (EW), also 

known as mining waste (Nakaona et al; 2019; Stewart, 2019). The EW from mineral extraction and 

processing has been accumulating for many years and the annual EW production is estimated to be 

of350 × 109 tonnes per year (Vallero and Blight, 2019). Despite several measures have recently been 

implemented to manage EW in a more sustainable manner, release of PTE into the environment 

remains a concern, especially in areas with a legacy of historic mining. The Bureau de Recherches 

Géologiques et Miniéres (BRGM, French Geological Survey) estimates that there are more than 5200 

million tonnes of waste rock and 1100 million tonnes of tailings stored in abandoned mines in the EU 
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(BRGM, 2001). The high volume of EW in abandoned mines has led to human health concerns as 

these PTE tend to persist in the environment (Boente et al., 2020; Damian et al., 2018; De Souza et 

al., 2015; Delil and Koleli, 2019; Edokpayi et al., 2016; Karlsson et al., 2018; Kasemodel et al., 2019; 

Kaupilla et al., 2018; Khelifi et al., 2019; Petrella et al., 2019a; Petrella et al., 2019b; Väänänen et al., 

2016; Wang et al., 2020; Yang et al., 2019).  

A common approach used to assess the potential human health risks posed by contaminants is to 

conduct a human health risk assessment (HHRA). This entails determining the identity and extent of 

contaminants, characterising their toxicity and estimating the magnitude of their exposure to the local 

population (Adimalla, 2019; Gerba 2009; Zorpas 2020). Traditional HHRA methods use total 

concentrations of contaminants to assess potential risks. However, recent studies have emphasized 

that human health risks are associated with absorption of PTE into the systemic circulation (blood) 

(referred to as the bioavailable fraction) and indicated that consideration of total concentrations alone 

can result in overestimation of impacts on human health (Boim et al., 2019; Du et al., 2020; 

Fernández-Caliani et al., 2019; González-Grijalva et al., 2019; Ruby et al., 2002; Yu and Yang, 2019). 

Maddaloni et al. (1998) conducted oral bioavailability studies to measure the absorption of soilborne 

Pb into humans. Several other studies have applied in vivo animal studies and analysed oral 

bioavailable fractions (Bradham et al., 2016; Brattin and Casteel, 2013; Casteel et al., 2006; Juhasz 

et al., 2010; Kang et al., 2016; Suh et al., 2019). Nevertheless, assessing bioavailability requires 

complicated, lengthy and costly procedures that are also ethically constrained (Molina et al., 2013). 

This has resulted in the development of several in vitro bioaccessibility methods (Beauchemin et al., 

2014) such as the Physiologically Based Extraction Test (PBET) by Ruby et al. (1996).  The Unified 

BARGE method (UBM) was developed by the Bioaccessibility Research Group of Europe (BARGE), 

to harmonise oral bioaccessibility testing, which is now referenced as an ISO standard method (ISO 

17924:2018). The oral bioaccessibility is this ISO method is defined as the fraction of a contaminant 

that is solubilised in the human gastrointestinal tract and is available for absorption (Wragg et al., 

2011). The UBM method has been validated for in vivo studies for As, Cd, and Pb (Denys et al., 2009 
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and 2012) and is widely applied by environmental consulting services in France and England (Foulkes 

et al., 2017; Pelfrêne et al., 2012).  Recently, Mehta et al. (2019) examined the BAF of PTE in samples 

from an abandoned nickel (Ni) mine in Italy. Although, many studies have demonstrated the 

importance of oral bioaccessibility in assessing human health risks, there is a paucity of research on 

the incorporation of oral bioaccessibility into HHRA at abandoned mine sites.  

Therefore, this study applies an oral bioaccessibility-correction for refining potential HHR in an 

abandoned mine located in Gorno, northwest Italy. Specifically, the objectives were to: (1) determine 

the PTE bioaccessible fractions in waste rock, tailings and contaminated soils; (2) investigate the 

effects of mineralogy and solid phase distribution on the bioaccessible PTE fractions; and (3) perform 

bioaccessibility-corrected HHRA to calculate risks to human health via the oral pathway. 

2 Methodology 

2.1 Study site and sampling  

The abandoned mine site is located in the Gorno mining district comprising of the Seriana, Riso, and 

Brembana valleys (Lombardy, northwest Italy). The site is composed of Triassic carbonate rocks of 

the central southern Alps (Fig.1) that were formed due to crustal movements and volcanic activities 

(Hou et al., 2016; Leach et al., 2010). The study site for this investigation is a waste facility located 

in the vicinity of Mount Arera, one of the biggest and most accessible facilities in the region (Dino et 

al., 2018). 

The site is rich in zinc-lead-silver stratabound ore deposits with mineralisation of Zn-Pb ± Ag ± baryte 

± fluorite mostly occurring within the “Metallifero” (i.e., “ore-bearing”) formation, (also known as 

the Gorno formation  - (Dino et al., 2018). The primary mineralisation consists of sphalerite (ZnS) 

and galena (PbS) (average Zn/Pb ratio= 5:1), with minor pyrite (FeS2), marcasite (FeS2), chalcopyrite 

(CuFeS2) and argentite (Ag2S). The dominant gangue minerals are calcite (CaCO3), dolomite 

(CaMg(CO3)2), quartz (SiO2) and ankerite (Ca(Fe,Mg,Mn)(CO3)2). The industrial exploitation for Zn 

and Pb took place between 1837 and 1982. A flotation process, using sodium based reagents and fuel 



5 

oil, was applied for the treatment of valuable ores (information from historical documents maintained 

by the Municipal Corporation of Gorno). Hence, the two main types of EW present at the site are 

waste rock and tailings due to the separation and treatment processes. Samples of waste rock (n=10), 

tailings (n=10) and soil (n=3) were collected (sampling procedure in Supplementary Material: S1).  

Fig.1. Geological setting with insert showing geographical location (modified from Beltrando et al., 

2015) and the sample locations at Gorno. Sample numbers are shown in red font for samples analysed 

for bioaccessibility. WR: waste rock, T: tailings, and S: soil 
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2.2 Analytical methods 

2.2.1 Basic physical-chemical characteristics 

The waste rock, tailings and soil samples were dried in an oven at 80 °C until the weight remained 

constant. All samples were sieved to <2 mm and quartered to obtain a representative sample size of 

10 g. The mineralogical analysis of waste rock, by Dino et al. (2018) showed presence of calcite, 

dolomite, and sphalerite. Tailings contained calcite, dolomite, Fe sulphates and Pb sulphosalts. The 

soil samples were studied for mineral phases using micro-X-ray fluorescence (micro-XRF) Eagle III-

XPL spectrometer equipped with an EDS Si (Li) detector and with an EdaxVision32 microanalytical 

system. Detailed micromorphology was conducted using a Cambridge Stereoscan 360 scanning 

electron microscope (SEM) coupled with energy-dispersive spectrometry on soil sample (Code – S7). 

All samples were analysed for pH using a 1:2.5 suspension of sample in water (ISO 10390:2005). 

The total concentrations of PTE in <2 mm fraction were determined using aqua regia (U.S. EPA 

3051A and U.S. EPA 6010C, 2007). Briefly, 0.5 g of sample was digested using concentrated HNO3

and HCl (1 HNO3:3 HCl). The concentrations of extracted PTE were measured using an Ametek 

Spectro Genesis Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) provided 

with an Ametek monochromator, a cyclonic spray chamber and a TeflonMira Mist nebulizer. All 

reagents used were of analytical grade.  High-purity water from a Millipore Milli-Q Academic system 

was used. All samples were analysed in duplicate. 

2.2.2 Oral bioaccessible concentrations 

Following the basic physical-chemical-mineralogical characterisation, samples were selected for 

bioaccessibility analyses. Waste rock and soil samples were selected to ensure a representation of 

each dump and lithology from the Gorno site, so that results can be representative of the area. For 

tailings, the two shallowest samples were selected. The samples were sieved to <250 µm fraction and 

analysed for total and bioaccessible concentrations using aqua regia extractions and UBM, 

respectively (BARGE 2010; Denys et al., 2012; ISO 17924:2018). For quality control, each batch of 

UBM extractions (n = 10) included one procedural blank, six unknowns, one duplicate of two 



7 

unknown samples and one soil guidance material (BGS102) (BARGE, 2010; Hamilton et al., 2015). 

Table in (Supplementary Material: S2) summarises the measured and certified values of the 

BGS102 extractions. The extractions consisted of two phases: gastric and gastrointestinal. 

Bioaccessible concentration was considered as the highest concentration from gastric or 

gastrointestinal phase, as this allowed HHRA estimations to be a “worst-case” scenario. Bioaccessible 

fraction is reported as the ratio of bioaccessible concentration compared with the total concentration 

from the 250 µm fraction (Eq. 1).  

���(%) =
������������� ������������� �� ������� (

���� )����� ������������� �� ������� (
���� ) 

× 100                                                               (1)   

2.2.3 Non-selective sequential extractions 

Potentially toxic elements occur in soil in association with a complex mixture of chemical 

components, e.g. mineral phases; pore-water; and organic matter. Consequently, the occurrence and 

relative distribution of PTE among these components control PTE dissolution and hence 

bioaccessibility (Ettler et al., 2018; Ettler et al., 2019; Vasiluk et al., 2019). Solid phase distribution 

in this study was performed by a non-selective method coupled to the chemometric identification of 

substrates and element distributions (CISED) method (Cave et al. 2004; Cipullo et al., 2018). The 

CISED method prevents resorption of elements to soil during extraction process due to the short time 

the extractant is in contact with samples. Moreover, it provides necessary information on the presence 

of PTE within various matrices. The mechanistic information about PTE solid phase associations can 

help in understanding leachability, solubility and mobility of PTE, elucidating the effects of 

mineralogical forms for in vitro bioaccessibility (CIEH, 1999; Cox et al., 2013; Palumbo-Roe and 

Klinck, 2007; Schaider et al., 2007). 

The CISED extractions were carried out on selected samples (n=2 each for waste rock, tailings, and 

soil) to determine the distribution of elements. Approximately 2 g of sample was sequentially 
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extracted with 10 ml of extractant. The solution was mixed for 10 min in an end-over-end shaker, 

centrifuged (4350 g for 5 min) and the resultant leachate (liquid fraction) was collected in a clean 

sample bottle. The next extraction solution was added to the same sample and the process repeated. 

Seven different solutions were used twice (deionised water, 0.01M, 0.05M, 0.1M, 0.5M, 1.0M and 

5.0M HNO3), with progressive addition of H2O2 (0.25, 0.50, 0.75 and 1 ml) in the last four solutions 

for precipitation of oxides. The recovered liquid fraction was filtered with a 0.45 μm 25 mm nylon 

syringe filter and diluted four times with deionised water for elemental analysis using ICP-MS 

(NexION® 350D ICP-MS, Perkin Elmer). For quality control, acid blanks (1% nitric acid) and 

guidance material (BGS102) were included in extraction. The solid phase distribution of major and 

trace elements was determined using a self-modelling mixture resolution algorithm (SMMR) 

developed by Cave et al. (2004) in MatLab®Version R2015. The detailed analytical methods can be 

found in Mehta et al. (2019). 

2.3 Human health risk assessment for ingestion 

The Risk Based Corrective Action (RBCA) guidelines (ASTM 1995; ASTM 2015); and the exposure 

frequencies from the U.S. EPA (2002) and the APAT-ISPRA, 2008 (Italian databases to conduct risk 

assessment) were used to conduct HHRA for two scenarios: (1) a worst case scenario for residential 

area (i.e. taking exposure frequency (EF) as 350 days a year for 24 hours a day (U.S. EPA 1991), and 

(2) a more realistic recreation scenario, with site-specific human activity patterns assumed, for which 

the number of outdoor weeks were limited to 32 weeks a year (mid March to mid November) and 3 

hours a day of outdoor time (APAT-ISPRA, 2008; Bharadwaj and Machibroda, 2008). The numerical 

estimation of risks due to ingestion of non-carcinogenic PTE was evaluated as hazard quotient (HQ) 

and for carcinogens as cancer risk (CR) (Eq. 4 and 5). The total PTE concentrations on < 250 µm 

size fraction were used as the concentration at source (Cs). It should be noted that the Italian regulation 

suggests to use total concentration on < 2 mm fraction normalised to weight of < 20 mm fraction. 
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However, as the oral bioaccessibility analysis using UBM was performed on < 250 µm samples in 

this study, both the BAF and the risk calculations were determined for <250 µm fraction, without 

normalisation for consistency. This is further supported by the U.S. EPA (2007 and 2008), approach 

which reported that the < 250 µm fraction is the main fraction that adheres to human skin and results 

in incidental ingestion. Average daily dose (ADD) was calculated by considering the receptor to be 

both children and adults, body weight (BW) 70 kg for adult and 15 kg for children from U.S. EPA, 

1991, Eq. 2) and then adjusting it to ADDadjusted following APAT-ISPRA (2008) (Eq. 3). 

��� = �� × ��� ×�� ×�� × ������ ×�� � (2) 

����������� = ������������ + ��������� ��� �������������������� ��� �������������� (3) 

where, IR is ingestion rate (adults: 100 mg/day and children: 200 mg/day - (U.S. EPA, 2002)), ED is 

exposure duration (children: 6 years; adults: 24 years - (U.S. EPA, 1991)), AT is averaging time (for 

non-carcinogens: ED, carcinogens: 70 years) and 10−6 is for unit conversion, 

�� =
��������������                                                                                                                                         (4)

�� = ����������� × ��� (5)

Reference dose (RfD) is 0.0003, 0.0005, 0.0003, 1.5, 0.04, 0.02, 0.0035 and 0.3 mg/kg-d for As, Cd, 

Co, Cr, Cu, Ni, Pb and Zn, respectively. Cancer slope factors (CSF) are As and Pb are 1.5 and 0.0085 

(mg/kg-d)-1 (U.S. EPA IRIS, 2019). These CSF and RfD values are also in accordance with Ministero 

dell'ambiente e della tutela del territorio e del mare, 2006, decree no. 152/06  (The Ministry for 

Environment, Land and Sea Protection of Italy, 2006). 

As exposure to two or more contaminants may result in accumulative effects, HQ can be summed as 

hazard index (HI) (Eq. 6).  A, HI <1 represents no significant risk of non-carcinogenic effects, 

whereas HI >1 represents a chance of non-carcinogenic effects, with an increase in probability as HI 
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increases (U.S. EPA, 2011). Cancer risk (CR) of  CR <1 x 10-6  and CRtotal <1 x 10-5 is generally 

regarded as acceptable, where CRtotal is the summation of cancer risks of individual contaminants as 

expressed in Eq. 7.  

For incorporating oral bioavailability in HHRA (Eq. 8, 9), ADDadjusted must be multiplied by relative 

bioavailability (RBA) (i.e. the ratio of absolute bioavailability of the test material (ABAtest) to the 

absolute bioavailability of the reference dose material (ABAreference) (Vasiluk et al., 2011). However, 

as bioaccessibility ≥ bioavailability, BAF can be used as conservative proxy to replace ABAtest. In 

this study, ABAreference was assumed equal to 1. Thus, exposure estimate (soil ingestion) was corrected 

when estimating HQ and CR (Eq. 10). A similar methodology was applied by Luo et al. (2012) and 

Cao et al. (2020) for incorporating oral bioaccessibility in HHRA due to PTE contamination in urban 

parks of China and e-waste burning site in Accra, Ghana, respectively. 

�� = ∑ ������� (6)

������� = ∑ ������� (7) 

����������� ��� = ����������� × ��� (8) 

����������� ��� = ����������� × � �������������������� (9) 

����������� ��� = ����������� × ���� �� %��� � (10) 

3 Results and discussion 

3.1 Mineralogical analysis 

Semi quantitative analysis using micro-XRF demonstrated presence of calcite, dolomite, zinc oxide, 

and sphalerite as abundant minerals in soil. The minor minerals were galena, lead oxide, pyrite, and 
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smithsonite. The results from SEM analysis on soil (sample code – S7) (Fig.2) showed that As was 

associated with Fe rich grains , suggesting strong presence of As in Fe rich phases asthe adsorption 

of As species occurs by ligand exchange of As for OH2 and OH groups on Fe oxide hydroxide surfaces  

(Filippi et al., 2015; Jain et al., 1999).  Arsenic was present within grains rich in Ca and Mg (dolomite 

rich), which can be explained by surface precipitation of small amounts of poorly ordered Fe 

(hydr)oxides with high specific surface area and adsorption capacity to dolomite rich minerals. 

Arsenic was also present in grains rich in clay minerals (indicated by presence of As-K-Mg silicates).  

Copper mainly occurred as chalcopyrite (CuFeS2). Careful visual examination of the Cd map shows 

that Cd was also associated with chalcopyrite. Chalcopyrite tends to host trace elements such as Cd 

in sulphide ore deposits (Clark et al., 2001). Lead was present as galena, PbO, PbCO3 and amorphous 

sulphides. Zinc was observed as zinc oxide, Cu-Fe-Zn-S phase, hemimorphite, sphalerite, 

smithsonite, and with clay minerals (Zn-K-Mg-Si).  



12 

Fig.2. Elemental distribution and composition of soil (sample code –S7) - Back scattered electron 

(BSE) micrograph showing Ch: chalcopyrite, D: dolomite, R: resin, S: sphalerite and zinc oxide and 

corresponding X-ray maps (SEM) for Cu, Si, As, Ca, Cd, Fe, K, Mg, Pb, S, and Zn. 

3.2 Total concentrations of PTE in the 2 mm fraction of the waste rock, tailings and soil 

The pH of waste rock samples varied between 7.4 and 7.9 (Fig.3). Zinc was present in high levels 

compared to Italian legislative limits with an average concentration of 73 900 mg/kg. This occurred 

due to early mining operations at Gorno where Zn was extracted from zinc oxide and zinc silicates 

and not from sphalerite (Dino et al., 2018), contributing to waste rock dumps with high concentrations 

of Zn from sphalerite (ZnS). The weathering of these waste rocks results in enrichment of the <2 mm 

fraction with secondary minerals of ZnS. Strong Cd enrichment (range 52-340 mg/kg) was observed 

due to the chemical similarity with Zn (Das et al., 1997). Strong geochemical associations between 



13 

both elements have been found also in other mining sites e.g. lead-zinc mines in Upper Silesia 

(Poland) and Zawar (India) (Anju and Banerjee, 2011; Ullrich et al., 1999).  

The concentrations of thallium (Tl) were found to be >1 mg/kg (limit for green and residential areas) 

as Tl is an accompanying element to Pb-Zn ores and can be introduced to the environment due to 

processing of these ores (Lis et al., 2003). Total As concentrations ranged from 13 to 68 mg/kg, with 

mean concentration of 45 mg/kg. The possible reason could be that pyrite (FeS2), galena (PbS), 

sphalerite (ZnS), marcasite (FeS2) and chalcopyrite (CuFeS2) are commonly known to contain As as 

an impurity (Yan-Chu, 1994). The average concentration of antimony (Sb) was 30 mg/kg. This can 

be attributed to the fact that As and Sb share chemical featuresresulting in similar behaviour (Wilson 

et al., 2010). Copper (Cu) was found to vary from 30 mg/kg to 184 mg/kg, with an average 

concentration of 88 mg/kg. The samples showed trace concentrations of the ferromagnesian elements 

i.e. Cr-Ni-V-Co, and Se due to carbonatic platform (Bullock et al., 2019; McLennan, 2001).  

Fig.3. pH and concentration of PTE in mg/kg in waste rock samples (fraction <2 mm). 

Tailings and soil samples had alkaline pH values (Table 1). Tailings collected from 0-15 cm depth, 

had considerably less PTE compared to samples taken at increasing depths. The plausible reasons 

are: (1) top layer is essentially a soil layer while all other samples were tailings. These tailings were 

deposited in the area during processing of valuable ores; (2) leaching of PTE during rainfall events 

can result in greater contamination with increasing depth. 

Tailings showed higher concentrations of As, Cd, Cu, Pb, Sb and Zn compared to the permissible 

limits in Italy. The Cd concentration was as low as 0.1 mg/kg at the surface but reached to 24.2 mg/kg 
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at 125-175 cm depth. The concentration of Zn was 52 mg/kg at the sampling point close the surface 

and reaching 8887 mg/kg at 200 cm depth. The total As, Sb and Cd concentrations in tailings ranged 

from 74 to 107 mg/kg, 17 to 319 mg/kg, and 14 to 88 mg/kg, respectively. Soil samples were also 

found to be contaminated by As, Cd, Pb, Sb, Tl, V, and Zn, which can result in environmental 

problems and cause damage to human health due to ingestion. 
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Table 1. pH and concentration of PTE in soil and tailings samples from Gorno in size fraction <2 mm. 

Sample Depth 

(cm) 

pH As Be Cd Co Cr Cu Ni Pb Sb Tl V Zn 

Limit 1 20 2 2 20 150 120 120 100 10 1 90 150 

Limit 2 50 10 15 250 800 600 500 1000 30 10 250 1500 

Tailings sampling point 1 

T1 0-15 6.9 8.0 0.4 0.1 2.6 5.9 9 8.7 879 1 0.07 41.4 52 

T2 15-50 7.2 42.2 0.4 20.3 2.3 4.2 246 3.7 1005 116 0.07 30.1 7554 

T3 125-175 7.5 45.3 0.4 24.2 1.4 3.5 219 1.7 1008 110 0.07 24.4 8887 

T4 225-275 7.5 40.2 0.4 19.3 1.3 3.6 132 1.5 695 70 0.07 24.7 6847 

Tailings sampling point 2

T5 0-40 7.8 28.9 0.6 14.2 3.1 5.7 161 5.8 665 72 0.06 31.9 5443 

T6 40-65 7.8 38.0 0.1 22.7 2.0 1.2 247 1.1 1064 126 0.07 14.5 8560 

T7 215-250 7.6 44.6 0.4 21.3 1.3 3.7 201 1.5 944 1 0.19 25.0 8600 

Tailings sampling point 3

T8 0-20 7.9 7.2 0.5 0.13 2.5 6.4 13 6.8 441 6 0.06 34.2 314 

T9 60-100 8.1 38.1 0.3 19.2 1.2 3.3 156 1.3 759 81 0.07 24.2 6808 

T10 220-240 7.8 43.4 0.5 20.4 1.6 4.3 183 1.7 882 97 0.53 28.7 8131 

Soil samples

S7 0-15 6.6 107.0 2.1 17.2 13.7 60.1 37.4 29.8 255 13.9 <0.10 155.0 14 730 

S11 0-15 6.9 73.9 1.9 169.0 8.9 32.0 118.0 17.2 139 56.1 3.96 147.0 84 300 

S13 0-15 6.5 76.8 1.2 319.0 5.2 17.5 185.0 14.0 140 88.4 3.11 82.8 138 482

Legislative limits currently adopted in Italy for PTE concentrations in the soil, Limit 1 is intended for green and residential areas, while Limit 2 for commercial and industrial areas 

(Ministero dell'ambiente e della tutela del territorio e del mare, 2006, decree no. 152/06). Values above legislative limits are in bold. 



16 

3.3 Total and bioaccessible concentrations of PTE in the <250 µm fraction of the waste 

rock, tailings, and soil  

The total concentrations of PTE for the < 250 µm fraction were considerably higher than for the < 2 

mm fraction (Table 2) implying an increase in surface area and thus higher absorption of PTE to 

particles (Yao et al., 2015). Total As concentrations were found to be high with a maximum of 189 

mg/kg. However, for all the samples, bioaccessible concentrations of As ranged from 5-33% of total 

concentrations. In contrast, samples recorded BAF of Cd ranging from 72-98%. Total concentrations 

of Co (5-12 mg/kg) and Cr (9-44 mg/kg) and bioaccessible concentrations (Co: 1-4 mg/kg and Cr: 1-

2 mg/kg) were found to be low. The bioaccessible concentrations of Cu in waste rock, tailings and 

soil samples recorded mean value of 115 mg/kg (BAF 54%), 145 mg/kg (BAF 49%) and 65 mg/kg 

(BAF 41%) respectively. Mean of total concentrations and BAF of Ni were 24 mg/kg and 33% 

respectively, for all the samples. 

Mean precentages of bioaccessible fractions of Pb in waste rock, tailings and soil samples were 32%, 

84% and 61%, respectively. The waste rock samples indicated high concentrations of Zn with mean 

value of 130 917 mg/kg. The mean bioaccessible concentration of Zn in waste rock was 119 461 

mg/kg, resulting in BAF of 91%. Similar results were obtained for tailings and soil samples, with 

mean value of BAF as 75% and 80% respectively. Due to the limited number of samples, statistical 

methods were not used for prediction of oral bioaccessible concentrations based on total 

concentrations. However, the Pearson’s correlation coefficients conducted on samples (n=8) showed 

strong correlation between total and bioaccessible concentrations of Cd, Co, Cu, Pb and Zn 

(Supplementary material: S3). 

The trend of the BAF recorded in our study was Cd (72-98%) ≈ Zn (73-94%) > Cu (25-90%) > Pb 

(16-88%) > Ni (17-60%) > Co (24-42%) > As (5-33%) > Cr (3-11%). Mikutta et al. (2014) and 

Palumbo-Roe and Klinck (2007) reported BAF of As as 5-34% and 0.5-42% in mine impacted soils 

in Bulgaria and south England respectively, which is in close range with this study. On the other hand, 

samples in present study showed higher BAF for Cu and Ni compared to other mining areas (Darko 
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et al., 2019; Karadaş and Kara, 2011). Furthermore, BAF for Cd, Pb and Zn in our study is comparable 

to those reported by Roussel et al. (2010) on smelter contaminated urban soil in northern France. 

Pelfrêne et al. (2012) recorded mean values of BAF in smelter contaminated agricultural soil in 

northern France for Cd, Pb, and Zn as 78%, 58% and 32% (here 85%, 61%, and 80%, respectively). 

Higher bioaccessibility of Zn was recorded in soil in Gorno compared to agricultural soil in northern 

France which could be due to difference in land use. 
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Table 2. Total and bioaccessible concentrations (mg/kg) and bioaccessible fraction (BAF in %) evaluated on <250 µm size fraction. 

As Cd Co Cr 

Sample pH G Total BAF G Total BAF G Total BAF G Total BAF 

Waste rock 

WR2 7.8 8.5 115 7 462 476 97 2.4 6.8 42 1.9 22 9 

WR5 7.8 10.8 189 6 431 442 98 1.9 4.7 41 2.2 20 11 

WR7 7.4 8.6 98 9 388 394 98 2.2 8.2 29 2.1 35 6 

Tailings 

T1 6.9 4.9 15 33 0.8 1.0 80 2.5 5.5 40 0.6 14 4 

T2 7.2 29.9 68 30 28 39 72 1.1 2.9 39 0.8 9 9 

Soil 

S7 6.5 15.4 142 11 386 440 89 3.6 10.5 34 2.4 33 7 

S11 6.6 6.1 115 5 28 36 80 2.8 11.9 24 1.5 44 3 

S13 6.9 8.7 78 11 178 210 85 2.1 7.6 29 2.2 31 7 

Cu Ni Pb Zn 

Sample pH G Total BAF G Total BAF G Total BAF G Total BAF 

Waste rock 

WR2 7.8 100 350 29 12.0 20 60 31 198 16 128 044 143 302 89 

WR5 7.8 135 150 90 9.8 20 49 36 128 28 116 996 124 575 94 

WR7 7.4 110 260 42 7.5 25 30 96 177 54 113 343 124 875 91 

Tailings 

T1 6.9 6 19 32 3.2 19 17 22 25 88 149 193 77 

T2 7.2 284 440 65 2.0 8 37 1567 1945 81 7139 9739 73 

Soil 

S7 6.5 124 334 53 17.1 37 48 139 215 65 130 759 154 680 85 

S11 6.6 11 44 25 4.3 37 12 141 248 57 5304 7304 73 

S13 6.9 58 132 44 5.9 24 26 84 136 61 82 340 100 530 82 

BAF: Bioaccessible fraction calculated using Eq. 1, G: concentration of PTE extracted in gastric phase of UBM; Total: total concentration of PTE using aqua regia on <250 µm 

fraction. 
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3.4 Solid phase distribution of the elements across waste rock, tailings, and soil matrices 

3.4.1. Waste rock and soil 

The physico-chemical components for the most representative sample of waste rock and soil (sample 

codes - WR2 and S7) are in Fig.4. Heatmap for sample codes – WR5 and S13 is shown in 

Supplementary material: S4. Chemometric data analysis identified 7 components in waste rock 

sample and 9 components in the soil samples. Using the geochemical associations present at the site, 

six clusters were identified: 

Exchangeable: This cluster in waste rock was extracted over the HNO3 concentrations of 0.01 M to 

0.05 M and consisted of S (72%), Mg (12%), Si (5%), and Zn (4%) suggesting dissolution of sulphates 

present at the site (Heidel et al., 2011). The exchangeable cluster in soil consisted of (Ca-S-Mg, Ca-

Mg, Zn, Zn-Na components), with the majority of elements being released in distilled water and 0.01 

M HNO3 extractant indicating that the site is rich in carbonate. The elemental composition was Zn 

(38%), Ca (25%), Mg (19%) and S (6%). Elevated concentrations of Zn and Ca indicates presence of 

weathered products from minerals such as smithsonite (ZnCO3), and/or hydrozincite 

(Zn5(CO3)2(OH)6) and hemimorphite (Zn4(Si2O7)(OH)2·H2O) and Ca rich minerals like dolomite and 

calcite. 

Ca carbonate component in soil composed of Ca (69%), Zn (27%) and Mg (9%).  This was extracted 

by concentrations of HNO3 ranging from 0.01 M to 0.1 M indicating presence of Zn rich minerals 

and calcium carbonate from the Bergamasc calcareous metalliferous lithological unit. 

Site-specific: This component of waste rock comprised of Zn (74%), S (17%), Mg (6%) and Ca (2%). 

Presence of Zn and S suggests presence of oxidation products of sphalerite, zinc oxide, and sulfur 

rich minerals.  

Higher carbonate: The extraction of waste rock at 0.1 M HNO3 resulted in a higher carbonates 

component principally consisting of S (41%), Mg (30%), Mn (14%), Zn (12%), Ca (1%) and a minor 

percentage of Fe. The presence of Ca-Fe-Mg-Mn implies dissolution of ankerite present as gangue 
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mineral in the site. The higher carbonate component in soil principally consisted of Ca (59%) and Zn 

(30%) and was extracted at 0.1 M HNO3. 

Pb dominated component consisted of S (54%), Mg (37%), Zn (4%) and Ca (3%) in waste rock.  Lead 

concentration in this component was highest and equal to 77% of total CISED extracted Pb.  This 

could be due to the occurrence of galena (PbS), which was present with sphalerite in minor 

association. The Pb dominated cluster in soil had high percentage of Ca (55%), Zn (27%), Mg (9%). 

The lead concentration in this cluster was 91%, while the other components in total consisted only 

9% of Pb.  

Fe oxide: The Fe oxide cluster of waste rock comprised of Zn (57%), S (25%), Mg (12%) and Fe 

(3%) and extracted by acid concentration of 1 M to 5 M HNO3 and H2O2. This component in soil 

consisted of Zn (85%), Fe (4%) and Mg (4%). The cluster recorded highest Fe concentrations and 

PTE extracted during the CISED extractions of both waste rock and soil samples. This was expected 

as digestion in the last step results in dissolution of oxides.  

Fig.4. Heatmap and clustergram for CISED extracted WR and soil sample (sample code - WR2 and 

S7) of Gorno. The linkage between the components is shown in the dendrogram on the right-hand 

side. Elemental composition data is on the left-hand side separated with a dashed vertical white line 

from the extraction number data (E1–14) on the right. The horizontal lines are used for dividing 

geochemical clusters. High concentrations are depicted by white/light grey and low concentrations 

by dark grey/black. Component names are provided with sample identification code (WR and S) 

along with the principal elements recorded for each component.
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3.4.2. Tailings 

The physico-chemical components present in selected sample from tailings (code - T2) are shown in 

Fig.5. Tailings sample was subjected to separate chemometric data analysis, as tailings were 

generated after processing of natural minerals, which led to variation in quantities and mobility of 

elements when compared to waste rocks and soil. It was observed that CISED extracted samples for 

tailings contained higher percentages of Na, as sodium based reagents were used for flotation. The 

components of tailings sample (code - T1) are in Supplementary material: S5. 

The pore-water component consisted of Na, K, and Pb and was mainly extracted by deionised water. 

The Ca-carbonate cluster (Ca: 92%) was extracted from 0.5 M to 1 M, this is because the carbonate 

form is a loosely bound phase and liable to change with environmental conditions (Filgueiras et al., 

2002). The higher carbonate consisted of Ca (96%). The presence of carbonates could be due to 

dissolution of calcite and dolomite present at the site (Dino et al., 2018).  

The Fe oxide component was principally formed by Mg, S, and Fe. It was extracted in concentrations 

of HNO3 ranging from 1 M to 5 M. The component consisted the majority of Fe (94%) released 

during CISED extractions, due to presence of weathering product of Fe sulphate observed in 

mineralogical analysis (Dino et al., 2018).  

Fig.5. Extraction profiles obtained during CISED extractions of tailings (sample code – T2).
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3.5 Comparing solid phase distribution and oral bioaccessibility for integrated assessment 

Fig.6. exhibits the concentrations of As, Cd, Pb and Zn extracted in each CISED component and the 

bioaccessible concentration of elements. Dissolution of Fe oxide components contributed to the 

bioaccessible fractions of As. Bioaccessibility values of As in all samples were recorded to be low 

compared to total concentrations due to strong association between As and Fe oxides and Fe 

hydroxides (exposed in Section 3.1). This is also evidenced in Fig. 6a, where As is extracted in the 

Fe oxide fractions of CISED  

Dissolution of site-specific and Fe oxide components led to the bioaccessibility fractions of Cd and 

Zn in waste rock. Whilst, dissolution of Pb dominated and Fe oxide components contributed to 

significantly high bioaccessible concentrations of Cd and Zn in soil. The Cd and Zn bioaccessible 

concentrations in tailings sample were contributed by higher carbonate components of CISED 

extractions. The bioaccessible concentrations of Cd and Zn were high due to: (1) The calcareous 

geological context of area with high pH. Mineral phases that form under alkaline conditions tend to 

be less stable in the acidic conditions of the stomach and more bioaccessible (Ruby et al., 1999); and 

(2) Weathering of sulphide minerals in the presence of oxygen can result in speciation changes and 

the formation of secondary mineral phases that often have greater mobility than the parent sulphide 

minerals (Schaider et al., 2007). In contrast, the bioaccessible fraction for As was much less compared 

to Cd and Zn; demonstrating that even though all elements were present in the same geological 

context, the differences in BAF may occur due to associations of these metals with different minerals.  

It was observed that partial dissolution of Pb dominated clusters in waste rock and soil resulted in 

bioaccessible fractions of Pb. Lead, showed lesser concentrations during UBM extractions than 

CISED. It has been demonstrated that, the dissolution of greater amounts of carbonates by the acidic 

gastric solutions can result in an increase of hydroxy carbonate anions available in solution, and that 

under such conditions, Pb can form insoluble compounds with the anions (Reis et al., 2014).  
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Fig.6. Median cumulative concentration in CISED extracted components (X-axis) and bioaccessible 

concentrations of potentially toxic elements (mg/kg). Bioaccessible: Bioaccessible concentrations, 

As: arsenic, Cd: cadmium, Pb: lead, Zn: zinc 

3.6. Human health risk assessment for ingestion 

The non-carcinogenic HQ estimations were performed for As, Cd, Co, Cr, Cu, Ni, Pb and Zn. For 

residential exposure scenario, the HI defined as the summation of HQ, reached to a maximum of 25.4 

considering total concentrations and to a maximum of 17.9 utilising bioaccessible concentrations 

(Fig. 7a). The carcinogenic risk evaluated for As and Pb implied that total cancer risk i.e. CRtotal

reached a maximum of 4.4 x 10-4 which is greater than 1 x 10-5, demonstrating carcinogenic risk for 

total concentrations. For bioaccessible concentrations the maximum value was 2.7 x 10-5.   

For the recreational scenario, it was observed that maximum HI for total and bioaccessible 

concentrations were 2.0 and 1.4, respectively (Fig. 7c). The results also indicated that the site 

surrounding T1, T2, S11, S13 had HI <1 (acceptable level), for bioaccessible concentrations, 

implying no potential non-carcinogenic risks. All the samples recorded CRtotal <1 x 10-5 (acceptable 

level) using bioaccessible concentrations. This indicates that incorporating bioaccessible 

concentrations in HHRA refined the risk assessment process, resulting in no unacceptable 

carcinogenic risks being identified at all the sampling points and absence of unacceptable potential 

non-carcinogenic risks at half of the sampling points, as the HI and CRtotal decreased by 34% and 93% 

respectively. 

It should be noted that all the risk calculations were performed using concentrations on size fraction 

<250 µm for consistency and because this is the fraction that remains adhered to skin for accidental 

ingestion. However the present study also reported lower total concentrations for size fraction <2 mm 

than <250 µm (Section 3.2 and 3.3), implying that there could be underestimation of  potential risk, 

for oral pathway, if the calculations are based on size fraction <2 mm. Because of the influence of 

soil particle size on total concentrations, soil particle size should be chosen properly for HHRA to 

avoid under- or overestimating human health risk (Cao et al., 2020). It is also recommend that for 
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incorporation of oral bioaccessibility in HHRA, consistent particle size and samples should be 

analysed. This is also in line with the approach used by Luo et al. (2012) and Cao et al. (2020) where 

samples were first analysed for total concentrations and then the same samples were used for 

bioaccessibility.  

The limitations of the present study were that (1) the limited number of samples collected from the 

abandoned mine site hindered the use of a simple linear regression model for predicting bioaccessible 

concentrations of PTE; (2) all samples were not analysed for mineralogy and solid phase distribution. 

However, the conclusions drawn from the present study were in confirmation with oral 

bioaccessibility and  mineralogy studies conducted elsewhere (Reis et al., 2014; Ruby et al., 1999; 

Schaider et al., 2007). Nevertheless, the present study demonstrated that for robust decision making, 

role of bioaccessibility in HHRA should not be underestimated as noted by differences in potential 

risks due to total and bioaccessible concentrations in the HHRA framework. 

(a) (b)

(c) (d)

Fig.7. Human health risk for oral ingestion pathway, considering total and bioaccessible 

concentrations (sieved to <250 µm). Sample identification codes are on X-axis, and the potential risk 

values below the dashed black line on the Y-axis of the graph shows the risk values within acceptable 
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levels.  (a) Hazard quotient for residential scenario; (b) Cancer risk for residential scenario; (c) Hazard 

quotient considering recreation scenario; and (d) Cancer risk considering recreation scenario. 

4 Conclusions  

This paper has highlighted the importance of assessing site-specific oral bioaccessibility to provide 

improved estimates of human health risks from exposure to PTE in abandoned mine sites. Waste 

rock, tailings and soil samples had strong enrichment of PTE in Gorno, northwest Italy. The total PTE 

concentrations were higher in the <250 μm fraction than in  the <2 mm fraction, implying higher 

specific surface area for smaller size fractions. The range of oral BAF across samples was observed 

as: As (5-33%), Cd (72-98%), Co (24-42%), Cr (3-11%), Cu (25-90%),  Ni (17-60%), Pb (16-88%), 

and Zn (73-94%). Solid phase distribution and mineralogical analysis demonstrated that pH; 

geological and lithological properties; and presence of carbonatic minerals influenced oral 

bioaccessibility. 

Oral bioaccessibility analyis concluded that PTE are not fully bioaccessible, which implies that use 

of total concentrations is not adequate in determining the actual risk associated. Incorporation of site-

specific BAF values showed decrease in potential non-carcinogenic and carcinogenic risks by 34% 

and 93% respectively for ingestion pathway. Thus, bioaccessibility-corrected HHRA reduces the 

uncertainty associated with the human exposure estimates and the extent of required remediation 

efforts. The approach provided in this study, based on bioaccessibility-correction and RBCA 

guidelines, can be used in estimating hazards associated with exposures to PTE in soils near 

abandoned mine sites. 
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