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Highlights 

 The strains KA3 and KA4 were isolated from the heavy oily sludge. 

 The strains were capable of degrading crude oil in the mineral-based medium. 

 The two isolated strains exhibited the synergistic effect in oil biodegradation. 

 About 90% of total petroleum hydrocarbons were removed in the composting system. 

 Successful scaling-up was achieved from mineral-based medium to composting process. 
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Abstract: The impact of two-step inoculation of indigenous strains and their synergistic effect in 

the scaling-up of petroleum hydrocarbons biodegradation from a mineral-based medium (MBM) 

to a two-phase composting process were investigated. After isolating the strains KA3 and KA4 

from heavy oily sludge (HOS), their emulsification index (E24), bacterial adhesion to 

hydrocarbon (BATH), and oil degradation efficiency were evaluated in the MBM. Then, they 

were inoculated twice into the composting bioreactors lasted for the primary 8 weeks as the first 

phase (FP) and subsequent 8 weeks as the second phase (SP). The results indicated that the 

consortium of the two strains degraded 16-61% of crude oil (1-5% concentration) in the MBM.

In the composting reactors, removals of 20 g kg-1 initial concentration of total petroleum 

hydrocarbons (TPH) were found to be 63.95, 61.00, and 89.35% for the strains KA3, KA4, and 

their consortium, respectively. The computed biodegradation constants indicated the synergistic 

effect of the two strains and the effectiveness of the second-step inoculation. The study 

demonstrated the successful scaling-up of HOS biodegradation from MBM to the two-phase 

composting process through two-step inoculation of the isolated strains.

Key words: Biodegradation scale-up; Heavy oily sludge; Two-step inoculation; Composting 

process; Synergistic effect 
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1. Introduction

Population growth, rapid industrialization and urbanization have increased the world 

consumption of energy. Despite the continuing rapid growth in renewable energy, crude oil is 

still the most important strategic source of material and energy and its total production reached 

4474 million tonnes in 2018, which shows an increase of 11.9% compared with 2008 [1]. 

Processing crude oil in petroleum refinery industries annually produces huge quantities of heavy 

oily sludge (HOS) [2, 3]. It has been recognized that HOS contains various amounts of 

petroleum hydrocarbons, water, and heavy metals. Improper disposal of oily sludge can lead to 

serious environmental and health issues. Hence, there is a need for effective technologies to treat 

this type of industrial waste before disposal [4, 5]. Until now, multiple physical and chemical 

methods have been used as treatment strategies for decontamination of petroleum compounds. 

However, most of these approaches are not economically and/or ecologically viable. As an 

alternative, bioremediation technologies such as composting process has shown to be an 

environmentally sound and cost-effective method to treat petroleum compounds [6, 7].  

In bioremediation, easily biodegradable compounds are rapidly decomposed and then the rate 

of biodegradation decreases. This reduction is due to both the persistent nature of the residual 

hydrocarbons and the limitation in the metabolic activities of microbial population [8, 9]. 

Bioremediation of oily sludge is also limited due to the scarcity of native specialized microbes 

needed for degrading various fractions of petroleum hydrocarbons. In order to overcome these 

limitations and to promote bioremediation performance, a two-phase composting process and 

microbial inoculation can be used [10-12]. However, no single microbial species has the ability 

to metabolize all classes of compounds typically found in crude oil. A consortium composed of 

many different species is thus required to take advantage of their synergistic interactions [13, 



5 

14]. However, the antagonistic effects such as competition for carbon sources may also influence 

the growth of bacterial species and thereby decrease the process efficacy, especially in a full-

scale bioremediation process. Thus, oily sludge decomposition during bioremediation processes 

can be complicated by not only biological factors, but also physicochemical parameters [15]. 

Thion et al. [16] observed antagonistic interactions between the mixed culture of fungus and

bacterium in bioremediation of contaminated soils. Hence, one of the most important problems 

of petroleum hydrocarbons biodegradation has been the lack of effective scale-up of mineral-

based medium (MBM) results to full-scale bioremediation methods [17]. For this reason, the 

appropriate combination of native bacterial species and investigation of their metabolic 

characteristics and interactions should be performed to optimize and scale-up MBM experiments 

to full-scale bioremediation processes [18, 19].  

To the best of our knowledge, scaling-up of HOS bioremediation from MBM to a two-phase 

composting system through two-step inoculation of isolated indigenous strains has not been 

reported before. The main purpose of the present study was to the scaling-up of HOS 

biodegradation from MBM to a two-phase composting method. The study also investigated the 

synergistic effects of the isolated strains and the impact of two-step inoculation on the 

composting process. The composting system used in the current research consisted of the first 

phase (FP), lasted for 8 weeks, followed by the second phase (SP), also lasted for 8 weeks. 

2. Materials and methods 

2.1. Isolation of oil-degrading bacteria 

HOS was obtained from Shazand oil refinery plant, Iran. The bacterial strains of HOS 

samples were determined using the serial dilution method. After adding cycloheximide (to 
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prevent the growth of fungi) and blending HOS (5 g) with Bushnell-Haas (BH) medium (100 ml) 

at 160 rpm and incubating at 30 °C for 7 days, 5 ml of the medium was again mixed with BH 

(100 ml) containing 1% concentration of crude oil as a sole carbon source. The abovementioned 

method was repeated three times to assure that only the bacteria are responsible for the medium 

turbidity. Then, the medium (100 l) was spread onto the Muller-Hinton agar and then incubated 

for 48 h. The formed colonies were again transferred to the surface of Muller-Hinton agar. Each 

isolated bacterium was mixed with BH consisting of 1% concentration of crude oil, and then 

incubated for 7 days to verify the colonies capabilities in oil degradation. Cell growth was 

monitored by measuring cell turbidity determined as optical density at 600 nm (OD600 nm) in the 

MBM or BH medium. Six strains showing the highest OD600 nm and growth in the presence of 

crude oil were selected. These 6 strains were also exposed to the concentrations of 1, 2, 3, 4, and 

5% of crude oil. Finally, the two fastest-growing bacterial strains exhibiting high efficacy of oil 

degradation were selected for further tests and application in the composting experiments. 

2.2. Identification of the isolated bacteria 

The isolates were investigated in terms of various characteristics such as morphology, 

motility, gram stain test, and biochemical tests. Confirmation of the isolates was conducted by 

the PCR and Bio-Rad Thermal Cycler based on the procedures reported in a previous work [20]. 

Electrophoresis of the DNA was performed by agarose gel (0.8%) in Tris-Borate-EDTA (TBE) 

buffer. The PCR product was sequenced by Bioneer Co., Korea mediated by Pishgam Co., Iran. 

The sequences were analyzed and aligned by Chromas software and ClustalW program. By using 

BLAST tools, the sequences were compared with NCBI database. CLUSTAL X 2.0 software 

was applied to include top hit sequences in alignment analysis. Phylogenetic tree was constructed 

by MEGA software v 7.0 [21, 22]. 
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2.3. Determination of emulsification index (E24) 

The E24 (%) was measured according to the procedure described previously [23, 24]. Briefly, 

the isolated strains were added to Nutrient Broth and incubated at 30 °C for 48 h. Then, a 

mixture of the free cell supernatant and oils were vortexed vigorously for 2 min. After keeping 

the sample at room temperature for 24 h, the E24 was determined as follows: 

E24 (%) = (Height of the emulsified layer/total height of liquid column) × 100 

2.4. Determination of bacterial adhesion to hydrocarbon (BATH) 

BATH was determined through the method described by [25] with slight modifications. 

Briefly, the strains were transferred to Nutrient Agar and incubated at 30 °C for 24 h. After 

adding one colony of the strains to a buffer solution, the primary OD (OD1) was determined. 

Then, 200 μl of Hexadecane was added and the mixture was shaken well for 2 min. The 

hydrocarbon was separated through maintaining at room temperature for 30 min. The BATH was 

calculated through measuring the secondary OD (OD2) of the aqueous phase as follows: 

BATH (%) = [(OD1-OD2)/OD1] × 100

2.5. Crude oil biodegradation in MBM  

Before inoculation of the isolated strains in the composting reactors, their capabilities in crude 

oil biodegradation were investigated in the MBM. Multiple concentrations of crude oil including 

1, 2, 3, 4, and 5% v v-1 were used in the 500-ml Erlenmeyer flasks. The process was conducted at 

neutral pH and a temperature of 30 °C. After shaking at 120 rpm throughout a 7-day period, oil 

degradation was calculated. The rates of Total petroleum hydrocarbons (TPH) decrease in MBM 

were determined as the TPH removal against the control experiments. The control experiments 
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were performed under the same conditions without any inoculation. The oil concentration 

showing the highest biodegradation was selected to be used in the composting bioreactors.  

In order to study the influence of pH on crude oil biodegradation, tests were performed at pH 

values of 5, 6, 7, 8, and 9. The isolated strains and 1% concentration of crude oil were blended 

with BH and incubated for 7 days and then the OD and crude oil reduction were calculated. HCl 

and NaOH were used for pH adjustment of the medium.  

2.6. HOS biodegradation in the composting bioreactors 

Five cylindrical bioreactors were operated for a period of 16 weeks. In the composting 

reactors, the sterile finished compost (FC) was blended with sterile HOS in the mixing ratio (the 

weight of FC divided to the weight of HOS) of 12.2:1. The FC purchased from a local market in 

Arak, Iran, had been prepared from foodwaste and green waste. Naturally, it did not contain 

some impurities and components such as plastic and glass. The physico-chemical properties of 

the HOS and FC are presented in the Table S1 (supplementary material). This mixing ratio was 

selected to reach an initial TPH concentration of 20 g kg-1 based on the results of the oil 

biodegradation in MBM. The composting experiments A1, A2, and A3 contained the strains KA3, 

KA4, and their consortium, respectively. At the initiation of the process, each reactor was 

provided with the 0.5 McFarland of the isolates (5% v v-1). At the end of week 8 (FP), the 

bacterial inoculation was repeated. For reactor A4, inoculation of the two strains consortium was 

only performed at the beginning of the process. Comparing the performance of the reactor A4

with A3 would allow to investigate the effect of the once and twice inoculation steps on TPH 

removal. The reactor A5 was operated as control without any bacterial inoculation to ascertain 

that it did not have any active microorganisms capable of degrading hydrocarbons. According to 

the previous papers [26, 27], the ratio of C/N/P in the composting bioreactors were adjusted at 
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100/5/1 through the addition of NH4Cl and KH2PO4. Aerobic conditions in the reactors were 

supplied by means of oil-free pumps (HAILEA Model ACO 5505) at the rate of 1 l min-1 kg-1 

[28]. The moisture level of the process was kept constant at 50-55% over the whole composting 

time. 

2.7. Analytical methods 

The organic carbon (OC) and TPH were determined bi-weekly over the process time. The 

value of pH was measured by means of a pH meter (JENWAY model 3510) according to 

TMECC [29]. The OC was quantified on the basis of loss-on-ignition method described by 

TMECC [29]. The TPH was extracted with n-pentane and then quantified by means of a gas 

chromatograph (Shimadzu, Japan) based on TNRCC [30]. The operating conditions of the gas 

chromatograph have been described in a previous work [31]. All tests were repeated in triplicate. 

2.8. Kinetic study  

Kinetic study of microbial degradation was also performed to better understand the TPH 

removal rates during the composting process. Biodegradation of petroleum hydrocarbons was 

explained by the first and second-order kinetics depicted by the following equations: 

Ct = Ci e-kt (1)              

t1/2 = ln2/k1 = 0.693/k1  (2) 

1/Ct = k2t + (1/Ct)   (3) 

t1/2 = 1/k2Ci  (4) 

Where Ci is the initial concentration of TPH (g kg-1), Ct is TPH concentration (g kg-1) at time 

t, k1 (d-1) and k2 (g kg-1d-1) are biodegradation rate for the first-and second-order kinetics, 
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respectively. t1/2 is the time (d) needed for removing half of the initial level of TPH. The 

biodegradation rate of TPH was calculated as follows: 

TPH biodegradation rate = [(TPH1-TPH2)/TPH1] ×100 

where TPH1 and TPH2 are the amount of TPH before and after treatment, respectively.  

2.9. Statistical analysis 

One-way ANOVA test (SPSS software) was used to compare the differences (P value ≤ 0.05) 

between the composting reactors. Regression analysis (Microsoft Excel software) was also 

applied to determine the possible correlations between the variables. 

2.10. Nucleotide sequence accession numbers 

The nucleotide sequences from this study were deposited in NCBI GenBank under the 

accession numbers of MK127545 and MK127546, respectively, for Enterobacter hormaechei 

strain KA3 and Staphylococcus equorum strain KA4.

3. Results and discussion  

3.1. Taxonomic and metabolic characterization of the isolated bacteria 

Taxonomic characteristics of the strains were determined by 16S rRNA gene sequence 

analysis. The phylogenetic analysis (Fig. 1) and NCBI Genbank database similarity search 

demonstrated that the bacteria are Enterobacter hormaechei strain KA3 and Staphylococcus 

equorum strain KA4. The results of the biochemical tests conducted on the strains have been 

provided in Table S2 (supplementary material). Table S3 (supplementary material) also presents 

the metabolic ability of the isolates to grow in the MBM containing 1% of crude oil. As can be 
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inferred, there is a lag in effective bacterial growth during the first 2 days of the incubation 

period. Then, the biomass was rapidly generated until the day 7-10. From the day 10 onward, the 

bacterial growth and biomass production started to decrease. Thus, the isolates reached to the 

logarithmic phase in a period of about 7-10 days. This period was selected as the time of 

incubation for all the tests performed in the MBM. It can be inferred that both the two individual 

isolates and their consortium can grow well in the presence of crude oil.  

Fig. 1

3.2. MBM experiments 

3.2.1. Effect of pH on crude oil biodegradation  

The effect of pH, as a crucial parameter affecting the bacterial metabolism and petroleum 

hydrocarbons solubility, on the bacterial growth and decomposition of crude oil (1% 

concentration) was examined. As can be seen from Table 1, the strains exhibited the highest 

growth and oil biodegradation at the pH value of 7. At this pH, 48.85 and 46.35% of TPH was 

removed by the strains KA3 and KA4 during 7 days. At the pHs of 6 and 8, the crude oil 

degradation decreased slightly and reached to the range of 38.56-41.93%. However, the 

biodegradation reduced sharply at the pH values of 5 and 9. These findings are in line with other 

studies [32, 33] reporting that the oil degrading bacteria prefer to grow at neutral pH for TPH 

removal. The consortium of the two strains also presented the best efficacy and growth in the pH 

range of 6-8. For this reason, the composting bioreactors were operated at the neutral condition. 

Table 1 

3.2.2. Effect of initial concentration of crude oil 
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The effect of initial oil concentrations (1-5%) on the mineralization of petroleum 

hydrocarbons was examined in this work. The results (Table 2) showed that the strains were 

more effective to degrade 1-3% concentrations of crude oil as the removal percentage dropped 

significantly at initial oil concentrations of 4 and 5%. Less effective degradation at these high 

levels of oil could be due to the bacterial metabolic characteristics and crude oil toxicity. 

Moreover, high concentration of crude oil can block the aeration, which also affects the bacterial 

growth [34]. The highest biodegradation occurred at a crude oil concentration of 2% as after 7 

days, 53.94 and 50.68% of crude oil was degraded, respectively, by the strains KA3 and KA4. 

The capacity of the isolates for TPH removal was not high at a very low level (1%) of crude oil. 

When the carbon source is too low to promote microbial growth, extremely low amount of crude 

oil would limit TPH removal [3]. Thus, the crude oil amount of 2% was found to be the optimum 

initial concentration for the isolates to effectively degrade petroleum hydrocarbons. This optimal 

concentration was the basis for adjusting the mixing ratios of HOS to FC in the composting 

setups.  

Table 2 

3.2.3. Synergistic effect of the strains  

As can be seen from Tables 1 and 2, the oil degradation by the bacterial consortium was 

higher than that of the individual strains. Hence, these two strains presented the synergistic effect 

for TPH biodegradation when they are used in the mixed culture. Several authors [18, 35, 36] 

already reported that pure single strains were not able to degrade crude oil effectively compared 

to their consortium. The positive effects of bacterial consortium compared to individual strains 

will be deeply discussed in section 3.3.1. E24 was calculated to investigate the ability of the strain 

in biosurfactant production. The value of BATH was also measured to determine the affinity of 
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the strains to the petroleum hydrocarbons. The isolates KA3, KA4, and their consortium showed 

emulsification index of 13, 10, and 18%, respectively. The corresponding values for BATH were 

found to be 8.62, 16.10, and 21.10%, respectively. These values also verified the better 

performance of the consortium as compared to each strain. 

3.2.4. Relation between crude oil degradation and cell growth

Growth of the individual strains and their consortium in BH medium was also determined 

(Tables S2, 1, and 2) through measuring the biomass production (OD600 nm). The crude oil 

concentration decreased in response to increased cell numbers, indicating that the isolated 

bacteria can utilize crude oil as a sole source of carbon. Regression analysis presented in Fig. 2, 

also indicated that the oil biodegradation was in direct correlation with biomass formation of the 

selected strains. These results of the biomass production demonstrated the ability of the isolates 

to consume petroleum hydrocarbons as a carbon source. The higher optical density observed in 

the case of the bacterial consortium showed more effective growth of the consortium as 

compared to the individual strains.  

Fig. 2 

3.3. Scaling-up of HOS biodegradation from MBM to composting process 

3.3.1. TPH removal 

Determination of the actual role of microbial community for oil degradation in the aqueous 

phase is not easy since a large fraction of viscous and sticky oil may attach to the surface of flask 

instead of dispersing in the liquid medium. Hence, it is of vital importance to evaluate the 

potential of the isolates in biodegradation of petroleum pollutants in a real bioremediation 

conditions such as composting process. For this reason, we simulated the TPH removal in the 
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composting bioreactors based on results obtained from the MBM. Accordingly, the HOS 

containing 255.05 g kg-1 of TPH concentration was blended with FC in the mixing ratio of 

12.23:1 to reach an initial concentration of 20 g kg-1. The initial TPH concentration is of great 

importance since the proper adjustment of the mixing ratio greatly affects TPH removal [37, 38].  

Fig. 3a indicates the trend of TPH decomposition in the composting treatments. The reduction 

rates of TPH in the reactors A1, A2, A3, and A4 were 63.95, 61.00, 89.35%, and 76.20, 

respectively during 16 weeks. Thus, the biodegradation capacities of the two strains were nearly 

similar. However, the percentage of TPH degradation significantly increased when their 

consortium was inoculated to the composting reactors. Hence, application of the two combined 

isolates resulted in their synergistic effect in terms of TPH removal. As crude oil consists of 

different hydrocarbons, and each strain can metabolize only a limited range of materials, 

bioremediation of oily sludge requires a microbial consortium to degrade petroleum 

hydrocarbons more effectively. A collaboration and synergistic effect between different bacteria 

makes them act better than a single strain. In recent years, combination of microbial strains for 

enhancing biodegradation of various types of pollutants has attracted much attention [13, 14].  

The results of the present study showed that TPH removal by the consortium were 25.40 and 

28.35% higher than the individual cultures of KA3 and KA4, respectively. Kamyabi et al. [13] 

also reported that an additional 20% of pyrene removal was achieved by combined cultures in 

comparison to individual cultures. Other studies have also described the higher ability of 

consortium to degrade petroleum pollutants [18, 39]. The negligible TPH removal (3.8%) 

observed in the control reactor (A5) indicated that the bacterial populations were responsible for 

hydrocarbon degradation in the reactors A1-A4.  

Fig. 3 
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3.3.2. Effect of two-step inoculation on TPH reduction  

In the case of one-step inoculation (the reactor A4), high degradation of petroleum compounds 

and thereby TPH removal were initiated until the end of week 8, and then, the biodegradation 

rate lowered to the end of the process. It has been reported in previous works [40, 41] that the 

biodegradation of petroleum materials proceeds rapidly in the beginning weeks of the 

composting process and slows down in the later. This pattern is due to the fact that the type and 

composition of petroleum hydrocarbons present in crude oil determine their susceptibility to 

microbial degradation. Accordingly, easily-biodegradable hydrocarbons are consumed first and 

the remained fractions are resistant to biodegradation [3, 34]. Naturally, the number or metabolic 

activity of the oil-degrading bacteria declines. As the bioremediation efficacy is a function of the 

extent to which microbes are maintained in the system, microbial deficiency limits the 

effectiveness of the process. Hence, the application of bacterial strain as inoculums is 

advantageous in cases where there is a lack of appropriate microorganisms or pollutant toxicity 

[14, 42]. In this regards, the inoculation of native and specialist bacterial strains is helpful 

because of their high adaptation abilities to crude oil containing environments [43, 44]. On the 

other hand, in some cases, the introduced microorganisms are not necessarily adapted to 

environmental conditions. Therefore, addition of large quantities of biomass can act momentarily 

as biocatalyst, before vanishing due to the inappropriate conditions [45]. For this reason, a two-

phase composting, in which the bacterial communities are provided through two-step 

inoculation, was designed in the current work.

Removal percentages of TPH in various durations of the process were shown in Fig. 3b. In the 

reactors A1 and A2, 32.50 and 31.90% of TPH were removed over the FP. The corresponding 

values over the SP were 31.45 and 29.10%, respectively. As a result, a suitable efficacy of TPH 
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degradation was yielded over both the FP and SP in these two experiments. The higher removal 

percentage observed at the weeks 10 and 12 (Table 3) supported the positive effect of 

reinoculation in promoting the process efficacy. These results are in line with other studies 

reporting the higher efficiency of two-phase composting compared to conventional one-phase 

system [12, 46]. It is interesting to note that although easily-biodegradable hydrocarbons were 

consumed over the FP, petroleum hydrocarbons continued to decompose during the SP, mainly 

as a result of bacterial reinoculation at a high concentration. The effective role of microbial 

inoculation in hydrocarbon removal has also been indicated previously [20, 43].  

Table 3 

The biodegradation rates of TPH in the reactor A3 were 64.05 and 25.30% over the FP and 

SP, respectively. Hence, the second-step inoculation did not enhance the process performance 

during the SP. Comparing the TPH biodegradation in the experiments A3 and A4 is also helpful 

in terms of the effectiveness of the two-phase composting when the bacterial consortium is used. 

These two reactors were thoroughly similar in terms of initial TPH concentration and bacterial 

strains. However, unlike other reactors, A4 was a conventional composting process experiencing 

a one-step inoculation. Naturally, TPH reductions in these two reactors were similar over the FP 

of the process duration. The overall removal rate in the A3 was only 13.15% higher than that A4. 

This also demonstrated that the application of two-step inoculation of bacterial consortium is not 

justifiable. Accordingly, the composting process can perform well in the form of conventional 

one phase when the microbial consortium is used. Thus, the strains combination and the positive 

synergistic effect would compensate the requirements of periodic inoculations when using 

individual strains. 

3.3.3. Effect of bulking agent addition on the bioreactors performance  
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Since microbes prefer to consume less recalcitrant organic carbons, the presence of easily-

decomposable materials can help maintain the bacterial activity in the system. On the other hand, 

the organic materials used must not be preferred over the target contaminant. Furthermore, the 

bulking agent should not add at high concentrations in which they act as a sole carbon source [3, 

12]. In this point of view, the type and level of bulking agent used in the composting process 

significantly influence microbial growth. 

In order to survey the effect of addition of FC (as a bulking agent) on the TPH degradation, 

the change of OC and TPH/OC was plotted in Fig. 4. The decrement in the ratio of TPH/OC 

showed that TPH biodegradation was higher than that of OC. Therefore, the bulking agent added 

to the composting reactors was not a competing carbon source for petroleum hydrocarbons.  

Bulking agents such as FC promote the capacity of the composting mixture in maintaining 

water contents, which can help the bacterial growth. In addition, they facilitate air diffusion 

through the composting medium resulting in the higher heat generation and rapid TPH removal 

[47]. The regression analysis (Fig. 5) indicated linear correlation between the biodegradation of 

TPH and OC. In the large-scale composting facilities, prediction of TPH removal on the basis of 

OC consumption can be done using these correlations and computed equations.

Fig. 4 

Fig. 5 

3.3.4. Bioremediation kinetic study 

According to the computed values presented in Table 4, TPH removal fitted to the first and 

second-order model over the FP and SP, respectively. This result is in accordance with other 

studies reporting that biodegradation of petroleum hydrocarbons proceeds according to the first- 

and second-order kinetics [48, 49]. The values of t1/2 and k1 for the first-order kinetic over the FP 
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were in the range of 5.17-13.59 d and 0.051-0.134 d-1, respectively. The corresponding values for 

the second-order kinetic over the SP were respectively, 1.11-5.56 d and 0.009-0.045 g kg-1d-1. 

All the values in the table demonstrated the better performance of the reactor A3 containing the 

bacterial consortium compared to the reactors A1 and A2. Moreover, the higher values of k1 and 

k2 during SP verified the effectiveness of the second inoculation. The values of k obtained in the 

present research were different to those computed by Gomez and Sartaj [50]. The reason is the 

highly dependence of the kinetic values on multiple parameters like the nature of oily sludge, the 

method of bioremediation, and operational conditions of the system [51, 52].  

Table 4 

4. Conclusions

The impact of two-step inoculation of native strains and their synergistic effect in the scaling-

up of HOS bioremediation from MBM to the two-phase composting system were studied. The 

strains were effectively able to remove TPH both in MBM and in composting process. The 

results revealed the synergistic potential of the consortium of the strains KA3 and KA4 as 

compared to their individual cultures. The second-step inoculation of each strain alone greatly 

enhanced TPH removal rate. However, the efficacy of the composting process did not 

significantly increased as a result of the second-step inoculation of the consortium. This research 

indicated the successful scaling-up of HOS treatment from MBM to the used composting method 

through two-step inoculation of the isolated strains. 
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Table 1. Effect of pH on the efficacy of the isolated strains in biodegradation of 1% 

concentrations of crude oil in the MBM after a period of 7 days 

Parameter pH 
Strain 

KA3 

Strain 

KA4 
Consortium

Percentage 

of crude oil 

degradation  

5 27.17 24.67 33.27 

6 41.93 38.56 52.78 

7 48.85 46.35 61.09 

8 39.87 39.56 53.38 

9 35.91 32.04 45.50 

OD600

5 0.75 0.68 0.86 

6 1.06 1.03 1.22 

7 1.29 1.26 1.49 

8 1.09 1.07 1.13 

9 0.85 0.63 0.87 

Table 2. Efficacy of the isolated strains in biodegradation of various concentrations of crude oil 

in the MBM after a period of 7 days at an initial pH of 7 

Parameter 
Crude oil   

concentrations

Strain 

KA3 

Strain 

KA4 
Consortium

Percentage 
of crude oil 
degradation  

1% 48.85 46.35 57.12 

2% 53.94 50.68 61.17 

3% 50.06 46.12 59.87 

4% 20.76 14.91 32.50 

5% 8.06 4.29 16.38 

OD600

1% 1.29 1.26 1.49 

2% 1.65 1.48 1.65 

3% 1.41 1.06 1.43 

4% 0.61 0.31 0.88 

5% 0.39 0.08 0.45 
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Table 3. Percentage of TPH removal over the process duration 

Process time 

(week) 

Percentage of TPH removal 

A1 A2 A3 A4

0 0.00 0.00 0.00 0.00 

2 6.15 5.55 11.50 11.45 

4 9.65 9.75 20.80 20.55 

6 10.10 11.60 20.50 20.80 

8 6.60 5.00 11.25 11.20 

10 9.15 9.30 13.70 8.25 

12 13.60 13.05 7.75 2.90 

14 4.95 5.05 3.55 0.80 

16 3.75 1.70 0.30 0.25 

Total 63.95 61.00 89.35 76.20 

Table 4. Kinetic data of TPH biodegradation in the composting bioreactors over the FP and SP 

Composting 

phases 

Composting 

experiments

First-order kinetics Second-order kinetics

k1 (d-1) t1/2 (d) R2 k2 (g kg-1d-1) t1/2 (d) R2

FP 

A1 0.051 13.59 0.990 0.003 16.67 0.982 

A2 0.051 13.59 0.980 0.003 16.67 0.974 

A3 0.134 5.17 0.977 0.011 4.55 0.938 

SP 

A1 0.082 8.45 0.970 0.009 5.56 0.983 

A2 0.074 9.36 0.945 0.007 7.14 0.960 

A3 0.157 4.41 0.922 0.045 1.11 0.958 
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Fig. 1. Phylogenetic tree based on 16S rRNA gene sequences of the two bacterial strains isolated 

from HOS 
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Fig. 2. Correlation between biomass generation (OD600) and oil degradation in the MBM 
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Fig. 3. (a) Residual TPH over the process duration in the composting bioreactors; and (b) 

percentages of TPH removal over the FP and SP duration in the composting bioreactors 
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Fig. 4. (a) Trend of OC and (b) TPH/OC changes in the composting bioreactors over the process 

duration 
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Fig. 5. Regression analysis of OC and TPH correlation in the composting bioreactors over the (a) 

FP and (b) SP 
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